
A Rigorous Framework for Specification, Analysis and
Enforcement of Access Control Policies

Rosario Pugliese

Università degli Studi di Firenze

Dipartimento di Statistica, Informatica, Applicazioni

Lucca - September 15, 2016

Joint work with A. Margheri, M. Masi and F. Tiezzi

R. Pugliese (UNIFI) FACPL September 15, 2016 1 / 42

Outline

An introduction to access control

FACPL: a policy language for attribute-based access control systems

Specification of FACPL policies

Analysis of FACPL policies

FACPL supporting tools

Concluding remarks

R. Pugliese (UNIFI) FACPL September 15, 2016 2 / 42

An Introduction to Access Control

R. Pugliese (UNIFI) FACPL September 15, 2016 3 / 42

Access Control Systems

The first line of defense for the protection of computing systems

Defined by rules that establish under which conditions a subject’s
request for accessing a resource has to be permitted or denied

Since the first applications in operating systems, to the more recent
ones in distributed systems, many access control models have been
proposed

R. Pugliese (UNIFI) FACPL September 15, 2016 4 / 42

Some Access Control Models
Access Control Matrix: controls based on triples (user-action-resource)

User1 User2
Res1 read read, write
Res2 write read, write

I
Access Control Lists

I
Capability Lists

Role-based (RBAC): controls defined wrt specific roles
I

Pros Allows high-level design, user groups and hierarchy of groups

I
Cons Suffers from scalability and interoperability problems

(it is essential to know in advance the role population)

I
Cons Defining fine-grained rules is tricky

(rules cannot easily encompass information representing the evaluation

context as e.g. system status or current time)

Attribute-based (ABAC): controls based on attributes, i.e. any
security-relevant information of the requester and/or system

I
Pros Differently grained, positive and negative rules

I
Pros Flexible and context-aware access control rules

(expressive enough to uniformly represent all the other models)

I
Cons Need to combine possibly contrasting decisions

R. Pugliese (UNIFI) FACPL September 15, 2016 5 / 42

RBAC vs ABAC: an e-Health Scenario
The patient electronic health record (EHR) must be controlled by the
access control system in order to guarantee confidentiality of medical data

Hi, I'm Julia, and I'm a physician from the famous
Massachusetts General Hospital. I want to access your
medical record for healthcare treatment

Hi, I'm Steve, and I'm a nurse from the Mount Auburn
Hospital. I want to access your continuity of care
document for dispensing Pepto-Bismol

Hi, we're Stan & Roger, we're researchers working at the
WhiteHouse agency for public health. We would like to
access your encounters history for statistical plans

Hi, I'm Homer, I'm the patient. I
give access to my medical
record to? ?!?!#*&^%&$
(*&^????

R. Pugliese (UNIFI) FACPL September 15, 2016 6 / 42

RBAC vs ABAC: an e-Health Scenario

Hi, I'm Julia, and I'm a physician from the famous
Massachusetts General Hospital. I want to access your
medical record for healthcare treatment

Hi, I'm Steve, and I'm a nurse from the Mount Auburn
Hospital. I want to access your continuity of care
document for dispensing Pepto-Bismol

Hi, we're Stan & Roger, we're researchers working at the
WhiteHouse agency for public health. We would like to
access your encounters history for statistical plans

Different hospitals, different
actions and different roles

RBAC: difficult to define
fine-grained rules

No obvious way to
conveniently encode such
requests for a software actor

ABAC
Requester credentials are rendered as a collection of attributes, i.e.
pairs (name, value)

I
Values from the context like, e.g., requester location and current time

Control carried out by positive/negative rules based on attribute values

R. Pugliese (UNIFI) FACPL September 15, 2016 6 / 42

An Attribute-based Language: the XACML Standard

The eXtensible Access Control Markup Language (XACML) is an OASIS
standard

is the widest-used implementation of the ABAC model

defines an XML-based language for writing access control policies

defines an XML-based language for representing access requests

defines an authorisation workflow: decision and enforcement processes

is currently used in many large scale projects (e.g., epSOS, NHIN)

