
Domain Specific Formal Languages
– A Calculus for Orchestration of Web Services –

Francesco Tiezzi

School of Science and Technology

Computer Science Division

University of Camerino

A.A. 2016/2017

1

Motivation

Deficiency
Current software engineering technologies for SOC

remain at a linguistic level
do not support analytical tools for checking that SOC applications
enjoy desirable correctness properties

Goal
Develop formal reasoning mechanisms and analytical tools for
checking that services (possibly resulting from a composition) meet
desirable properties and do not manifest unexpected behaviors

Motivations 2

Motivation

Deficiency
Current software engineering technologies for SOC

remain at a linguistic level
do not support analytical tools for checking that SOC applications
enjoy desirable correctness properties

Goal
Develop formal reasoning mechanisms and analytical tools for
checking that services (possibly resulting from a composition) meet
desirable properties and do not manifest unexpected behaviors

Motivations 2

Approach

Goal
Developing formal reasoning mechanisms and analytical tools for
checking that the services resulting from a composition meet desirable
correctness properties and do not manifest unexpected behaviors

Approach: rely on Process Calculi
Convey in a distilled form the paradigm at the heart of SOC (being
defined algebraically, they are inherently compositional)
Provide linguistic formalisms for description of service-based
applications and their composition
Hand down a large set of reasoning mechanisms and analytical
tools, e.g. typing systems and model checkers

Motivations 3

Approach

Goal
Developing formal reasoning mechanisms and analytical tools for
checking that the services resulting from a composition meet desirable
correctness properties and do not manifest unexpected behaviors

Approach: rely on Process Calculi
Convey in a distilled form the paradigm at the heart of SOC (being
defined algebraically, they are inherently compositional)
Provide linguistic formalisms for description of service-based
applications and their composition
Hand down a large set of reasoning mechanisms and analytical
tools, e.g. typing systems and model checkers

Motivations 3

Process Calculi for SOC

To model service composition, many process calculi-like
formalisms have been designed

Most of them only consider a few specific features separately,
possibly by embedding ‘ad hoc’ constructs within some
well-studied process calculus
(e.g., the variants of CSP/π-calculus with transactions)

One major goal is assessing the adequacy of diverse sets of
primitives w.r.t. modelling, combining and analysing
service-oriented systems

Motivations 4

Process Calculi for SOC: an overview

Process calculi for SOC can be classified according to the
approach used for maintaining the link between caller and callee

I Sessions: the link is determined by a private channel that is
implicitly created when the first message exchange of a
conversation takes place

I Correlations: the link is determined by correlation values included
in the exchanged messages

I No link: some works do not take into account this aspect
e.g. webπ, webπ∞, CSP/π-calculus + transactions, . . .

Motivations 5

Process Calculi for SOC: an overview

Process calculi for SOC can be classified according to the
approach used for maintaining the link between caller and callee

I Sessions: the link is determined by a private channel that is
implicitly created when the first message exchange of a
conversation takes place

I Correlations: the link is determined by correlation values included
in the exchanged messages

I No link: some works do not take into account this aspect
e.g. webπ, webπ∞, CSP/π-calculus + transactions, . . .

Motivations 5

Process Calculi for SOC: an overview
Process calculi for SOC can be classified according to the
approach to maintain the link between caller and callee

I Sessions: the link is determined by a private channel that is
implicitly created when the first message exchange of a
conversation takes place

F dyadic: they can be further grouped according to the inter-session
communication mechanism
- CASPIS: dataflow communication
- SSCC: stream-based communication
- π-calculus + sessions (in many works): session delegation

F multiparty:
- Conversation Calculus, µse,
π-calculus + (asynchronous/synchronous) multiparty sessions

I Correlations: the link is determined by correlation values included
in the exchanged messages

F stateful: every service instance has an explicit state
- WS-CALCULUS
- SOCK

F stateless: state is not explicitly modelled
- COWS

Motivations 6

Process Calculi for SOC: an overview
Process calculi for SOC can be classified according to the
approach to maintain the link between caller and callee

I Sessions: the link is determined by a private channel that is
implicitly created when the first message exchange of a
conversation takes place

F dyadic: they can be further grouped according to the inter-session
communication mechanism
- CASPIS: dataflow communication
- SSCC: stream-based communication
- π-calculus + sessions (in many works): delegation

F multiparty:
- Conversation Calculus, µse
π-calculus + (asynchronous/synchronous) multiparty sessions

I Correlations: the link is determined by correlation values included
in the exchanged messages

F stateful: every service instance has an explicit state
- WS-CALCULUS
- SOCK

F stateless: state is not explicitly modelled
- COWS

Motivations 6

Process Calculi for SOC: an overview
Process calculi for SOC can be classified according to the
approach to maintain the link between caller and callee

I Sessions: the link is determined by a private channel that is
implicitly created when the first message exchange of a
conversation takes place

I Correlations: the link is determined by correlation values included
in the exchanged messages

F stateful: every service instance has an explicit state
- WS-CALCULUS
- SOCK

F stateless: state is not explicitly modelled
- COWS

COWS [ESOP’07]
A process calculus for specifying and combining service-oriented
applications, while modelling their dynamic behaviour

Motivations 6

An introduction to COWS

A gentle introduction to COWS 7

COWS: a Calculus for Orchestration of Web Services

WS-BPEL

Inspired by
I the standard WS-BPEL for WS orchestration
I previous work on process calculi

Indeed, COWS intends to be a foundational model not specifically
tight to Web services’ current technologies

COWS combines in an original way a number of constructs and
features borrowed from well-known process calculi

A gentle introduction to COWS COWS 8

COWS: a Calculus for Orchestration of Web Services

WS-BPEL Process
calculi

Inspired by
I the standard WS-BPEL for WS orchestration
I previous work on process calculi

Indeed, COWS intends to be a foundational model not specifically
tight to Web services’ current technologies

COWS combines in an original way a number of constructs and
features borrowed from well-known process calculi

A gentle introduction to COWS COWS 8

COWS: a Calculus for Orchestration of Web Services

WS-BPEL Process
calculi

COWS

Inspired by
I the standard WS-BPEL for WS orchestration
I previous work on process calculi

Indeed, COWS intends to be a foundational model not specifically
tight to Web services’ current technologies

COWS combines in an original way a number of constructs and
features borrowed from well-known process calculi

A gentle introduction to COWS COWS 8

The notion of service in COWS

O1

O2

O1 p2

p1
O3

O4

O3

y

p3

service logicservice logic

x,y

x,z

r

f(z)

e

e'

A gentle introduction to COWS COWS 9

The notion of service in COWS

O1

O2

O1 p2

p1
O3

O4

O3

y

p3

service logicservice logic

x,y

x,z

r

f(z)

e

e'

provided
operations

A gentle introduction to COWS COWS 9

The notion of service in COWS

O1

O2

O1 p2

p1
O3

O4

O3

y

p3

service logicservice logic

x,y

x,z

r

f(z)

e

e'

provided
operations invoked

operations
A gentle introduction to COWS COWS 9

The notion of service in COWS

O1

O2

O1 p2

p1
O3

O4

O3

y

p3

service logicservice logic

x,y

x,z

r

f(z)

e

e'

provided
operations invoked

operations

invoked
(partner) services

A gentle introduction to COWS COWS 9

The notion of service in COWS

O1

O2

O1 p2

p1
O3

O4

O3

y

p3

service logicservice logic

x,y

x,z

r

f(z)

e

e'

provided
operations invoked

operations

invoked
(partner) servicesCOWS

specification

A gentle introduction to COWS COWS 9

COWS in three steps
COWS (Calculus for Orchestration of Web Services)

µCOWS (micro COWS)

µCOWSm (micro COWS minus priority)
Communication activities

Invoke
Control flow activities

Parallel composition
Replication

Receive

Choice
Delimitation

A gentle introduction to COWS COWS 10

COWS in three steps
COWS (Calculus for Orchestration of Web Services)

µCOWS (micro COWS)

µCOWSm (micro COWS minus priority)
Communication activities

Invoke
Control flow activities

Parallel composition
Replication

Receive

Choice
Delimitation

Priority in the parallel composition

A gentle introduction to COWS COWS 10

COWS in three steps
COWS (Calculus for Orchestration of Web Services)

µCOWS (micro COWS)

µCOWSm (micro COWS minus priority)
Communication activities

Invoke
Control flow activities

Parallel composition
Replication

Receive

Choice
Delimitation

Priority in the parallel composition

A gentle introduction to COWS COWS 10

COWS in three steps
COWS (Calculus for Orchestration of Web Services)

µCOWS (micro COWS)

µCOWSm (micro COWS minus priority)
Communication activities

Invoke
Control flow activities

Parallel composition
Replication

Receive

Choice
Delimitation

Priority in the parallel composition

Termination activities
Kill activity Protection

A gentle introduction to COWS COWS 10

COWS in three steps
COWS (Calculus for Orchestration of Web Services)

µCOWS (micro COWS)

µCOWSm (micro COWS minus priority)
Communication activities

Invoke
Control flow activities

Parallel composition
Replication

Receive

Choice
Delimitation

Priority in the parallel composition

Termination activities
Kill activity Protection

A gentle introduction to COWS COWS 10

Syntax of µCOWSm

s ::= (services)
u • u′!ε̄ (invoke)
|
∑r

i=0 gi .si (receive-guarded choice)
| s | s (parallel composition)
| [u] s (delimitation)
| ∗ s (replication)

g ::= (guards)
p • o?w̄ (receive)

(notations)
ε: expressions

x : variables
v : values

n,p,o: names
u: variables |names
w : variables |values

µCOWSm vs. π-calculus, fusion, Value-passing CCS, Dπ, . . .
• asynchronous and polyadic communication
• input− guarded choice
• polyadic synchronization
• localised channels

 π-calculus

• global scoping (and non− binding input)
}

fusion

• distinction between variables and values
}

vp CCS, App. π-calculus, Dπ

• pattern−matching
}

Klaim

A gentle introduction to COWS Syntax of µCOWSm 11

Syntax of µCOWSm

s ::= (services)
u • u′!ε̄ (invoke)
|
∑r

i=0 gi .si (receive-guarded choice)
| s | s (parallel composition)
| [u] s (delimitation)
| ∗ s (replication)

g ::= (guards)
p • o?w̄ (receive)

