
Domain Specific Formal Languages
General Info & Introduction

Francesco Tiezzi

University of Camerino
francesco.tiezzi@unicam.it

A.A. 2016/2017

F. Tiezzi (Unicam) DSFL 1 / 21



Who I am

Prof. Francesco Tiezzi

Associate Professor at University of Camerino

web: http://tiezzi.unicam.it

tel.: +39 0737 402593

e-mail: francesco.tiezzi@unicam.it

address: University of Camerino
School of Science and Technology
Computer Science Division
Palazzo Battibocca
Via del Bastione, 1
62032, Camerino (MC), Italy

F. Tiezzi (Unicam) DSFL 2 / 21



Schedule

LUN MAR MER GIO VEN

15-17 9-11

F. Tiezzi (Unicam) DSFL 3 / 21



Contents

Brief introduction to preliminary mathematical concepts at
the basis of the topic faced in the course

Domain Specific Languages (DSL)

From CCS to pi-calculus: syntax and semantics

DSL for distributed systems: Dpi, Djoin, Ambient,
Klaim/Klava

DSL for service-oriented systems: COWS/SocL/CMC,
CaSPiS, SOCK/Jolie, Blite/BliteC

DSL for access control policies: FACPL

DSL for cloud computing systems: SLAC/dSLAC, Mobica

DSL for autonomic systems: SCEL/jRESP

DSL for business process modelling: BPMN formalisation

F. Tiezzi (Unicam) DSFL 4 / 21



Prerequisites

Content from the FORMAL MODELLING OF SOFTWARE
INTENSIVE SYSTEMS (FMSIS) course, such as

finite state automata
context-free grammars
inference systems
syntax and semantics of CCS
. . .

These topics will be anyway briefly illustrated at the beginning
of the course

F. Tiezzi (Unicam) DSFL 5 / 21



Teaching material

Luca Aceto, Anna Ingolfsdottir, Kim Guldstrand Larsen and
Jiri Srba. Reactive Systems. Modelling, Specification and
Verification. Cambridge University Press, 2007. ISBN: 9780521875462.

Additional material available at book’s site: http://rsbook.cs.aau.dk

Course’s slides

Lecture notes, papers and slides may be given by the teacher
for studying and for exercises

F. Tiezzi (Unicam) DSFL 6 / 21

http://rsbook.cs.aau.dk


Final exam

Written test

on the exam date a written test takes place, it has a mixed
structure: solution of exercises, and open/close answer
questionnaire

during the course in itinere tests take place; in case they are
evaluated positively, they replace the written test of the exam
date

Realisation of a project with a software tool presented during
the course, or writing of a report; there is an oral discussion

F. Tiezzi (Unicam) DSFL 7 / 21



The Hard Life of Programmers (and Students)

Questions?

F. Tiezzi (Unicam) DSFL 8 / 21



Software-Intensive Systems

Software-Intensive Systems

Are those complex systems where software contributes essential
influences to the design, construction, deployment and evolution of
the system as a whole [IEEE Standard 1471]

Software-Intensive Distributed Systems (SIDS)

large-scale, decentralised, heterogeneous, highly-dynamic,
open-ended, adaptive, . . .

SIDS feature complex interactions among components

SIDS may interact with other systems, devices, sensors,
people, . . .

F. Tiezzi (Unicam) DSFL 9 / 21



Software-Intensive Systems Everywhere

F. Tiezzi (Unicam) DSFL 10 / 21



Process algebraic approach

Process Algebraic Approach to Software Intensive Systems Design

Process algebra: theory that underpins the semantics of
concurrent programming and the understanding of concurrent,
distributed, and mobile systems

It provides a natural approach to the design of those systems
structuring them into a set of autonomous components that
can evolve independently of each other and from time to time
can communicate or simply synchronize

compositionality: ability to build complex distributed
systems by combining simpler systems

abstraction: ability to neglect certain parts of a model

Tools assist modeling and analysis of the various functional
and non-functional aspects of those systems

F. Tiezzi (Unicam) DSFL 11 / 21



SIDS as Concurrent Systems

Multiple processes (or threads) working together to achieve a
common goal

A sequential program has a single thread of control

A concurrent program has multiple threads of control allowing
it to perform multiple computations in parallel and to control
multiple external activities occurring at the same time

Communication

The concurrent threads exchange information via

indirect communication: the execution of concurrent processes
proceeds on one or more processors all of which access a
shared memory; care is required to deal with shared variables

direct communication: concurrent processes are executed by
running them on separate processors, threads communicate by
exchanging messages

F. Tiezzi (Unicam) DSFL 12 / 21



Examples of multi-threaded programs

1 windowing systems on PCs

2 embedded real-time systems, electronics, cars, telecom

3 web servers, database servers . . .