First normative specification: February 2003
Last normative specification XACML 3.0: January 2013

R. Pugliese (UNIFI) FACPL September 15, 2016 7 / 42

An European eHealth Platform: the EU pilot epSOS
Objectives

Exchanging patient data among European points of care
I

Facilitating the cross-board interoperability of European countries’

healthcare systems

I
Complying with country-specific legislations

Enforcing the patient informed consent
I

Ensuring confidentiality of high sensitive medical data

Resources and Services
Patient Summary: the patient’s medical data including all the
important clinical facts
ePrescription: the electronic prescription of a medicine by a legally
authorised health professional
eDispensation: the dispensing of the medicine to the patient as
indicated in the corresponding ePrescription

R. Pugliese (UNIFI) FACPL September 15, 2016 8 / 42

ePrescription Service Protocol
Pharmacist NCP-B NCP-A

getE-Prescriptions(Alice)

loop

PEP-A PDP-A

getE-Prescriptions(Alice)

retrieveE-Prescriptions(Alice)

reqAuthzDecision
[for each e-Prescription]

authzRequest

decision

enforceDecisionresAuthzDecision

createListOfE-Prescriptions
listOfE-Prescriptions

listOfE-Prescriptions

e-Dispensations
e-Dispensations

National Contact Point (NCP):
I

NCP B: from where the request is issued

I
NCP A: the patient’s country of origin

NCP-A enforces the patient informed consent

R. Pugliese (UNIFI) FACPL September 15, 2016 9 / 42

An XACML Policy: excerpt of the e-Prescription Policy
<Po l i c y xmlns=" u r n : o a s i s : n a m e s : t c : x a c m l : 3 . 0 : co r e : s chema :wd �17" . . .

Ru leCombin ingA lg Id=" u r n : o a s i s : n a m e s : t c : x a c m l : 3 . 0 : r u l e �combining�
a l g o r i t hm : p e rm i t�o v e r r i d e s ">

<Target>
<AnyOf>
<Al lO f>
<Match MatchId=" u r n : o a s i s : n a m e s : t c : x a c m l : 1 . 0 : f u n c t i o n : s t r i n g �equa l ">
<At t r i b u t eVa l u e DataType=" h t t p : //www. w3 . org /2001/XMLSchema#s t r i n g ">

doc to r
</ A t t r i b u t eVa l u e>
<At t r i b u t eD e s i g n a t o r DataType=" h t t p : //www. w3 . org /2001/XMLSchema#anyURI"

. . . />
</Match>

</ A l lO f>
</AnyOf>

</Target>
<Rule Ru l e I d=" r u l e 1 " E f f e c t="Permit ">
<Target> . . . </Target>
<Cond i t i o n>
<Apply Func t i o n I d=" u r n : o a s i s : n a m e s : t c : x a c m l : 1 . 0 : f u n c t i o n : s t r i n g �s ub s e t ">

. . .
</Apply>

</ Cond i t i o n>
</Rule>
<Ob l i g a t i o nE x p r e s s i o n F u l f i l l O n="Permit "

Ob l i g a t i o n I d=" u r n : o a s i s : n a m e s : t c : x a c m l : o b l i g a t i o n : l o g ">
. . .

</ Ob l i g a t i o nE x p r e s s i o n>
</ Po l i c y>

The whole policy is ⇡ 240 lines, the all epSOS policies are ⇡ 500 lines
R. Pugliese (UNIFI) FACPL September 15, 2016 10 / 42

XACML Weaknesses

Designing XACML policies is a difficult and error-prone task
The language has a verbose syntax

I
it makes writing XACML policies awkward by using common editors

(XML is neither easily readable nor writable by human)

I
there exist ad-hoc policy editors, but they are cumbersome and

ineffective when dealing with real-world policies

XACML comes without a formal semantics

I
the standard is written in prose

I
it contains loose points that may lead to different interpretations

(e.g., different implementation choices)