(notations)
ε: expressions

x : variables
v : values

n,p,o: names
u: variables |names
w : variables |values

Notations

The exact syntax of expressions is deliberately omitted

¯ denotes tuples of objects, e.g. w̄ is a tuple of variables and/or values

A gentle introduction to COWS Syntax of µCOWSm 11

Syntax of µCOWSm

s ::= (services)
u • u′!ε̄ (invoke)
|
∑r

i=0 gi .si (receive-guarded choice)
| s | s (parallel composition)
| [u] s (delimitation)
| ∗ s (replication)

g ::= (guards)
p • o?w̄ (receive)

(notations)
ε: expressions

x : variables
v : values

n,p,o: names
u: variables |names
w : variables |values

Communication activities

Services are provided and invoked through communication endpoints,
written as p •o (i.e. ‘partner name’ plus ‘operation name’)

Receive activities bind neither names nor variables

Communication is regulated by pattern-matching

Partner names and operation names can be exchanged when
communicating (only the ‘send capability’ is passed over)

Communication is asynchronous

A gentle introduction to COWS Syntax of µCOWSm 11

Syntax of µCOWSm

s ::= (services)
u • u′!ε̄ (invoke)
|
∑r

i=0 gi .si (receive-guarded choice)
| s | s (parallel composition)
| [u] s (delimitation)
| ∗ s (replication)

g ::= (guards)
p • o?w̄ (receive)

(notations)
ε: expressions

x : variables
v : values

n,p,o: names
u: variables |names
w : variables |values

Choice

+ abbreviates binary choice, while empty choice will be denoted by 0

A gentle introduction to COWS Syntax of µCOWSm 11

Syntax of µCOWSm

s ::= (services)
u • u′!ε̄ (invoke)
|
∑r

i=0 gi .si (receive-guarded choice)
| s | s (parallel composition)
| [u] s (delimitation)
| ∗ s (replication)

g ::= (guards)
p • o?w̄ (receive)

(notations)
ε: expressions

x : variables
v : values

n,p,o: names
u: variables |names
w : variables |values

Parallel composition

Permits interleaving executions of activities

A gentle introduction to COWS Syntax of µCOWSm 11

Syntax of µCOWSm

s ::= (services)
u • u′!ε̄ (invoke)
|
∑r

i=0 gi .si (receive-guarded choice)
| s | s (parallel composition)
| [u] s (delimitation)
| ∗ s (replication)

g ::= (guards)
p • o?w̄ (receive)

(notations)
ε: expressions

x : variables
v : values

n,p,o: names
u: variables |names
w : variables |values

Delimitation

Only one binding construct: [u] s binds u in the scope s

I free/bound names and variables and closed terms defined
accordingly

Delimitation is used to:
1 regulate the range of application of substitutions

2 generate fresh names

A gentle introduction to COWS Syntax of µCOWSm 11

Syntax of µCOWSm

s ::= (services)
u • u′!ε̄ (invoke)
|
∑r

i=0 gi .si (receive-guarded choice)
| s | s (parallel composition)
| [u] s (delimitation)
| ∗ s (replication)

g ::= (guards)
p • o?w̄ (receive)

(notations)
ε: expressions

x : variables
v : values

n,p,o: names
u: variables |names
w : variables |values

Replication

Permits implementing persistent services and recursive behaviours

A gentle introduction to COWS Syntax of µCOWSm 11

µCOWSm operational semantics

Labelled transition relation α−→
Label α is generated by the following grammar:

α ::= n� v̄ | n� w̄ | σ

where σ is a substitution
i.e. a function from variables to values (written as collections of pairs x 7→v)

and n denotes endpoints (i.e. p •o)

Structural congruence ≡
Standard laws for

∑
, | and ∗ , plus:

[u] 0 ≡ 0
[u1] [u2] s ≡ [u2] [u1] s
s1 | [u] s2 ≡ [u] (s1 | s2) if u /∈ fu(s1)

fu(s) denotes the set of elements occurring free in s

A gentle introduction to COWS Operational semantics of µCOWSm 12

µCOWSm operational semantics

Labelled transition relation α−→
Label α is generated by the following grammar:

α ::= n� v̄ | n� w̄ | σ

where σ is a substitution
i.e. a function from variables to values (written as collections of pairs x 7→v)

and n denotes endpoints (i.e. p •o)

Structural congruence ≡
Standard laws for

∑
, | and ∗ , plus:

[u] 0 ≡ 0
[u1] [u2] s ≡ [u2] [u1] s
s1 | [u] s2 ≡ [u] (s1 | s2) if u /∈ fu(s1)

fu(s) denotes the set of elements occurring free in s

A gentle introduction to COWS Operational semantics of µCOWSm 12

µCOWSm: Invoke/receive activities & Choice

Invoke activities
Can proceed only if the expressions in the argument can be evaluated

Evaluation function [[_]]: takes closed expressions and returns values

[[ε̄]] = v̄

n!ε̄
n� v̄−−−−→ 0

Choice (among receive activities)

Offers an alternative choice of endpoints

It is not a binder for names and variables (delimitation is used to delimit
their scope)∑r

i=1 ni?w̄i .si
nj �w̄j−−−−−→ sj (1 ≤ j ≤ r)

A gentle introduction to COWS Operational semantics of µCOWSm 13

µCOWSm: Parallel composition

Communication takes place when two parallel services perform
matching receive and invoke activities

s1
n� w̄−−−−−→ s′1 s2

n� v̄−−−−→ s′2 M(w̄ , v̄)=σ

s1 | s2
σ−−→ s′1 | s′2

Execution of parallel services is interleaved

s1
α−−→ s′1

s1 | s2
α−−→ s′1 | s2

Matching function

M(x , v) = {x 7→ v}
M(v , v) = ∅

M(〈〉, 〈〉) = ∅

M(w1, v1) = σ1 M(w̄2, v̄2) = σ2

M((w1, w̄2), (v1, v̄2)) = σ1] σ2

A gentle introduction to COWS Operational semantics of µCOWSm 14

µCOWSm: Parallel composition

Communication takes place when two parallel services perform
matching receive and invoke activities

s1
n� w̄−−−−−→ s′1 s2

n� v̄−−−−→ s′2 M(w̄ , v̄)=σ

s1 | s2
σ−−→ s′1 | s′2

Execution of parallel services is interleaved

s1
α−−→ s′1

s1 | s2
α−−→ s′1 | s2

Matching function

M(x , v) = {x 7→ v}
M(v , v) = ∅

M(〈〉, 〈〉) = ∅

M(w1, v1) = σ1 M(w̄2, v̄2) = σ2

M((w1, w̄2), (v1, v̄2)) = σ1] σ2

A gentle introduction to COWS Operational semantics of µCOWSm 14

µCOWSm: Parallel composition

Communication takes place when two parallel services perform
matching receive and invoke activities

s1
n� w̄−−−−−→ s′1 s2

n� v̄−−−−→ s′2 M(w̄ , v̄)=σ

s1 | s2
σ−−→ s′1 | s′2

Execution of parallel services is interleaved

s1
α−−→ s′1

s1 | s2
α−−→ s′1 | s2

Matching function

M(x , v) = {x 7→ v}
M(v , v) = ∅

M(〈〉, 〈〉) = ∅

M(w1, v1) = σ1 M(w̄2, v̄2) = σ2

M((w1, w̄2), (v1, v̄2)) = σ1] σ2

A gentle introduction to COWS Operational semantics of µCOWSm 14

µCOWSm: Delimitation

[u] s behaves like s, except when the transition label α contains u

When the whole scope of a variable x is determined, and a
communication involving x within that scope is taking place the
delimitation is removed and the substitution for x is performed

s
α−−→ s′ u /∈ u(α)

[u] s
α−−→ [u] s′

s
σ]{x 7→v}−−−−−−−→ s′

[x] s
σ−−→ s′ ·{x 7→ v}

Substitutions (ranged over by σ):

functions from variables to values (written as collections of pairs x 7→ v)

σ1] σ2 denotes the union of σ1 and σ2 when they have disjoint domains

u(α) avoids capturing endpoints of actual communications,
it denotes the set of elements occurring in α,

A gentle introduction to COWS Operational semantics of µCOWSm 15

µCOWSm operational semantics

Labelled transition rules

[[ε̄]] = v̄

n!ε̄
n� v̄−−−−→ 0

1≤ j ≤ r∑r
i=1 ni ?w̄i .si

nj �w̄j−−−−−→ sj

s1
n� w̄−−−−−→ s′1 s2

n� v̄−−−−→ s′2 M(w̄ , v̄)=σ

s1 | s2
σ−−→ s′1 | s′2

s1
α−−→ s′1

s1 | s2
α−−→ s′1 | s2

s
σ]{x 7→v}−−−−−−−→ s′

[x] s σ−−→ s′ ·{x 7→ v}

s α−−→ s′ u /∈ u(α)

[u] s α−−→ [u] s′
s ≡ α−−→≡ s′

s α−−→ s′

A gentle introduction to COWS Operational semantics of µCOWSm 16

µCOWSm: simple bank service example

bank

bank servicebank service

“ok”/ “fail”

charge

resp

client
service

c,1234,
100€

charge

respc xc
x

bank

...

xc,xcc,
xamount

bank • charge!〈c,1234,100AC〉 [xc, xcc, xamount]
| [x] (c • resp?〈x〉.s | s′) bank • charge?〈xc, xcc, xamount〉.

xc • resp!〈chk(xcc , xamount)〉

A gentle introduction to COWS Operational semantics of µCOWSm 17

µCOWSm: simple bank service example

bank

bank servicebank service

“ok”/ “fail”

charge

resp

client
service

c,1234,
100€

charge

respc xc
x

bank

...

xc,xcc,
xamount

bank • charge!〈c,1234,100AC〉 [xc, xcc, xamount]
| [x] (c • resp?〈x〉.s | s′) bank • charge?〈xc, xcc, xamount〉.

xc • resp!〈chk(xcc , xamount)〉

A gentle introduction to COWS Operational semantics of µCOWSm 17

µCOWSm: simple bank service example

bank

bank servicebank service

“ok”/ “fail”

charge

resp

client
service

c,1234,
100€

charge

respc xc
x...

xc,xcc,
xamount

bank • charge!〈c,1234,100AC〉 [xc, xcc, xamount]
| [x] (c • resp?〈x〉.s | s′) | bank • charge?〈xc, xcc, xamount〉.

xc • resp!〈chk(xcc , xamount)〉

A gentle introduction to COWS Operational semantics of µCOWSm 17

µCOWSm: simple bank service example

bank servicebank service

“ok”/ “fail” resp

client
service

respc c
x...