4 operating system kernel

F. Tiezzi (Unicam) DSFL 13 / 21



Sequential Programming vs Concurrent
Programming

Sequential Programming

Denotational semantics: the meaning of a program is a partial
function from states to states

Nontermination is bad!

In case of termination, the result is unique

Concurrent - Interactive - Reactive Programming

Denotational semantics is very complicate due to
nondeterminism

Nontermination might be good!

In case of termination, the result might not be unique

F. Tiezzi (Unicam) DSFL 14 / 21



Sequential Programming vs Concurrent
Programming

Sequential Programming

Denotational semantics: the meaning of a program is a partial
function from states to states

Nontermination is bad!

In case of termination, the result is unique

Concurrent - Interactive - Reactive Programming

Denotational semantics is very complicate due to
nondeterminism

Nontermination might be good!

In case of termination, the result might not be unique

F. Tiezzi (Unicam) DSFL 14 / 21



Sequential Programming vs Concurrent
Programming

Sequential Programming

Denotational semantics: the meaning of a program is a partial
function from states to states

Nontermination is bad!

In case of termination, the result is unique

Concurrent - Interactive - Reactive Programming

Denotational semantics is very complicate due to
nondeterminism

Nontermination might be good!

In case of termination, the result might not be unique

F. Tiezzi (Unicam) DSFL 14 / 21



Sequential Programming vs Concurrent
Programming

Sequential Programming

Denotational semantics: the meaning of a program is a partial
function from states to states

Nontermination is bad!

In case of termination, the result is unique

Concurrent - Interactive - Reactive Programming

Denotational semantics is very complicate due to
nondeterminism

Nontermination might be good!

In case of termination, the result might not be unique

F. Tiezzi (Unicam) DSFL 14 / 21



Sequential Programming vs Concurrent
Programming

Sequential Programming

Denotational semantics: the meaning of a program is a partial
function from states to states

Nontermination is bad!

In case of termination, the result is unique

Concurrent - Interactive - Reactive Programming

Denotational semantics is very complicate due to
nondeterminism

Nontermination might be good!

In case of termination, the result might not be unique

F. Tiezzi (Unicam) DSFL 14 / 21



Sequential Programming vs Concurrent
Programming

Sequential Programming

Denotational semantics: the meaning of a program is a partial
function from states to states

Nontermination is bad!

In case of termination, the result is unique

Concurrent - Interactive - Reactive Programming

Denotational semantics is very complicate due to
nondeterminism

Nontermination might be good!

In case of termination, the result might not be unique

F. Tiezzi (Unicam) DSFL 14 / 21



SIDS as Reactive Systems

The classical denotational approach is not adequate for modelling
systems such as:

Operating systems

Communication protocols

Mobile phones

Vending machines

The above systems compute by reacting to stimuli from their environment
and are known as Reactive Systems; their distinguishing features are:

Interaction (many parallel communicating processes)

Nondeterminism (results are not necessarily unique)

There may be no visible result (exchange of messages is used to
coordinate progress)

Nontermination is good (systems are expected to run continuously)

F. Tiezzi (Unicam) DSFL 15 / 21



SIDS as Reactive Systems

The classical denotational approach is not adequate for modelling
systems such as:

Operating systems

Communication protocols

Mobile phones

Vending machines

The above systems compute by reacting to stimuli from their environment
and are known as Reactive Systems; their distinguishing features are:

Interaction (many parallel communicating processes)

Nondeterminism (results are not necessarily unique)

There may be no visible result (exchange of messages is used to
coordinate progress)

Nontermination is good (systems are expected to run continuously)

F. Tiezzi (Unicam) DSFL 15 / 21



Analysis of Reactive Systems

Even short parallel programs may be hard to analyse, thus we need
to face few questions:

1 How can we develop (design) a system that “works”?

2 How do we analyse (verify) such a system?

We need appropriate theories and formal methods and tools,
otherwise we will experience again:

Intels Pentium-II bug in floating-point division unit

Ariane-5 crash due to a conversion of 64-bit real to 16-bit
integer

. . .