I
the portability of XACML policies could be undermined

I
devising correct analysis techniques is cumbersome

R. Pugliese (UNIFI) FACPL September 15, 2016 11 / 42

FACPL: a policy language for
attribute-based access control systems

R. Pugliese (UNIFI) FACPL September 15, 2016 12 / 42

FACPL: Formal Access Control Policy Language

Compact and expressive syntax for attribute-based access control
policies and requests

Formal semantics given in denotational style

Formally grounded analysis techniques

Java-based tools supporting Specification, Analysis and Enforcement
of FACPL Policies

Attributes
Attributes are pairs (name, value) and form access requests
Attribute values, which can be literals or sets, are accessed via names

E.g., given the attribute (subject/id, “Andrea”), the name subject/id is
resolved to the value “Andrea”

R. Pugliese (UNIFI) FACPL September 15, 2016 13 / 42

A FACPL Specification
Policies

I
a set of rules or policies

I
a combining algorithm to merge access decisions

(e.g., permit-overrides, deny-unless-permit, one-app)

I
a target specifying to which requests the policy applies

I
a list of obligations specifying actions to be discharged

Rules

I
an effect specifying a permit or deny access decision

I
a target

I
a list of obligations

Access Decisions
permit: a policy grants the access request
deny: a policy forbids the access request
not-applicable: no policy applies to the access request
indeterminate: a policy is unable to evaluate the access request

R. Pugliese (UNIFI) FACPL September 15, 2016 14 / 42

A FACPL Policy

PolicySet ePre { permit -overrides -all
target: equal("e-Prescription", resource/type)
policies:
Rule write (permit

target: equal(subject/role , "doctor")
& & equal(action/id, "write")
& & in ("e-Pre -Write", subject/permission)
& & in ("e-Pre -Read", subject/permission))

Rule read (permit
target: equal(subject/role , "doctor")

& & equal(action/id, "read")
& & in ("e-Pre -Read", subject/permission))

Rule pha (permit
target: equal(subject/role , "pharmacist")

& & equal(action/id, "read")
& & in ("e-Pre -Read", subject/permission))

obl:
[permit M log(system/time ,resource/type ,subject/id ,action/id)]

}

The FACPL-based access control system of epSOS is defined in ⇡ 40 lines,
rather than ⇡ 500 lines of the XACML one

R. Pugliese (UNIFI) FACPL September 15, 2016 15 / 42

FACPL Syntax (1 of 2)

Policy Auth. Systems PAS ::= (pep :EnfAlg pdp :PDP)

Enf. algorithms EnfAlg ::= base | deny-biased | permit-biased

Policy Decision Points PDP ::= {Alg policies :Policy+}
Combining algorithms Alg ::= permit-overrides� | deny-overrides�

| deny-unless-permit� | permit-unless-deny�
| first-app� | one-app�

| weak-consensus� | strong-consensus�

Fulfilment strategies � ::= greedy | all

Policies Policy ::= (Effect target :Expr obl :Obligation⇤)
| {Alg target :Expr policies :Policy+ obl :Obligation⇤}

Effects Effect ::= permit | deny

Obligations Obligation ::= [Effect ObType Action(Expr⇤)]

Obligation types ObType ::= M | O

R. Pugliese (UNIFI) FACPL September 15, 2016 16 / 42

FACPL Syntax (2 of 2)

Expressions Expr ::= Name | Value
| and(Expr ,Expr) | or(Expr ,Expr) | not(Expr)
| equal(Expr ,Expr) | in(Expr ,Expr)
| greater-than(Expr ,Expr) | add(Expr ,Expr)
| subtract(Expr ,Expr) | divide(Expr ,Expr)
| multiply(Expr ,Expr)