[x] (c • resp?〈x〉.s | s′) | c • resp!〈chk(1234,100AC)〉

A gentle introduction to COWS Operational semantics of µCOWSm 17

µCOWSm: simple bank service example

bank servicebank service

“ok”/ “fail” resp

client
service

respc x...

[x] (c • resp?〈x〉.s | s′) | c • resp!〈chk(1234,100AC)〉

A gentle introduction to COWS Operational semantics of µCOWSm 17

µCOWSm: simple bank service example

bank servicebank service

client
service
...

(s | s′) · {x 7→“ok”/“fail”} | 0

A gentle introduction to COWS Operational semantics of µCOWSm 17

µCOWSm: communication of private names

bank

bank servicebank service

“ok”/ “fail”

charge

resp

client
service

c,1234,id,
 100€

charge

respc xc
x

bank

...

xc,xcc,xid,
xamount

[id] [xc, xcc, xid, xamount]
(bank • charge!〈c,1234, id,100AC〉 bank • charge?〈xc, xcc, xid, xamount〉.
| [x] (c • resp?〈x〉.s | s′)) xc • resp!〈chk(xcc , xid , xamount)〉

A gentle introduction to COWS Operational semantics of µCOWSm 18

µCOWSm: communication of private names

bank

bank servicebank service

“ok”/ “fail”

charge

resp

client
service

c,1234,id,
 100€

charge

respc xc
x...

xc,xcc,xid,
xamount

[id] [xc, xcc, xid, xamount]
(bank • charge!〈c,1234, id,100AC〉 | bank • charge?〈xc, xcc, xid, xamount〉.
| [x] (c • resp?〈x〉.s | s′)) xc • resp!〈chk(xcc , xid , xamount)〉

A gentle introduction to COWS Operational semantics of µCOWSm 18

µCOWSm: communication of private names

bank

bank servicebank service

“ok”/ “fail”

charge

resp

client
service

c,1234,id,
 100€

charge

respc xc
x...

xc,xcc,xid,
xamount

≡

A gentle introduction to COWS Operational semantics of µCOWSm 18

µCOWSm: communication of private names

bank

bank servicebank service

“ok”/ “fail”

charge

resp

client
service

c,1234,id,
 100€

charge

respc xc
x...

xc,xcc,xid,
xamount

[id, xc, xcc, xid, xamount]((
bank • charge!〈c,1234, id,100AC〉
| [x] (c • resp?〈x〉.s | s′)

)
|
(

bank • charge?〈xc, xcc, xid, xamount〉.
xc • resp!〈chk(xcc , xid , xamount)〉

))

A gentle introduction to COWS Operational semantics of µCOWSm 18

µCOWSm: communication of private names

bank servicebank service

“ok”/ “fail” resp

client
service

respc xc
x...

[id]
([x] (c • resp?〈x〉.s | s′) | c • resp!〈chk(1234, id,100AC)〉)

A gentle introduction to COWS Operational semantics of µCOWSm 18

µCOWSm: persistent bank service example

bank

bank servicebank service

“ok”/ “fail”

charge

resp

client1 c1,1234,
100€charge

resp xc
x

bank

...

xc,xcc,
xamount *

client2 c2,5678,
200€charge

resp y

bank

...

c1

c2

∗ [xc, xcc, xamount] bank • charge?〈xc, xcc, xamount〉.xc • resp!〈chk(xcc , xamount)〉

A gentle introduction to COWS Operational semantics of µCOWSm 19

µCOWSm: persistent bank service example

bank

bank service

“ok”/ “fail”

charge

resp

client1 c1,1234,
100€charge

resp xc
x

bank

...

xc,xcc,
xamount *

client2 c2,5678,
200€charge

resp y

bank

...

c1

c2

bank • charge!〈c1,1234,100AC〉 | [x] c1 • resp?〈x〉.s1
| bank • charge!〈c2,5678,200AC〉 | [y] c2 • resp?〈y〉.s2

A gentle introduction to COWS Operational semantics of µCOWSm 19

µCOWSm: persistent bank service example

client1 c1,1234,
100€charge

respc1
x

bank

...

client2 c2,5678,
200€charge

resp y

bank

...

bank

bank servicebank service

“ok”/ “fail”

charge

respxc

xc,xcc,
xamount *

c2

A gentle introduction to COWS Operational semantics of µCOWSm 19

µCOWSm: persistent bank service example

client1 c1,1234,
100€charge

respc1
x...

client2 c2,5678,
200€charge

resp y

bank

...

bank

bank servicebank service

“ok”/ “fail”

charge

respxc

xc,xcc,
xamount *

c2

A gentle introduction to COWS Operational semantics of µCOWSm 19

µCOWSm: persistent bank service example

client1

respc1
x...

client2 c2,5678,
200€charge

resp y

bank

...

bank

bank servicebank service

“ok”/ “fail”

charge

respxc

xc,xcc,
xamount *

c2

resp“ok”/ “fail”c1

A gentle introduction to COWS Operational semantics of µCOWSm 19

µCOWSm: persistent bank service example

c2,5678,
200€charge bank

bank

bank servicebank service

“ok”/ “fail”

charge

respxc

xc,xcc,
xamount *

resp“ok”/ “fail”c1

client1

respc1
x...

client2

resp y... c2

∗ [xc, xcc, xamount] bank • charge?〈xc, xcc, xamount〉.xc • resp!〈chk(xcc , xamount)〉
| c1 • resp!〈chk(1234,100AC)〉

A gentle introduction to COWS Operational semantics of µCOWSm 19

µCOWSm: persistent bank service example

client1

respc1
x...

client2

c2,5678,200€charge

resp y...

bank

bank servicebank service

“ok”/ “fail”

charge

respxc

xc,xcc,
xamount *

c2

resp“ok”/ “fail”c1

A gentle introduction to COWS Operational semantics of µCOWSm 19

µCOWSm: persistent bank service example

respc1
x...

client2

resp y...

bank

bank servicebank service

“ok”/ “fail”

charge

respxc

xc,xcc,
xamount *

c2

resp“ok”/ “fail”c1

resp“ok”/ “fail”c2

A gentle introduction to COWS Operational semantics of µCOWSm 19

µCOWSm: persistent bank service example

client1

respc1
x...

client2

resp y...

bank

bank servicebank service

“ok”/ “fail”

charge

respxc

xc,xcc,
xamount *

c2

resp“ok”/ “fail”c1

resp“ok”/ “fail”c2

∗ [xc, xcc, xamount] bank • charge?〈xc, xcc, xamount〉.xc • resp!〈chk(xcc , xamount)〉
| c1 • resp!〈chk(1234,100AC)〉 | c2 • resp!〈chk(5678,200AC)〉

A gentle introduction to COWS Operational semantics of µCOWSm 19

µCOWSm: persistent bank service example

client1

respc1
x...

client2

resp y...

bank

bank servicebank service

“ok”/ “fail”

charge

respxc

xc,xcc,
xamount *

c2

resp“ok”/ “fail”c1

resp“ok”/ “fail”

A gentle introduction to COWS Operational semantics of µCOWSm 19

µCOWSm: persistent bank service example

client1

respc1
x...

client2

...

bank

bank servicebank service

“ok”/ “fail”

charge

respxc

xc,xcc,
xamount *

resp“ok”/ “fail”c1

A gentle introduction to COWS Operational semantics of µCOWSm 19

µCOWSm: persistent bank service example

client1

respc1
x...

client2

...

bank

bank servicebank service

“ok”/ “fail”

charge

respxc

xc,xcc,
xamount *

resp“ok”/ “fail”

A gentle introduction to COWS Operational semantics of µCOWSm 19

µCOWSm: persistent bank service example

client1

...

client2

...

bank

bank servicebank service

“ok”/ “fail”

charge

respxc

xc,xcc,
xamount *

A gentle introduction to COWS Operational semantics of µCOWSm 19

µCOWSm: compound bank service example

bank

bankInterfacebankInterface

check

ok
failbank

bankcheck

ok
fail

check,ok,failbank servicebank service

charge

“ok”/ “fail” respxc

xc,xcc,
xamount

* * creditRatingcreditRating

[check,ok, fail] (∗bankInterface | ∗ creditRating)

A gentle introduction to COWS Operational semantics of µCOWSm 20

µCOWSm: compound bank service example

bank

bankInterfacebankInterface

check

ok
failbank

bankcheck

ok
fail

check,ok,failbank service

charge

“ok”/ “fail” respxc

* * creditRatingxc,xcc,
xamount

[check,ok, fail] (∗bankInterface | ∗ creditRating)

bankInterface , [xc, xcc, xamount]
bank • charge?〈xc, xcc, xamount〉.
(bank • check!〈xcc, xamount〉
| bank •ok?〈xcc〉. xc • resp!〈“ok”〉

+ bank • fail?〈xcc〉. xc • resp!〈“fail”〉)
A gentle introduction to COWS Operational semantics of µCOWSm 20

µCOWSm: compound bank service example

bank

bankInterface

check

ok
failbank

charge

“ok”/ “fail” respxc

*
check,ok,failbank service

xc,xcc,
xamount bankcheck

ok
fail

* creditRatingcreditRating

[check,ok, fail] (∗bankInterface | ∗ creditRating)

creditRating , [xcc, xa]
bank • check?〈xcc, xa〉.
[p,o] (p •o!〈〉 | p •o?〈〉.bank •ok!〈xcc〉