F. Tiezzi (Unicam) DSFL 16 / 21



Analysis of Reactive Systems

Even short parallel programs may be hard to analyse, thus we need
to face few questions:

1 How can we develop (design) a system that “works”?

2 How do we analyse (verify) such a system?

We need appropriate theories and formal methods and tools,
otherwise we will experience again:

Intels Pentium-II bug in floating-point division unit

Ariane-5 crash due to a conversion of 64-bit real to 16-bit
integer

. . .

F. Tiezzi (Unicam) DSFL 16 / 21



Analysis of Reactive Systems

Even short parallel programs may be hard to analyse, thus we need
to face few questions:

1 How can we develop (design) a system that “works”?

2 How do we analyse (verify) such a system?

We need appropriate theories and formal methods and tools,
otherwise we will experience again:

Intels Pentium-II bug in floating-point division unit

Ariane-5 crash due to a conversion of 64-bit real to 16-bit
integer

. . .

F. Tiezzi (Unicam) DSFL 16 / 21



Analysis of Reactive Systems

Even short parallel programs may be hard to analyse, thus we need
to face few questions:

1 How can we develop (design) a system that “works”?

2 How do we analyse (verify) such a system?

We need appropriate theories and formal methods and tools,
otherwise we will experience again:

Intels Pentium-II bug in floating-point division unit

Ariane-5 crash due to a conversion of 64-bit real to 16-bit
integer

. . .

F. Tiezzi (Unicam) DSFL 16 / 21



Why formal methods?

Understanding the overall behaviour resulting from system
interactions can be tricky and error-prone

Simple motivating example

Consider the code: x = 1; y = x++ + x++;

What is the value of x and y after its execution?

Consider the code: g(x)=g(x-1) with f(x)=1;

What is the value of f(g(42)) after its execution?

It is even more critical when concurrency and interactions
enter the game. . .
Solid mathematical foundations lay the basis for formal
reasoning on systems behavior

The programmer can avoid operator ++, but
we cannot afford to stop building complex systems

we need to build trustworthy systems

F. Tiezzi (Unicam) DSFL 17 / 21



Why formal methods?

Understanding the overall behaviour resulting from system
interactions can be tricky and error-prone

Simple motivating example

Consider the code: x = 1; y = x++ + x++;

What is the value of x and y after its execution?

Consider the code: g(x)=g(x-1) with f(x)=1;

What is the value of f(g(42)) after its execution?

It is even more critical when concurrency and interactions
enter the game. . .
Solid mathematical foundations lay the basis for formal
reasoning on systems behavior

The programmer can avoid operator ++, but
we cannot afford to stop building complex systems

we need to build trustworthy systems

F. Tiezzi (Unicam) DSFL 17 / 21



Why formal methods?

Understanding the overall behaviour resulting from system
interactions can be tricky and error-prone

Simple motivating example

Consider the code: x = 1; y = x++ + x++;

What is the value of x and y after its execution?

Consider the code: g(x)=g(x-1) with f(x)=1;

What is the value of f(g(42)) after its execution?

It is even more critical when concurrency and interactions
enter the game. . .
Solid mathematical foundations lay the basis for formal
reasoning on systems behavior

The programmer can avoid operator ++, but
we cannot afford to stop building complex systems

we need to build trustworthy systems

F. Tiezzi (Unicam) DSFL 17 / 21



Why formal methods?

Understanding the overall behaviour resulting from system
interactions can be tricky and error-prone

Simple motivating example

Consider the code: x = 1; y = x++ + x++;

What is the value of x and y after its execution?

Consider the code: g(x)=g(x-1) with f(x)=1;

What is the value of f(g(42)) after its execution?