Attribute names Name ::= Identifier/Identifier

Literal values Value ::= true | false | Double | String | Date

Requests Request ::= (Name,Value)+

R. Pugliese (UNIFI) FACPL September 15, 2016 17 / 42

FACPL Formal Semantics: given in a denotation style

E.g., the case of policies is

P[[{a target : expr policies :⇡+ obl : o⇤ }]]r =
8
>>><

>>>:

he fo⇤
1 • fo⇤

2i if E[[expr]]r = true ^ A[[a,⇡+]]r = he fo⇤
1i ^ O[[o⇤|e]]r = fo⇤

2

not-applicable if E[[expr]]r = false _ E[[expr]]r = ?
_ (E[[expr]]r = true ^ A[[a,⇡+]]r = not-applicable)

indeterminate otherwise

The function A defining the semantics of combining algorithms relies on
binary operators defined as

⌦permit-overrides hpermit FO2i hdeny FO2i not-applicable indeterminate

hpermit FO1i hpermit FO1•FO2i hpermit FO1i hpermit FO1i hpermit FO1i
hdeny FO1i hpermit FO2i hdeny FO1•FO2i hdeny FO1i indeterminate
not-applicable hpermit FO2i hdeny FO2i not-applicable indeterminate
indeterminate hpermit FO2i indeterminate indeterminate indeterminate

R. Pugliese (UNIFI) FACPL September 15, 2016 18 / 42

Specification of FACPL policies

R. Pugliese (UNIFI) FACPL September 15, 2016 19 / 42

Specification of the epSOS Access Control System

Security Requirements
The access control system must ensure the following security requirements:

1 Doctors can write e-Prescriptions

2 Doctors can read e-Prescriptions

3 Pharmacists can read e-Prescriptions

4 Authorised user accesses must be recorded by the system

5 Patients must be informed of unauthorised access attempts

6 Data exchanged should be compressed

Items 1 - 3: closed-world requirements stating the allowed accesses
Items 4 - 6: additional functionalities required for managing accesses

R. Pugliese (UNIFI) FACPL September 15, 2016 20 / 42

Specification Steps

On the base of the security requirements . . .

1 Assume each relevant requester credential is represented by a
pre-defined attribute (n, v). E.g.

I
Requester role:

F n = subject/role
F v 2 {“doctor”, “pharmacist”}

I
Requested action:

F n = action/id
F v 2 {“read”, “write”}

2 Write basic access rules by defining controls on attributes

3 Combine basic access rules into policies

4 Possibly combine policies hierarchically

R. Pugliese (UNIFI) FACPL September 15, 2016 21 / 42

Step1: Writing Rules

Doctors can write e-Prescriptions
Rule write (permit

target: equal(subject/role , "doctor")
& & equal(action/id, "write")
& & in ("e-Pre -Write", subject/permission)
& & in ("e-Pre -Read", subject/permission))

Doctors can read e-Prescriptions
Rule read (permit

target: equal(subject/role , "doctor")
& & equal(action/id, "read")
& & in ("e-Pre -Read", subject/permission))

Pharmacists can read e-Prescriptions
Rule pha (permit

target: equal(subject/role , "pharmacist")
& & equal(action/id, "read")
& & in ("e-Pre -Read", subject/permission))

R. Pugliese (UNIFI) FACPL September 15, 2016 22 / 42

Step1: Writing Rules

Doctors can write e-Prescriptions
Rule write (permit

target: equal(subject/role , "doctor")
& & equal(action/id, "write")
& & in ("e-Pre -Write", subject/permission)
& & in ("e-Pre -Read", subject/permission))

Doctors can read e-Prescriptions
Rule read (permit

target: equal(subject/role , "doctor")
& & equal(action/id, "read")
& & in ("e-Pre -Read", subject/permission))

Pharmacists can read e-Prescriptions
Rule pha (permit

target: equal(subject/role , "pharmacist")
& & equal(action/id, "read")
& & in ("e-Pre -Read", subject/permission))

R. Pugliese (UNIFI) FACPL September 15, 2016 22 / 42

Step1: Writing Rules

Doctors can write e-Prescriptions
Rule write (permit

target: equal(subject/role , "doctor")
& & equal(action/id, "write")
& & in ("e-Pre -Write", subject/permission)
& & in ("e-Pre -Read", subject/permission))