+ p •o?〈〉.bank • fail!〈xcc〉)

A gentle introduction to COWS Operational semantics of µCOWSm 20

µCOWSm: compound bank service example

bank

bankInterfacebankInterface

bankcheck

check,ok,failbank servicebank service

charge

xc,xcc,
xamount

* * creditRatingcreditRating

client1

c1,1234,
100€
charge

x
bank

resp
c1

client2

c2,5678,
200€
charge

y
bank

resp
c2

A gentle introduction to COWS Operational semantics of µCOWSm 20

µCOWSm: compound bank service example

bank

bankInterfacebankInterface

bankcheck

check,ok,failbank servicebank service

charge

xc,xcc,
xamount

* * creditRatingcreditRating

client1

c1,1234,
100€
charge

x

resp
c1

client2

c2,5678,
200€
charge

y
bank

resp
c2

A gentle introduction to COWS Operational semantics of µCOWSm 20

µCOWSm: compound bank service example

bank

bankInterfacebankInterface

bankcheck

check,ok,failbank servicebank service

charge

xc,xcc,
xamount

* * creditRatingcreditRating

client1

x

resp
c1

client2

c2,5678,
200€
charge

y
bank

resp
c2

c1

check

ok
fail

bank

resp

1234
1234,100€

“ok”/ “fail”
1234

A gentle introduction to COWS Operational semantics of µCOWSm 20

µCOWSm: compound bank service example

bank

bankInterfacebankInterface

bankcheck

check,ok,failbank servicebank service

charge

xc,xcc,
xamount

* * creditRatingcreditRating

client1

x

resp
c1

client2

c2,5678,
200€
charge

y
bank

resp
c2

c1

check

ok
fail

bank

resp

1234
1234,100€

“ok”/ “fail”
1234

A gentle introduction to COWS Operational semantics of µCOWSm 20

µCOWSm: compound bank service example

bank

bankInterfacebankInterface

bankcheck

check,ok,failbank servicebank service

charge

xc,xcc,
xamount

* * creditRatingcreditRating

client1

x

resp
c1

client2

c2,5678,
200€
charge

y
bank

resp
c2

c1 ok
fail

bankresp
1234“ok”/ “fail”
1234

ok
failbank

1234
1234

A gentle introduction to COWS Operational semantics of µCOWSm 20

µCOWSm: compound bank service example

bank

bankInterfacebankInterface

bankcheck

check,ok,failbank servicebank service

charge
* * creditRatingcreditRating

client1

x

resp
c1

client2

c2,5678,
200€
charge

y

resp
c2

c1 ok
fail

bankresp
1234“ok”/ “fail”
1234

ok
failbank

1234
1234

xc,xcc,
xamount

A gentle introduction to COWS Operational semantics of µCOWSm 20

µCOWSm: compound bank service example

bank

bankInterfacebankInterface

bankcheck

check,ok,failbank servicebank service

charge
* * creditRatingcreditRating

client1

x

resp
c1

c1 ok
fail

bankresp
1234“ok”/ “fail”
1234

ok
failbank

1234
1234

client2

y

resp
c2

c2

check

ok
fail

bank

resp

5678
5678,200€

“ok”/ “fail”
5678

xc,xcc,
xamount

A gentle introduction to COWS Operational semantics of µCOWSm 20

µCOWSm: compound bank service example

bank

bankInterfacebankInterface

bankcheck

check,ok,failbank servicebank service

charge
* * creditRatingcreditRating

client1

x

resp
c1

c1 ok
fail

bankresp
1234“ok”/ “fail”
1234

ok
failbank

1234
1234

client2

y

resp
c2

c2

check

ok
fail

bank

resp

5678
5678,200€

“ok”/ “fail”
5678

xc,xcc,
xamount

A gentle introduction to COWS Operational semantics of µCOWSm 20

µCOWSm: compound bank service example

bank

bankInterfacebankInterface

bankcheck

check,ok,failbank servicebank service

charge
* * creditRatingcreditRating

client1

x

resp
c1

c1 ok
fail

bankresp
1234“ok”/ “fail”
1234

ok
failbank

1234
1234

client2

y

resp
c2

c2 ok
fail

bankresp
5678“ok”/ “fail”
5678

ok
failbank

5678
5678

xc,xcc,
xamount

A gentle introduction to COWS Operational semantics of µCOWSm 20

µCOWSm: compound bank service example

bank

bankInterfacebankInterface

bankcheck

check,ok,failbank servicebank service

charge
* * creditRatingcreditRating

client1

x

resp
c1

c1 ok
fail

bankresp
1234“ok”/ “fail”
1234

ok
bank

1234

client2

y

resp
c2

c2 ok
fail

bankresp
5678“ok”/ “fail”
5678

ok
failbank

5678
5678

xc,xcc,
xamount

A gentle introduction to COWS Operational semantics of µCOWSm 20

µCOWSm: compound bank service example

bank

bankInterfacebankInterface

bankcheck

check,ok,failbank servicebank service

charge
* * creditRatingcreditRating

client1

x

resp
c1

c1 ok
fail

bankresp
1234“ok”/ “fail”
1234

ok1234

client2

y

resp
c2

c2 ok
fail

bankresp
5678“ok”/ “fail”
5678

ok
failbank

5678
5678

xc,xcc,
xamount

A gentle introduction to COWS Operational semantics of µCOWSm 20

µCOWSm: compound bank service example

bank

bankInterfacebankInterface

bankcheck

check,ok,failbank servicebank service

charge
* * creditRatingcreditRating

client1

x

resp
c1

c1 resp“ok”

client2

y

resp
c2

c2 ok
fail

bankresp
5678“ok”/ “fail”
5678

ok
failbank

5678
5678

xc,xcc,
xamount

A gentle introduction to COWS Operational semantics of µCOWSm 20

µCOWSm: compound bank service example

bank

bankInterfacebankInterface

bankcheck

check,ok,failbank servicebank service

charge
* * creditRatingcreditRating

client1

x

resp
c1

c1 resp“ok”

client2

y

resp
c2

c2 ok
fail

bankresp
5678“ok”/ “fail”
5678 failbank 5678

xc,xcc,
xamount

A gentle introduction to COWS Operational semantics of µCOWSm 20

µCOWSm: compound bank service example

bank

bankInterfacebankInterface

bankcheck

check,ok,failbank servicebank service

charge
* * creditRatingcreditRating

client1

x

resp
c1

c1 resp“ok”

client2

y

resp
c2

c2 ok
fail

bankresp
5678“ok”/ “fail”
5678 fail5678

xc,xcc,
xamount

A gentle introduction to COWS Operational semantics of µCOWSm 20

µCOWSm: compound bank service example

bank

bankInterfacebankInterface

bankcheck

check,ok,failbank servicebank service

charge
* * creditRatingcreditRating

client1

x

resp
c1

c1 resp“ok”

client2

y

resp
c2

c2 resp“fail”

xc,xcc,
xamount

A gentle introduction to COWS Operational semantics of µCOWSm 20

µCOWSm: compound bank service example

bank

bankInterfacebankInterface

bankcheck

check,ok,failbank servicebank service

charge
* * creditRatingcreditRating

client1

x

resp
c1

resp“ok”

client2

y

resp
c2

c2 resp“fail”

xc,xcc,
xamount

A gentle introduction to COWS Operational semantics of µCOWSm 20

µCOWSm: compound bank service example

bank

bankInterfacebankInterface

bankcheck

check,ok,failbank servicebank service

charge
* * creditRatingcreditRating

client1 client2

y

resp
c2

c2 resp“fail”

xc,xcc,
xamount

A gentle introduction to COWS Operational semantics of µCOWSm 20

µCOWSm: compound bank service example

bank

bankInterfacebankInterface

bankcheck

check,ok,failbank servicebank service

charge
* * creditRatingcreditRating

client1 client2

y
resp
c2

resp“fail”

xc,xcc,
xamount

A gentle introduction to COWS Operational semantics of µCOWSm 20

µCOWSm: compound bank service example

bank

bankInterfacebankInterface

bankcheck

check,ok,failbank servicebank service

charge
* * creditRatingcreditRating

client1 client2

xc,xcc,
xamount

A gentle introduction to COWS Operational semantics of µCOWSm 20

From µCOWSm to µCOWS

µCOWSm

A gentle introduction to COWS From µCOWSm to µCOWS 21

From µCOWSm to µCOWS

µCOWSm

+
Priority in the parallel composition

A gentle introduction to COWS From µCOWSm to µCOWS 21

From µCOWSm to µCOWS

µCOWSm

+
Priority in the parallel composition

=
µCOWS

A gentle introduction to COWS From µCOWSm to µCOWS 21

µCOWS: why priority in the parallel composition?

1 To deal with conflicting receives
I e.g. in case of multiple start activities

2 Parallel composition with priority can be used (together with
pattern-matching) as a coordination mechanism

I e.g. to model default behaviours, transparent session joining, . . .

We use a novel combination of dynamic priority with local pre-emption

dynamic priority: priority values of activities can change
as systems evolve

local pre-emption: priorities have a local scope,
i.e. prioritised activities can only pre-empt
activities in the same scope

A gentle introduction to COWS From µCOWSm to µCOWS 22

µCOWS: why priority in the parallel composition?

1 To deal with conflicting receives
I e.g. in case of multiple start activities

2 Parallel composition with priority can be used (together with
pattern-matching) as a coordination mechanism

I e.g. to model default behaviours, transparent session joining, . . .