It is even more critical when concurrency and interactions
enter the game. . .
Solid mathematical foundations lay the basis for formal
reasoning on systems behavior

The programmer can avoid operator ++, but
we cannot afford to stop building complex systems

we need to build trustworthy systems

F. Tiezzi (Unicam) DSFL 17 / 21



Why formal methods?

Understanding the overall behaviour resulting from system
interactions can be tricky and error-prone

Simple motivating example

Consider the code: x = 1; y = x++ + x++;

What is the value of x and y after its execution?

Consider the code: g(x)=g(x-1) with f(x)=1;

What is the value of f(g(42)) after its execution?

It is even more critical when concurrency and interactions
enter the game. . .
Solid mathematical foundations lay the basis for formal
reasoning on systems behavior

The programmer can avoid operator ++, but
we cannot afford to stop building complex systems

we need to build trustworthy systems

F. Tiezzi (Unicam) DSFL 17 / 21



Why formal methods?

Understanding the overall behaviour resulting from system
interactions can be tricky and error-prone

Simple motivating example

Consider the code: x = 1; y = x++ + x++;

What is the value of x and y after its execution?

Consider the code: g(x)=g(x-1) with f(x)=1;

What is the value of f(g(42)) after its execution?

It is even more critical when concurrency and interactions
enter the game. . .
Solid mathematical foundations lay the basis for formal
reasoning on systems behavior

The programmer can avoid operator ++, but
we cannot afford to stop building complex systems

we need to build trustworthy systems

F. Tiezzi (Unicam) DSFL 17 / 21



Why formal methods?

Understanding the overall behaviour resulting from system
interactions can be tricky and error-prone

Simple motivating example

Consider the code: x = 1; y = x++ + x++;

What is the value of x and y after its execution?

Consider the code: g(x)=g(x-1) with f(x)=1;

What is the value of f(g(42)) after its execution?

It is even more critical when concurrency and interactions
enter the game. . .
Solid mathematical foundations lay the basis for formal
reasoning on systems behavior

The programmer can avoid operator ++, but
we cannot afford to stop building complex systems

we need to build trustworthy systems

F. Tiezzi (Unicam) DSFL 17 / 21



Formal Methods for Reactive Systems

To deal with reactive systems and guarantee their correct
behaviour in all possible environments, we need:

1 To study mathematical models for the formal description and
analysis of concurrent programs

2 To devise formal languages for the specification of the possible
behaviour of parallel and reactive systems

Each language comes equipped with syntax & semantics
Syntax: defines legal programs (grammar based)
Semantics: defines meaning, behavior, errors (formally)

3 To develop verification tools and implementation techniques
underlying them

F. Tiezzi (Unicam) DSFL 18 / 21



Domain Specific Formal Languages

Why do we need new language and techniques for each
specific application domain?

Systems must be specified as naturally as possible

distinctive aspects of the domain are first-class citizens
⇒ intuitive/concise spec., no encodings

high-level abstract models ⇒ feasible analysis

analysis results are in terms of system features, not their
low-level representation ⇒ feedbacks

F. Tiezzi (Unicam) DSFL 19 / 21



Process Algebras Approach

The chosen abstraction for reactive systems is the notion of
processes

Systems evolution is based on process transformation:
a process performs an action and becomes another process

Everything is (or can be viewed as) a process: buffers, shared
memory, tuple spaces, senders, receivers, . . . are all processes

Labelled Transition Systems (LTSs) describe processes
behaviour, and permit modelling directly systems interaction

F. Tiezzi (Unicam) DSFL 20 / 21



Process Algebras Approach

The chosen abstraction for reactive systems is the notion of
processes

Systems evolution is based on process transformation:
a process performs an action and becomes another process

Everything is (or can be viewed as) a process: buffers, shared
memory, tuple spaces, senders, receivers, . . . are all processes

Labelled Transition Systems (LTSs) describe processes
behaviour, and permit modelling directly systems interaction

F. Tiezzi (Unicam) DSFL 20 / 21



Before Domain Specific Formal Languages. . .

. . . a recap of CCS

F. Tiezzi (Unicam) DSFL 21 / 21