Doctors can read e-Prescriptions
Rule read (permit

target: equal(subject/role , "doctor")
& & equal(action/id, "read")
& & in ("e-Pre -Read", subject/permission))

Pharmacists can read e-Prescriptions
Rule pha (permit

target: equal(subject/role , "pharmacist")
& & equal(action/id, "read")
& & in ("e-Pre -Read", subject/permission))

R. Pugliese (UNIFI) FACPL September 15, 2016 22 / 42

Step2: Combining Rules

PolicySet ePre { permit -overrides -all
target: equal("e-Prescription", resource/type)

policies:

Rule write (permit target: ...)
Rule read (permit target: ...)
Rule pha (permit target: ...)

obl:
[permit M log(system/time , resource/type ,subject/id, action/id)]

}

the permit-overrides-all algorithm ensures that decision permit
takes precedence over the others
the obligation of the policy ePre enforces the Requirement 4,
i.e. the logging of the allowed accesses

R. Pugliese (UNIFI) FACPL September 15, 2016 23 / 42

Step3: Validating the Policy (1/2)
Let us consider the requirement: “Doctors can write e-Prescriptions”
The following request must be allowed, i.e. evaluated to permit
Request :{ Request1

(subject/id ,"Dr House")
(resource/patient -id,"Alice")
(resource/type ,"e-Prescription")
(subject/role ,"doctor")
(subject/permission ,"e-Pre -Read","e-Pre -Write")
(action/id,"write")

}

R. Pugliese (UNIFI) FACPL September 15, 2016 24 / 42

Step3: Validating the Policy (1/2)
Let us consider the requirement: “Doctors can write e-Prescriptions”
The following request must be allowed, i.e. evaluated to permit
Request :{ Request1

(subject/id ,"Dr House")
(resource/patient -id,"Alice")
(resource/type ,"e-Prescription")
(subject/role ,"doctor")
(subject/permission ,"e-Pre -Read","e-Pre -Write")
(action/id,"write")

}

the first rule evaluates to permit
Rule write (permit

target: equal(subject/role , "doctor")
& & equal(action/id, "write")
& & in ("e-Pre -Write", subject/permission)
& & in ("e-Pre -Read", subject/permission))

R. Pugliese (UNIFI) FACPL September 15, 2016 24 / 42

Step3: Validating the Policy (1/2)
Let us consider the requirement: “Doctors can write e-Prescriptions”
The following request must be allowed, i.e. evaluated to permit
Request :{ Request1

(subject/id ,"Dr House")
(resource/patient -id,"Alice")
(resource/type ,"e-Prescription")
(subject/role ,"doctor")
(subject/permission ,"e-Pre -Read","e-Pre -Write")
(action/id,"write")

}

the second rule evaluates to not-applicable
Rule read (permit

target: equal(subject/role , "doctor")
& & equal(action/id, "read")
& & in ("e-Pre -Read", subject/permission))

R. Pugliese (UNIFI) FACPL September 15, 2016 24 / 42

Step3: Validating the Policy (1/2)
Let us consider the requirement: “Doctors can write e-Prescriptions”
The following request must be allowed, i.e. evaluated to permit
Request :{ Request1

(subject/id ,"Dr House")
(resource/patient -id,"Alice")
(resource/type ,"e-Prescription")
(subject/role ,"doctor")
(subject/permission ,"e-Pre -Read","e-Pre -Write")
(action/id,"write")

}

the third rule evaluates to not-applicable
Rule pha (permit

target: equal(subject/role , "pharmacist")
& & equal(action/id, "read")
& & in ("e-Pre -Read", subject/permission))

R. Pugliese (UNIFI) FACPL September 15, 2016 24 / 42

Step3: Validating the Policy (1/2)
Let us consider the requirement: “Doctors can write e-Prescriptions”
The following request must be allowed, i.e. evaluated to permit
Request :{ Request1

(subject/id ,"Dr House")
(resource/patient -id,"Alice")
(resource/type ,"e-Prescription")
(subject/role ,"doctor")
(subject/permission ,"e-Pre -Read","e-Pre -Write")
(action/id,"write")