We use a novel combination of dynamic priority with local pre-emption

dynamic priority: priority values of activities can change
as systems evolve

local pre-emption: priorities have a local scope,
i.e. prioritised activities can only pre-empt
activities in the same scope

A gentle introduction to COWS From µCOWSm to µCOWS 22

µCOWS

Syntax & structural congruence
µCOWS syntax and the set of laws defining its structural congruence
coincide with that of µCOWSm

Labelled transition relation α−→
Label α is now generated by the following grammar:

α ::= n� v̄ | n� w̄ | nσ ` v̄

where ` is a natural number

A gentle introduction to COWS Operational semantics of µCOWS 23

µCOWS

Syntax & structural congruence
µCOWS syntax and the set of laws defining its structural congruence
coincide with that of µCOWSm

Labelled transition relation α−→
Label α is now generated by the following grammar:

α ::= n� v̄ | n� w̄ | nσ ` v̄

where ` is a natural number

A gentle introduction to COWS Operational semantics of µCOWS 23

µCOWS: Parallel composition with priority

Communication takes place when two parallel services perform
matching receive and invoke activities

If more then one matching is possible the receive that needs fewer
substitutions is selected to progress

s1
n� w̄−−−−−→s′1 s2

n� v̄−−−−→s′2 M(w̄ , v̄)=σ noConf(s1 | s2,n, v̄ , |σ |)

s1 | s2
nσ |σ| v̄−−−−−−→ s′1 | s′2

Conflicting receives predicate
noConf(s,n, v̄ , `) checks existence of potential communication conflicts,
i.e. the ability of s of performing a receive activity matching v̄ over the
endpoint n that generates a substitution with fewer pairs than `

A gentle introduction to COWS Operational semantics of µCOWS 24

µCOWS: Parallel composition with priority

Communication takes place when two parallel services perform
matching receive and invoke activities

If more then one matching is possible the receive that needs fewer
substitutions is selected to progress

s1
n� w̄−−−−−→s′1 s2

n� v̄−−−−→s′2 M(w̄ , v̄)=σ noConf(s1 | s2,n, v̄ , |σ |)

s1 | s2
nσ |σ| v̄−−−−−−→ s′1 | s′2

Conflicting receives predicate
noConf(s,n, v̄ , `) checks existence of potential communication conflicts,
i.e. the ability of s of performing a receive activity matching v̄ over the
endpoint n that generates a substitution with fewer pairs than `

A gentle introduction to COWS Operational semantics of µCOWS 24

µCOWS: Parallel composition with priority

Communication takes place when two parallel services perform
matching receive and invoke activities

If more then one matching is possible the receive that needs fewer
substitutions is selected to progress

s1
n� w̄−−−−−→s′1 s2

n� v̄−−−−→s′2 M(w̄ , v̄)=σ noConf(s1 | s2,n, v̄ , |σ |)

s1 | s2
nσ |σ| v̄−−−−−−→ s′1 | s′2

Conflicting receives predicate
noConf(s,n, v̄ , `) checks existence of potential communication conflicts,
i.e. the ability of s of performing a receive activity matching v̄ over the
endpoint n that generates a substitution with fewer pairs than `

A gentle introduction to COWS Operational semantics of µCOWS 24

µCOWS: Parallel composition with priority

Communication takes place when two parallel services perform
matching receive and invoke activities

If more then one matching is possible the receive that needs fewer
substitutions is selected to progress

s1
n� w̄−−−−−→s′1 s2

n� v̄−−−−→s′2 M(w̄ , v̄)=σ noConf(s1 | s2,n, v̄ , |σ |)

s1 | s2
nσ |σ| v̄−−−−−−→ s′1 | s′2

Conflicting receives predicate (inductive definition, part 1/2)

noConf(kill(k),n, v̄ , `) = noConf(u!ε̄,n, v̄ , `) = true

noConf(
∑r

i=1 ni ?w̄i .si ,n, v̄ , `) =

{
false if ∃ i . ni = n ∧ |M(w̄i , v̄) |< `
true otherwise

A gentle introduction to COWS Operational semantics of µCOWS 24

µCOWS: Parallel composition with priority

Communication takes place when two parallel services perform
matching receive and invoke activities

If more then one matching is possible the receive that needs fewer
substitutions is selected to progress

s1
n� w̄−−−−−→s′1 s2

n� v̄−−−−→s′2 M(w̄ , v̄)=σ noConf(s1 | s2,n, v̄ , |σ |)

s1 | s2
nσ |σ| v̄−−−−−−→ s′1 | s′2

Conflicting receives predicate (inductive definition, part 2/2)
noConf(s | s′,n, v̄ , `) = noConf(s,n, v̄ , `) ∧ noConf(s′,n, v̄ , `)

noConf([u] s,n, v̄ , `) =

{
noConf(s,n, v̄ , `) if u /∈ n
true otherwise

noConf({|s|},n, v̄ , `) = noConf(∗ s,n, v̄ , `) = noConf(s,n, v̄ , `)

A gentle introduction to COWS Operational semantics of µCOWS 24

µCOWS: Parallel composition with priority

Execution of parallel services is interleaved, when no communication is
involved:

s1
α−−→ s′

1 α 6= nσ ` v̄

s1 | s2
α−−→ s′

1 | s2

In case of communications, the receive activity with greater priority
progresses:

s1
nσ ` v̄−−−−−→ s′

1 noConf(s2,n, v̄ , `)

s1 | s2
nσ ` v̄−−−−−→ s′

1 | s2

A gentle introduction to COWS Operational semantics of µCOWS 25

µCOWS: Parallel composition with priority

Execution of parallel services is interleaved, when no communication is
involved:

s1
α−−→ s′

1 α 6= nσ ` v̄

s1 | s2
α−−→ s′

1 | s2

In case of communications, the receive activity with greater priority
progresses:

s1
nσ ` v̄−−−−−→ s′

1 noConf(s2,n, v̄ , `)

s1 | s2
nσ ` v̄−−−−−→ s′

1 | s2

A gentle introduction to COWS Operational semantics of µCOWS 25

µCOWS: Parallel composition with priority

Execution of parallel services is interleaved, when no communication is
involved:

s1
α−−→ s′

1 α 6= nσ ` v̄

s1 | s2
α−−→ s′

1 | s2

In case of communications, the receive activity with greater priority
progresses:

s1
nσ ` v̄−−−−−→ s′

1 noConf(s2,n, v̄ , `)

s1 | s2
nσ ` v̄−−−−−→ s′

1 | s2

A gentle introduction to COWS Operational semantics of µCOWS 25

µCOWS: Delimitation

Rules for delimitation are tailored to deal with labels nσ ` v̄

s
nσ]{x 7→v} ` v̄−−−−−−−−−−→ s′

[x] s
nσ ` v̄−−−−−→ s′ ·{x 7→ v}

s
α−−→ s′ u /∈ u(α)

[u] s
α−−→ [u] s′

where

I u(α) is extended with u(nσ ` v̄) = u(σ)

A gentle introduction to COWS Operational semantics of µCOWS 26

µCOWS: Delimitation

Rules for delimitation are tailored to deal with labels nσ ` v̄

s
nσ]{x 7→v} ` v̄−−−−−−−−−−→ s′

[x] s
nσ ` v̄−−−−−→ s′ ·{x 7→ v}

s
α−−→ s′ u /∈ u(α)

[u] s
α−−→ [u] s′

where

I u(α) is extended with u(nσ ` v̄) = u(σ)

A gentle introduction to COWS Operational semantics of µCOWS 26

µCOWS operational semantics

Labelled transition rules

[[ε̄]] = v̄

n!ε̄
n� v̄−−−→ 0

1≤ j ≤ r∑r
i=1 ni ?w̄i .si

nj �w̄j−−−−−→ sj

s α−−→ s′ u /∈ u(α)

[u] s α−−→ [u] s′
s ≡ α−−→≡ s′

s α−−→ s′

s1
n� w̄−−−−−→s′1 s2

n� v̄−−−−→s′2 M(w̄ , v̄)=σ noConf(s1 | s2,n, v̄ , |σ |)

s1 | s2
nσ |σ| v̄−−−−−−→ s′1 | s′2

s1
α−−→ s′1 α 6= nσ ` v̄

s1 | s2
α−−→ s′1 | s2

s1
nσ ` v̄−−−−−→ s′1 noConf(s2,n, v̄ , `)

s1 | s2
nσ ` v̄−−−−−→ s′1 | s2

s
nσ]{x 7→v} ` v̄−−−−−−−−−−→ s′

[x] s nσ ` v̄−−−−−→ s′ ·{x 7→ v}

A gentle introduction to COWS Operational semantics of µCOWS 27

µCOWS: joint account service example

co-holder1 c1,1234,100€,
 infocharge1

...
bank

bank servicebank service

charge1

. . .

xc1,xcc,
xamount,

xinfo *
bank

bankcharge2

xc2,xcc,
xamount

co-holder2 c2,1234,
 100€charge2

...
bank

∗ [xc1, xc2, xcc, xamount, xinfo] (bank • charge1?〈xc1, xcc, xamount, xinfo〉.s1
| bank • charge2?〈xc2, xcc, xamount〉.s2)

| (bank • charge1!〈c1,1234,100AC, info〉 | s′
1)

| (bank • charge2!〈c2,1234,100AC〉 | s′
2)

A gentle introduction to COWS Operational semantics of µCOWS 28

µCOWS: joint account service example

co-holder1 c1,1234,100€,
 infocharge1

...
bank

bank service

charge1

. . .

xc1,xcc,
xamount,

xinfo *
bank

bankcharge2

xc2,xcc,
xamount

co-holder2 c2,1234,
 100€charge2

...
bank

∗ [xc1, xc2, xcc, xamount, xinfo] (bank • charge1?〈xc1, xcc, xamount, xinfo〉.s1
| bank • charge2?〈xc2, xcc, xamount〉.s2)

| (bank • charge1!〈c1,1234,100AC, info〉 | s′
1)

| (bank • charge2!〈c2,1234,100AC〉 | s′
2)

A gentle introduction to COWS Operational semantics of µCOWS 28

µCOWS: joint account service example

co-holder1 c1,1234,100€,
 infocharge1

...
bank

bank servicebank service

charge1

. . .

xc1,xcc,
xamount,

xinfo *
bank

bankcharge2

xc2,xcc,
xamount

co-holder2 c2,1234,
 100€charge2

...
bank

∗ [xc1, xc2, xcc, xamount, xinfo] (bank • charge1?〈xc1, xcc, xamount, xinfo〉.s1
| bank • charge2?〈xc2, xcc, xamount〉.s2)

| (bank • charge1!〈c1,1234,100AC, info〉 | s′
1)

| (bank • charge2!〈c2,1234,100AC〉 | s′
2)

A gentle introduction to COWS Operational semantics of µCOWS 28

µCOWS: joint account service example

co-holder1 c1,1234,100€,
 infocharge1

...
bank

bank servicebank service

charge1

. . .

xc1,xcc,
xamount,

xinfo *
bank

bankcharge2

xc2,xcc,
xamount

co-holder2 c2,1234,
 100€charge2

...