}

As expected, the application of the combining algorithm
permit-overrides-all to the decisions
permit, not-applicable, not-applicable returns permit

R. Pugliese (UNIFI) FACPL September 15, 2016 24 / 42

Step3: Validating the Policy (2/2)
Let us consider the requirement: “Pharmacists can read e-Prescriptions”
Due to the closed-world nature of the requirements, the following request,
representing a pharmacist willing to write an e-Prescription, must be
forbidden, i.e. evaluated to deny
Request :{ Request2

(subject/id ,"Dr Alex")
(resource/patient -id,"Alice")
(resource/type ,"e-Prescription")
(subject/role ,"pharmacist")
(action/id,"write")

}

R. Pugliese (UNIFI) FACPL September 15, 2016 25 / 42

Step3: Validating the Policy (2/2)
Let us consider the requirement: “Pharmacists can read e-Prescriptions”
Due to the closed-world nature of the requirements, the following request,
representing a pharmacist willing to write an e-Prescription, must be
forbidden, i.e. evaluated to deny
Request :{ Request2

(subject/id ,"Dr Alex")
(resource/patient -id,"Alice")
(resource/type ,"e-Prescription")
(subject/role ,"pharmacist")
(action/id,"write")

}
the first rule evaluates to not-applicable
Rule write (permit

target: equal(subject/role , "doctor")
& & equal(action/id, "write")
& & in ("e-Pre -Write", subject/permission)
& & in ("e-Pre -Read", subject/permission))

R. Pugliese (UNIFI) FACPL September 15, 2016 25 / 42

Step3: Validating the Policy (2/2)
Let us consider the requirement: “Pharmacists can read e-Prescriptions”
Due to the closed-world nature of the requirements, the following request,
representing a pharmacist willing to write an e-Prescription, must be
forbidden, i.e. evaluated to deny
Request :{ Request2

(subject/id ,"Dr Alex")
(resource/patient -id,"Alice")
(resource/type ,"e-Prescription")
(subject/role ,"pharmacist")
(action/id,"write")

}
the second rule evaluates to not-applicable
Rule read (permit

target: equal(subject/role , "doctor")
& & equal(action/id, "read")
& & in ("e-Pre -Read", subject/permission))

R. Pugliese (UNIFI) FACPL September 15, 2016 25 / 42

Step3: Validating the Policy (2/2)
Let us consider the requirement: “Pharmacists can read e-Prescriptions”
Due to the closed-world nature of the requirements, the following request,
representing a pharmacist willing to write an e-Prescription, must be
forbidden, i.e. evaluated to deny
Request :{ Request2

(subject/id ,"Dr Alex")
(resource/patient -id,"Alice")
(resource/type ,"e-Prescription")
(subject/role ,"pharmacist")
(action/id,"write")

}
the third rule evaluates to not-applicable
Rule pha (permit

target: equal(subject/role , "pharmacist")
& & equal(action/id, "read")
& & in ("e-Pre -Read", subject/permission))

R. Pugliese (UNIFI) FACPL September 15, 2016 25 / 42

Step3: Validating the Policy (2/2)
Let us consider the requirement: “Pharmacists can read e-Prescriptions”
Due to the closed-world nature of the requirements, the following request,
representing a pharmacist willing to write an e-Prescription, must be
forbidden, i.e. evaluated to deny
Request :{ Request2

(subject/id ,"Dr Alex")
(resource/patient -id,"Alice")
(resource/type ,"e-Prescription")
(subject/role ,"pharmacist")
(action/id,"write")

}

Now, the application of the combining algorithm
permit-overrides-all to the decisions
not-applicable, not-applicable, not-applicable returns not-applicable
instead of deny!

R. Pugliese (UNIFI) FACPL September 15, 2016 25 / 42

Step4: the patient-informed consent policy
PolicySet Consent {permit -overrides -all
target: true

policies:

PolicySet ePre { ... }

Rule ruleDeny (deny)

obl:
[deny M mail(resource/patient -mail , "Data request by

unauthorised subject")]
[permit O compress ()]

}

The policy can be amended by introducing an additional layer comprising
a target matching any request
the policy managing the e-Prescription
the always applicable rule deny
two obligations enforcing the Requirements 5 & 6

R. Pugliese (UNIFI) FACPL September 15, 2016 26 / 42

Step5: Alice patient-informed consent policy

PolicySet AliceConsent {permit -overrides -all
target: equal("Alice",resource/patient -id)

policies:

PolicySet ePre { ... }

Rule ruleDeny (deny)

obl:
[deny M mail(resource/patient -mail , "Data request by

unauthorised subject")]
[permit O compress ()]

}

The target is tailored thus to only apply to requests regarding Alice

R. Pugliese (UNIFI) FACPL September 15, 2016 27 / 42

FACPL Evaluation Process

PDP decides whether to allow received requests and returns
I

a decision

I
a (possibly empty) list of obligations

PEP enforces the decision taken by the PDP

R. Pugliese (UNIFI) FACPL September 15, 2016 28 / 42

Analysis of FACPL policies

R. Pugliese (UNIFI) FACPL September 15, 2016 29 / 42

Analysis Objectives
Support policy developers in the validation of FACPL policies, thus to
statically identify unexpected authorisations that may occur at run-time

Supported Properties:
Authorisation Properties

conditions on the authorisations of a single request and,
possibly, of its extensions

Structural Properties
characterisations of the relationships among policy rules with
respect to the authorisations they enforce

Difficulties to tackle:
Hierarchical policies featuring combining algorithms
Role of missing and erroneous attributes
Various expressions and controls on attribute values, e.g. arithmetic
and comparison operators

R. Pugliese (UNIFI) FACPL September 15, 2016 30 / 42

Authorisation Properties

Conditions on the authorisations of a single request and, possibly, of its
extensions

Eval: if a request is authorised to a certain authorisation

May: if any of the extension of a request is authorised to a certain
authorisation

Must: if all of the extension of a request is authorised to a certain
authorisation

Additional attributes
Extending the request with additional attributes might change the
authorisation of a request in a possibly unexpected way

R. Pugliese (UNIFI) FACPL September 15, 2016 31 / 42

Authorisation Properties (cont.)
The role of additional attributes

Let us consider the case of a pharmacist willing to perform an action
Request :{ Request3

(subject/id ,"Dr Alex")
(resource/patient -id,"Alice")
(resource/type ,"e-Prescription")
(subject/role ,"pharmacist")

}

The attribute with name action/id is missing. If the request is extended
with the following attributes, we have

(action/id, “read”): the previous policy evaluates it to permit
(action/id, “write”): the previous policy evaluates it to deny

Different values assumed by the same attribute may lead to different,
possibly unexpected, authorisation decisions

R. Pugliese (UNIFI) FACPL September 15, 2016 32 / 42

Structural Properties

Characterisations of the relationships among policy rules with respect to
the authorisations they enforce

Multiple structural properties of interest, we address

Completeness: if there is no access request for which there is an
absence of decision

Coverage: if the set of authorisations enforced by a policy is covered
by that of another policy

Disjointness: two or more policies enforce disjoint sets of
authorisations

R. Pugliese (UNIFI) FACPL September 15, 2016 33 / 42

Representing FACPL Policies with SMT
Satisfiability Modulo Theory (SMT)

I
First-order formulae containing operations from various theories

I
Main theories used: Record, Linear Arithmetic, Uninterpreted

Functions, Array

I
SMT solvers are “extensions” of SAT solvers

Each policy is represented by a 4-tuple of constraints, one for each
possible decision
Each attribute is modelled by a 3-valued record representing

I
its (typed) value

I
if it is missing

I
if it is of an unexpected type

Policy hierarchies are flattened according to the (binary operator)
semantics of combing algorithms

For all ⇡ 2 Policy enclosing combining algorithms only using all as
fulfilment strategy, and for all r 2 R , it holds that