∗ [xc1, xc2, xcc, xamount, xinfo] (bank • charge1?〈xc1, xcc, xamount, xinfo〉.s1
| bank • charge2?〈xc2, xcc, xamount〉.s2)

| (bank • charge1!〈c1,1234,100AC, info〉 | s′
1)

| (bank • charge2!〈c2,1234,100AC〉 | s′
2)

A gentle introduction to COWS Operational semantics of µCOWS 28

µCOWS: joint account service example

co-holder1 c1,1234,100€,
 infocharge1

...
bank

bank servicebank service

charge1

. . .

xc1,xcc,
xamount,

xinfo *
bank

bankcharge2

xc2,xcc,
xamount

co-holder2

... bankcharge1
. . .

xc1,1234,
100€,xinfo

new instance

∗ [xc1, xc2, xcc, xamount, xinfo] (bank • charge1?〈xc1, xcc, xamount, xinfo〉.s1
| bank • charge2?〈xc2, xcc, xamount〉.s2)

| (bank • charge1?〈xc1,1234,100AC, xinfo〉.s1 | s2) · {· · · 7→ · · · }
| (bank • charge1!〈c1,1234,100AC, info〉 | s′

1) | (s′
2)

A gentle introduction to COWS Operational semantics of µCOWS 28

µCOWS: joint account service example

co-holder1 c1,1234,100€,
 infocharge1

...
bank

bank servicebank service

charge1

. . .

xc1,xcc,
xamount,

xinfo *
bank

bankcharge2

xc2,xcc,
xamount

co-holder2

... bankcharge1
. . .

xc1,1234,
100€,xinfo

conflicting
receives

request

∗ [xc1, xc2, xcc, xamount, xinfo] (bank • charge1?〈xc1, xcc, xamount, xinfo〉.s1
| bank • charge2?〈xc2, xcc, xamount〉.s2)

| (bank • charge1?〈xc1,1234,100AC, xinfo〉.s1 | s2) · {· · · 7→ · · · }
| (bank • charge1!〈c1,1234,100AC, info〉 | s′

1) | (s′
2)

A gentle introduction to COWS Operational semantics of µCOWS 28

µCOWS: joint account service example

co-holder1 c1,1234,100€,
 infocharge1

...
bank

bank servicebank service

charge1

. . .

xc1,xcc,
xamount,

xinfo *
bank

bankcharge2

xc2,xcc,
xamount

co-holder2

... bankcharge1
. . .

xc1,1234,
100€,xinfo

conflicting
receives

request

Multiple start activities

The service can receive multiple messages in a statically unpredictable order s.t.
the first incoming message triggers creation of a service instance
subsequent messages are delivered to the created instance

A gentle introduction to COWS Operational semantics of µCOWS 28

µCOWS: joint account service example

co-holder1 c1,1234,100€,
 infocharge1

...
bank

bank servicebank service

charge1

. . .

xc1,xcc,
xamount,

xinfo *
bank

bankcharge2

xc2,xcc,
xamount

co-holder2

... bankcharge1
. . .

xc1,1234,
100€,xinfo

enabled
communication

∗ [xc1, xc2, xcc, xamount, xinfo] (bank • charge1?〈xc1, xcc, xamount, xinfo〉.s1
| bank • charge2?〈xc2, xcc, xamount〉.s2)

| (bank • charge1?〈xc1,1234,100AC, xinfo〉.s1 | s2) · {· · · 7→ · · · }
| (bank • charge1!〈c1,1234,100AC, info〉 | s′

1) | (s′
2)

A gentle introduction to COWS Operational semantics of µCOWS 28

µCOWS: joint account service example

co-holder1 c1,1234,100€,
 infocharge1

...
bank

bank servicebank service

charge1

. . .

xc1,xcc,
xamount,

xinfo *

bankcharge2

xc2,xcc,
xamount

co-holder2

... bankcharge1
. . .

xc1,1234,
100€,xinfo

∗ [xc1, xc2, xcc, xamount, xinfo] (bank • charge1?〈xc1, xcc, xamount, xinfo〉.s1
| bank • charge2?〈xc2, xcc, xamount〉.s2)

| (bank • charge1?〈xc1,1234,100AC, xinfo〉.s1 | s2) · {· · · 7→ · · · }
| (bank • charge1!〈c1,1234,100AC, info〉 | s′

1) | (s′
2)

A gentle introduction to COWS Operational semantics of µCOWS 28

µCOWS: joint account service example

co-holder1

...
bank

bank servicebank service

charge1

. . .

xc1,xcc,
xamount,

xinfo *

bankcharge2

xc2,xcc,
xamount

co-holder2

...
. . .

∗ [xc1, xc2, xcc, xamount, xinfo] (bank • charge1?〈xc1, xcc, xamount, xinfo〉.s1
| bank • charge2?〈xc2, xcc, xamount〉.s2)

| (s1 | s2) · {· · · 7→ · · · }
| (s′

1) | (s′
2)

A gentle introduction to COWS Operational semantics of µCOWS 28

Parallel with priority as a coordination mechanism

Default behaviour
Consider a service providing mathematical functionalities
e.g. sum of two integers between 0 and 5

∗ [x , y , z] (math • sum?〈x , y , z〉. x • resp!〈error〉
+ math • sum?〈x ,0,0〉. x • resp!〈0〉
+ math • sum?〈x ,0,1〉. x • resp!〈1〉
+ . . . + math • sum?〈x ,5,5〉. x • resp!〈10〉)

In case the two values are not admissible, i.e. they are not integers
between 0 and 5, the service replies with the string error

A gentle introduction to COWS Operational semantics of µCOWS 29

Parallel with priority as a coordination mechanism

‘Only the first time’ behaviour
Consider a service that has a certain behaviour at the first correct invocation
and a different behaviour at any incorrect or further invocation
(useful, e.g., for compensation handling à la WS-BPEL)

p • comp?〈scopeName〉. 〈compensation of scopeName〉
| ∗ [x] p • comp?〈x〉. 〈do nothing〉

A gentle introduction to COWS Operational semantics of µCOWS 30

Parallel with priority as a coordination mechanism

‘Blind date’ session joining
Consider a service capable of arranging matches of 4-players online games

masterServ , ∗ [xgame, xplayer1, xplayer2 , xplayer3 , xplayer4]
master • join?〈xgame, xplayer1〉.
master • join?〈xgame, xplayer2〉.
master • join?〈xgame, xplayer3〉.
master • join?〈xgame, xplayer4〉.

[matchId] (xplayer1 • start!〈matchId〉
| xplayer2 • start!〈matchId〉
| xplayer3 • start!〈matchId〉
| xplayer4 • start!〈matchId〉)

Playeri , master • join!〈poker ,pi〉 | [xid] pi • start?〈xid 〉. 〈rest of Playeri〉

Playerj , master • join!〈bridge,pj〉 | [xid] pj • start?〈xid 〉. 〈rest of Playerj〉

It could be hard to render this behaviour with other process calculi

A gentle introduction to COWS Operational semantics of µCOWS 31

Parallel with priority as a coordination mechanism

‘Blind date’ session joining
Consider a service capable of arranging matches of 4-players online games

masterServ , ∗ [xgame, xplayer1, xplayer2 , xplayer3 , xplayer4]
master • join?〈xgame, xplayer1〉.
master • join?〈xgame, xplayer2〉.
master • join?〈xgame, xplayer3〉.
master • join?〈xgame, xplayer4〉.

[matchId] (xplayer1 • start!〈matchId〉
| xplayer2 • start!〈matchId〉
| xplayer3 • start!〈matchId〉
| xplayer4 • start!〈matchId〉)

Playeri , master • join!〈poker ,pi〉 | [xid] pi • start?〈xid 〉. 〈rest of Playeri〉

Playerj , master • join!〈bridge,pj〉 | [xid] pj • start?〈xid 〉. 〈rest of Playerj〉

It could be hard to render this behaviour with other process calculi

A gentle introduction to COWS Operational semantics of µCOWS 31

From µCOWS to COWS

µCOWS

A gentle introduction to COWS From µCOWS to COWS 32

From µCOWS to COWS

µCOWS

+
Termination activities

A gentle introduction to COWS From µCOWS to COWS 32

From µCOWS to COWS

µCOWS

+
Termination activities

=
COWS

A gentle introduction to COWS From µCOWS to COWS 32

COWS: why termination activities?

1 To handle faults and enable compensation

2 Termination activities can be used as orchestration mechanisms
I E.g. to model the asymmetric parallel composition of Orc (i.e. the

pruning construct, that prunes threads selectively)

A gentle introduction to COWS From µCOWS to COWS 33

Syntax of COWS
s ::= (services)

kill(k) (kill)
| u • u′!ε̄ (invoke)
|
∑r

i=0 gi .si (receive-guarded choice)
| s | s (parallel composition)
| {|s|} (protection)
| [e] s (delimitation)
| ∗ s (replication)

g ::= (guards)
p • o?w̄ (receive)

(notations)
k : (killer) labels
ε: expressions

x : variables
v : values

n,p,o: names
u: variables |names
w : variables |values
e: labels |variables |names

Killer labels cannot occur within expressions
⇒ they are not (communicable) values

Only one binding construct: [e] s binds e in the scope s
I free/bound elements (i.e. names/variables/labels) defined

accordingly

A gentle introduction to COWS Syntax of COWS 34

COWS operational semantics

Additional structural congruence laws
{|0|} ≡ 0 {| {|s|} |} ≡ {|s|} {|[e] s|} ≡ [e] {|s|}

s1 | [e] s2 ≡ [e] (s1 | s2) if e /∈ fe(s1)∪fk(s2)

I fe(s) denotes the set of elements occurring free in s
I fk(s) denotes the set of free killer labels in s
I thus, differently from names/variables, the scope of killer labels

cannot be extended

Labelled transition relation α−→
Label α is now generated by the following grammar:

α ::= n� v̄ | n� w̄ | nσ ` v̄ | k | †

A gentle introduction to COWS Operational semantics of COWS 35

COWS: Kill activity

Activity kill(k) forces termination of all unprotected parallel
activities inside an enclosing [k] , that stops the killing effect

kill(k)
k−−→ 0

s1
k−−→ s′

1

s1 | s2
k−−→ s′

1 | halt(s2)

s
k−−→ s′

[k] s
†−−→ [k] s′

A gentle introduction to COWS Operational semantics of COWS 36

COWS: Kill activity

Activity kill(k) forces termination of all unprotected parallel
activities inside an enclosing [k] , that stops the killing effect

kill(k)
k−−→ 0

s1
k−−→ s′

1

s1 | s2
k−−→ s′

1 | halt(s2)

s
k−−→ s′

[k] s
†−−→ [k] s′

Function halt(s)
returns the service obtained by only retaining the protected activities
inside s

halt(kill(k)) = halt(u!ε̄) = halt(
∑r

i=0 ni?w̄i .si) = 0

halt(s1 | s2) = halt(s1) | halt(s2) halt({|s|}) = {|s|}

halt([e] s) = [e] halt(s) halt(∗ s) = ∗ halt(s)

A gentle introduction to COWS Operational semantics of COWS 36

COWS: Kill activity

Activity kill(k) forces termination of all unprotected parallel
activities inside an enclosing [k] , that stops the killing effect

kill(k)
k−−→ 0

s1
k−−→ s′

1

s1 | s2
k−−→ s′

1 | halt(s2)

s
k−−→ s′

[k] s
†−−→ [k] s′

Kill activities are executed eagerly

s
k−−→ s′ k 6= e

[e] s
k−−→ [e] s′

s
†−−→ s′

[e] s
†−−→ [e] s′

s
α−−→ s′ e /∈ e(α) α 6= k , † noKill(s,e)

[e] s
α−−→ [e] s′

A gentle introduction to COWS Operational semantics of COWS 36

COWS: Kill activity

Activity kill(k) forces termination of all unprotected parallel
activities inside an enclosing [k] , that stops the killing effect

Kill activities are executed eagerly

s
k−−→ s′ k 6= e

[e] s
k−−→ [e] s′

s
†−−→ s′

[e] s
†−−→ [e] s′

s
α−−→ s′ e /∈ e(α) α 6= k , † noKill(s,e)

[e] s
α−−→ [e] s′

Predicate noKill(s,e) (part 1/2)
checks the ability of s of immediately performing a kill activity

noKill(s, e) = true if fk(e) = ∅ noKill(kill(k ′), k) = true if k 6= k ′

noKill(kill(k), k) = false noKill(u!ε̄, k) = noKill(
∑r

i=0 ni ?w̄i .si , k) = true

A gentle introduction to COWS Operational semantics of COWS 36

COWS: Kill activity

Activity kill(k) forces termination of all unprotected parallel
activities inside an enclosing [k] , that stops the killing effect

Kill activities are executed eagerly

s
k−−→ s′ k 6= e

[e] s
k−−→ [e] s′

s
†−−→ s′

[e] s
†−−→ [e] s′

s
α−−→ s′ e /∈ e(α) α 6= k , † noKill(s,e)

[e] s
α−−→ [e] s′

Predicate noKill(s,e) (part 2/2)
checks the ability of s of immediately performing a kill activity
noKill(s | s′, k) = noKill(s, k) ∧ noKill(s′, k) noKill([e] s, k) = noKill(s, k) if e 6= k

noKill([k] s, k) = true noKill({|s|}, k) = noKill(∗ s, k) = noKill(s, k)

A gentle introduction to COWS Operational semantics of COWS 36

COWS: Kill activity

Activity kill(k) forces termination of all unprotected parallel
activities inside an enclosing [k] , that stops the killing effect

Kill activities are executed eagerly

{| · |} protects activities from the effect of a forced termination

s α−→ s′

{|s|} α−→ {|s′|}

A gentle introduction to COWS Operational semantics of COWS 36

COWS operational semantics: labelled transition rules
[[ε̄]] = v̄

n!ε̄
n� v̄−−−→ 0

1≤ j ≤ r∑r
i=1 ni ?w̄i .si

nj �w̄j−−−−−→ sj

s ≡ α−−→≡ s′

s α−−→ s′

s1
n� w̄−−−−→s′1 s2

n� v̄−−−−→s′2 M(w̄ , v̄)=σ noConf(s1 | s2,n, v̄ , |σ |)

s1 | s2
nσ |σ| v̄−−−−−−→ s′1 | s′2

s
nσ]{x 7→v} ` v̄−−−−−−−−−−→ s′

[x] s nσ ` v̄−−−−−→ s′ ·{x 7→ v}

s1
nσ ` v̄−−−−−→ s′1 noConf(s2,n, v̄ , `)

s1 | s2
nσ ` v̄−−−−−→ s′1 | s2

kill(k)
k−−→ 0

s α−−→ s′

{|s|} α−−→ {|s′|}

s1
α−−→ s′1 α 6= k ,nσ ` v̄

s1 | s2
α−−→ s′1 | s2

s k−−→ s′

[k] s †−−→ [k] s′
s k−−→ s′ k 6= e

[e] s k−−→ [e] s′
s1

k−−→ s′1

s1 | s2
k−−→ s′1 | halt(s2)

s †−−→ s′

[e] s †−−→ [e] s′
s α−−→ s′ e /∈ e(α) α 6= k , † noKill(s, e)

[e] s α−−→ [e] s′

A gentle introduction to COWS Operational semantics of COWS 37

COWS: multi rating bank service example

bank

bankInterfacebankInterface
bank

check,ok,failbank servicebank service

charge

xc,xcc,
xamount

*
* creditRating1creditRating1

* creditRating2creditRating2

c1

check1/2

ok1
fail1

bank

resp

1234
1234,100€

“ok”/ “fail”

1234

ok2bank 1234
1234

fail2

check1

bankcheck2

A gentle introduction to COWS Operational semantics of COWS 38

COWS: multi rating bank service example

bank

bankInterfacebankInterface

check,ok,failbank servicebank service

charge

xc,xcc,
xamount

*
* creditRating1creditRating1

* creditRating2creditRating2

c1

ok1
fail1

bank

resp

1234
1234,100€

“ok”/ “fail”

1234

ok2
fail2

bank 1234
1234

check1/2

bankcheck1

bankcheck2

A gentle introduction to COWS Operational semantics of COWS 38

COWS: multi rating bank service example

bank

bankInterfacebankInterface

check,ok,failbank servicebank service

charge

xc,xcc,
xamount

*
* creditRating1creditRating1

* creditRating2creditRating2

c1

ok1
fail1

bank

resp

1234

“ok”/ “fail”

1234

ok2
fail2

bank 1234
1234

ok1
fail1bank

1234
1234

ok2
fail2bank

1234
1234

bankcheck1

bankcheck2

A gentle introduction to COWS Operational semantics of COWS 38

COWS: multi rating bank service example

bank

bankInterfacebankInterface

check,ok,failbank servicebank service

charge

xc,xcc,
xamount

*
* creditRating1creditRating1

* creditRating2creditRating2

c1

ok1
fail1

bank

resp

1234

“ok”/ “fail”

1234

ok2
fail2

bank 1234
1234

ok1
bank

1234

ok2
fail2bank

1234
1234

bankcheck1

bankcheck2

A gentle introduction to COWS Operational semantics of COWS 38

COWS: multi rating bank service example

bank

bankInterfacebankInterface

check,ok,failbank servicebank service

charge

xc,xcc,
xamount

*
* creditRating1creditRating1

* creditRating2creditRating2

c1

ok1
fail1

bank

resp

1234

“ok”/ “fail”

1234

ok2
fail2

bank 1234
1234

ok11234

ok2
fail2bank

1234
1234

bankcheck1

bankcheck2

A gentle introduction to COWS Operational semantics of COWS 38

COWS: multi rating bank service example

bank

bankInterfacebankInterface

check,ok,failbank servicebank service

charge

xc,xcc,
xamount

*
* creditRating1creditRating1

* creditRating2creditRating2

c1

ok1
fail1

bank

resp

1234

“ok”/ “fail”

1234

ok2
fail2

bank 1234
1234

ok11234

ok2
fail2bank

1234
1234

XX

bankcheck1

bankcheck2

A gentle introduction to COWS Operational semantics of COWS 38

COWS: multi rating bank service example

[check1, check2,ok1,ok2, fail1, fail2]
(∗bankInterface | ∗ creditRating1 | ∗ creditRating2)

bankInterface ,
[xc, xcc, xamount]
bank • charge?〈xc, xcc, xamount〉.
(bank • check1!〈xcc, xamount〉 | bank • check2!〈xcc, xamount〉
| [k] (bank •ok1?〈xcc〉. (kill(k) | {|xc • resp!〈“ok”〉|})

+ bank • fail1?〈xcc〉. s1
| bank •ok2?〈xcc〉. (kill(k) | {|xc • resp!〈“ok”〉|})

+ bank • fail2?〈xcc〉. s2))

A gentle introduction to COWS Operational semantics of COWS 38

COWS: peculiar examples

Protected kill activity

Execution of a kill activity within a protection block

[k] ({|s1 | {|s2|} | kill(k)|} | s3) | s4
†−−→ [k] {|s2|} | s4

For simplicity, assume that halt(s1) = halt(s3) = 0

kill(k) terminates all parallel services inside delimitation [k] (i.e. s1 and
s3), except those that are protected at the same nesting level of the kill
activity (i.e. s2)