P[[⇡]]r = hdec fo⇤i , C[[TP{|⇡|} #dec]]r = true
R. Pugliese (UNIFI) FACPL September 15, 2016 34 / 42

Constraint Generation and Property Verification
The first epSOS rule corresponds to the following tuple of constraints

h permit : �trg1 ^ true

deny : false

not-applicable : ¬�trg1

indeterminate : ¬(isBool(�trg1) _ isMiss(�trg1)) _ (�trg1 ^ ¬true) i
where

�trg1 , sub/role = “doctor” ˙̂ act/id = “write” ˙̂ “e-Pre-Write” 2 sub/perm
˙̂ “e-Pre-Read” 2 sub/perm

This tuple is then combined with the tuples representing the other rules
according to the semantics of the combining algorithms

Property Verification
FACPL policies are automatically translated into SMT-LIB, i.e. a
constraint language widely accepted by SMT solvers
The SMT solver Z3 is exploited to verify properties, i.e. to check if an
SMT-LIB code is satisfiable or, when it is the case, valid

R. Pugliese (UNIFI) FACPL September 15, 2016 35 / 42

FACPL supporting tools

R. Pugliese (UNIFI) FACPL September 15, 2016 36 / 42

The FACPL ToolChain

Eclipse IDE (an Xtext-based plug-in)
I

Web Application for experimenting FACPL directly online

Java Design and Evaluation library
Integration with Z3 via SMT-LIB code
Partial interoperability with XACML

R. Pugliese (UNIFI) FACPL September 15, 2016 37 / 42

The FACPL IDE

Supporting features for writing FACPL policies
(code suggestion and completion, cross-references, highlighting of code, etc.)

Evaluation of FACPL policies by using the dedicated Java library
Automatic generation of SMT-LIB and XACML code

R. Pugliese (UNIFI) FACPL September 15, 2016 38 / 42

Concluding remarks

R. Pugliese (UNIFI) FACPL September 15, 2016 39 / 42

To sum up . . .

FACPL:
A compact syntax for writing attribute-based access control policies

A rigorous evaluation process

A formally grounded analysis technique

A full-implemented Java-based toolchain

Additional Application Domains
Cloud Computing: controlling and allocating computing resources
Autonomic Computing: defining adaptation strategies by using a
policy-based approach

R. Pugliese (UNIFI) FACPL September 15, 2016 40 / 42

Ongoing and Future Works

Enhancing FACPL to support Usage Control
Continuative Access Control

checking how assigned access rights are actually used by
requesters (e.g., secondary use of data)

History-based Access Control
evaluating access requests on the base of the previous
(allowed) accesses (e.g., dynamic separation of duty and
Chinese wall requirements)

High-level design of FACPL policies (or, more in general, of ABAC policies)

R. Pugliese (UNIFI) FACPL September 15, 2016 41 / 42

Thank you!

For further details about FACPL, visit

http://facpl.sf.net

For experimenting FACPL online, try the web application

http://facpl.sf.net/webapp.html

R. Pugliese (UNIFI) FACPL September 15, 2016 42 / 42

http://facpl.sf.net
http://facpl.sf.net/webapp.html

References

A. Margheri, M. Masi, R. Pugliese, F. Tiezzi
A Rigorous Framework for Specification, Analysis and Enforcement of Access
Control Policies
Technical Report, 2016 - Available from the FACPL website

A. Margheri
A Formal Approach to Specification, Analysis and Implementation of Policy-based
Systems
PhD Thesis, 2016

A. Margheri, R. Pugliese, F. Tiezzi
On Properties of Policy-based Specification
Automated Specification and Verification of Web Systems (WWV) - EPTCS, 2015

A. Margheri, M. Masi, R. Pugliese, F. Tiezzi
Developing and Enforcing Policies for Access Control, Resource Usage, and
Adaptation. A Practical Approach
Web Services and Formal Methods (WS-FM) - Springer, 2013

R. Pugliese (UNIFI) FACPL September 15, 2016 42 / 42