A gentle introduction to COWS Operational semantics of COWS 39

COWS: peculiar examples

Protected kill activity

Execution of a kill activity within a protection block

[k] ({|s1 | {|s2|} | kill(k)|} | s3) | s4
†−−→ [k] {|s2|} | s4

For simplicity, assume that halt(s1) = halt(s3) = 0

kill(k) terminates all parallel services inside delimitation [k] (i.e. s1 and
s3), except those that are protected at the same nesting level of the kill
activity (i.e. s2)

A gentle introduction to COWS Operational semantics of COWS 39

COWS: peculiar examples

Protected kill activity

Execution of a kill activity within a protection block

[k] ({|s1 | {|s2|} | kill(k)|} | s3) | s4
†−−→ [k] {|s2|} | s4

For simplicity, assume that halt(s1) = halt(s3) = 0

kill(k) terminates all parallel services inside delimitation [k] (i.e. s1 and
s3), except those that are protected at the same nesting level of the kill
activity (i.e. s2)

A gentle introduction to COWS Operational semantics of COWS 39

COWS: peculiar examples

Interplay between communication and kill activity

p •o!〈n〉 | [k] ([x] p •o?〈x〉.s | kill(k))
†−−→ p •o!〈n〉 | [k] [x] 0

Kill activities can break communication

This is the only possible evolution (kills are executed eagerly)

Communication can be guaranteed by protecting the receive
p • o!〈n〉 | [k] ([x] {|p • o?〈x〉.s|} | kill(k))

†−−→

p • o!〈n〉 | [k] ([x] {|p • o?〈x〉.s|}) p •o ∅ 1 〈n〉−−−−−−−−→ [k] {|s · {x 7→ n}|}

A gentle introduction to COWS Operational semantics of COWS 40

COWS: peculiar examples

Interplay between communication and kill activity

p •o!〈n〉 | [k] ([x] p •o?〈x〉.s | kill(k))
†−−→ p •o!〈n〉 | [k] [x] 0

Kill activities can break communication

This is the only possible evolution (kills are executed eagerly)

Communication can be guaranteed by protecting the receive
p • o!〈n〉 | [k] ([x] {|p • o?〈x〉.s|} | kill(k))

†−−→

p • o!〈n〉 | [k] ([x] {|p • o?〈x〉.s|}) p •o ∅ 1 〈n〉−−−−−−−−→ [k] {|s · {x 7→ n}|}

A gentle introduction to COWS Operational semantics of COWS 40

COWS expressiveness

COWS expressiveness 41

Considerations on COWS expressiveness

Encoding other calculi
I π-calculus, Localized π-calculus (Lπ), . . .
I SCC (Session Centered Calculus)
I Orc
I WS-CALCULUS
I Blite (a lightweight version of WS-BPEL)

COWS (like other calculi equipped with priority) is not encodable
into mainstream calculi (e.g. CCS and π-calculus) [EXPRESS’10]

Modelling imperative and orchestration constructs
I Assignment, conditional choice, sequential composition,. . .
I WS-BPEL flow graphs, fault and compensation handlers
I QoS requirement specifications and SLA negotiations [WWV’07]
I Timed orchestration constructs [ICTAC’07]

COWS expressiveness 42

Considerations on COWS expressiveness

Encoding other calculi
I π-calculus, Localized π-calculus (Lπ), . . .
I SCC (Session Centered Calculus)
I Orc
I WS-CALCULUS
I Blite (a lightweight version of WS-BPEL)

COWS (like other calculi equipped with priority) is not encodable
into mainstream calculi (e.g. CCS and π-calculus) [EXPRESS’10]

Modelling imperative and orchestration constructs
I Assignment, conditional choice, sequential composition,. . .
I WS-BPEL flow graphs, fault and compensation handlers
I QoS requirement specifications and SLA negotiations [WWV’07]
I Timed orchestration constructs [ICTAC’07]

COWS expressiveness 42

Considerations on COWS expressiveness

Encoding other calculi
I π-calculus, Localized π-calculus (Lπ), . . .
I SCC (Session Centered Calculus)
I Orc
I WS-CALCULUS
I Blite (a lightweight version of WS-BPEL)

COWS (like other calculi equipped with priority) is not encodable
into mainstream calculi (e.g. CCS and π-calculus) [EXPRESS’10]

Modelling imperative and orchestration constructs
I Assignment, conditional choice, sequential composition,. . .
I WS-BPEL flow graphs, fault and compensation handlers
I QoS requirement specifications and SLA negotiations [WWV’07]
I Timed orchestration constructs [ICTAC’07]

COWS expressiveness 42

References

References 43

References 1/4

A WSDL-based type system for WS-BPEL
A. Lapadula, R. Pugliese, F. Tiezzi. Proc. of COORDINATION’06, LNCS
4038, 2006.

A calculus for orchestration of web services
A. Lapadula, R. Pugliese, F. Tiezzi. Proc. of ESOP’07, LNCS 4421, 2007.

go back

Regulating data exchange in service oriented applications
A. Lapadula, R. Pugliese, F. Tiezzi. Proc. of FSEN’07, LNCS 4767, 2007.

go back

COWS: A timed service-oriented calculus
A. Lapadula, R. Pugliese, F. Tiezzi. Proc. of ICTAC’07, LNCS 4711,
2007. go back

Stochastic COWS
D. Prandi, P. Quaglia. Proc. of ICSOC’07, LNCS 4749, 2007.

References 44

http://rap.dsi.unifi.it/cows/papers/wsc-coordination06.pdf
http://rap.dsi.unifi.it/cows/papers/cows-esop07.pdf
http://rap.dsi.unifi.it/cows/papers/cows-fsen07.pdf
http://rap.dsi.unifi.it/cows/papers/cows-ictac07.pdf
http://www.springerlink.com/content/w2l808085878626v/?p=cd88aaa603e84226835042340b626289&pi=19

References 2/4

A model checking approach for verifying COWS specifications
A. Fantechi, S. Gnesi, A. Lapadula, F. Mazzanti, R. Pugliese, F. Tiezzi.
Proc. of FASE’08, LNCS 4961, 2008. go back

Service discovery and negotiation with COWS
A. Lapadula, R. Pugliese, F. Tiezzi. Proc. of WWV’07, ENTCS 200(3),
2008. go back

Specifying and Analysing SOC Applications with COWS
A. Lapadula, R. Pugliese, F. Tiezzi. In Concurrency, Graphs and Models,
LNCS 5065, 2008.

SENSORIA Patterns: Augmenting Service Engineering with Formal
Analysis, Transformation and Dynamicity
M. Wirsing, et al. Proc. of ISOLA’08, Communications in Computer and
Information Science 17, 2008.

A formal account of WS-BPEL
A. Lapadula, R. Pugliese, F. Tiezzi. Proc. of COORDINATION’08, LNCS
5052, 2008.

References 45

http://rap.dsi.unifi.it/cows/papers/cows_logic.pdf
http://rap.dsi.unifi.it/cows/papers/cows_sla.pdf
http://rap.dsi.unifi.it/cows/papers/cows_ugo.pdf
http://rap.dsi.unifi.it/cows/papers/isola08.pdf
http://rap.dsi.unifi.it/cows/papers/isola08.pdf
http://rap.dsi.unifi.it/cows/papers/blite.pdf

References 3/4

Formal analysis of BPMN via a translation into COWS
D. Prandi, P. Quaglia, N. Zannone. Proc. of COORDINATION’08, LNCS
5052, 2008.

Relational Analysis of Correlation
J. Bauer, F. Nielson, H.R. Nielson, H. Pilegaard. Proc. of SAS’08, LNCS
5079, 2008.

A Symbolic Semantics for a Calculus for Service-Oriented Computing
R. Pugliese, F. Tiezzi, N. Yoshida. Proc. of PLACES’08, ENTCS 241,
2009.

Specification and analysis of SOC systems using COWS: A finance case
study
F. Banti, A. Lapadula, R. Pugliese, F. Tiezzi. Proc. of WWV’08, ENTCS
235(C), 2009.

From Architectural to Behavioural Specification of Services
L. Bocchi, J.L. Fiadeiro, A. Lapadula, R. Pugliese, F. Tiezzi. Proc. of
FESCA’09, ENTCS 253/1, 2009.

References 46

http://www.springerlink.com/content/j648143597nn2510/?p=cb75e9042f584e62afe63a95484636f9&pi=15
http://www.springerlink.com/content/u6317h7354117658/
http://rap.dsi.unifi.it/cows/papers/cows_places.pdf
http://rap.dsi.unifi.it/cows/papers/cows_wwv08.pdf
http://rap.dsi.unifi.it/cows/papers/cows_wwv08.pdf
http://rap.dsi.unifi.it/cows/papers/fesca09.pdf

References 4/4

On observing dynamic prioritised actions in SOC
R. Pugliese, F. Tiezzi, N. Yoshida. Proc. of ICALP’09, LNCS 5556, 2009.

go back

On secure implementation of an IHE XUA-based protocol for
authenticating healthcare professionals
M. Masi, R. Pugliese, F. Tiezzi. Proc. of ICISS’09, LNCS 5905, 2009.

Rigorous Software Engineering for Service-Oriented Systems - Results
of the SENSORIA Project on Software Engineering for Service-Oriented
Computing
M. Wirsing and M. Hölzl Editors. LNCS, 2010. To appear.

An Accessible Verification Environment for UML Models of Services
F. Banti, R. Pugliese, F. Tiezzi. Journal of Symbolic Computation, 2010.
To appear.

A criterion for separating process calculi
F. Banti, R. Pugliese, F. Tiezzi. Proc. of EXPRESS’10, 2010. go back

References 47

http://rap.dsi.unifi.it/cows/papers/PTY-bis4cows.pdf
http://rap.dsi.unifi.it/cows/papers/cows_iciss09.pdf
http://rap.dsi.unifi.it/cows/papers/cows_iciss09.pdf
http://rap.dsi.unifi.it/cows/papers/express2010.pdf

	A gentle introduction to COWS
	COWS
	Syntax of COWSm
	Operational semantics of COWSm
	From COWSm to COWS
	Operational semantics of COWS
	From COWS to COWS
	Syntax of COWS
	Operational semantics of COWS

	COWS expressiveness

