
Walking Through the Semantics of Exclusive and
Event-Based Gateways in BPMN Choreographies

Flavio Corradini, Andrea Morichetta, Barbara Re, and Francesco Tiezzi

School of Science and Technology, University of Camerino, Camerino, Italy
{name.surname}@unicam.it

Abstract. With the evolution of distributed systems, nowadays BPMN
choreography diagrams have acquired more and more importance for
modelling systems interaction. However, one of the drawbacks of this
model is the lack of formal semantics, which leads to different interpre-
tations, and hence implementations, of some of its features. Among the
BPMN choreography elements, particularly ambiguous is the semantics
of the exclusive and event-based gateways, used to represent different
forms of choices. Formalisations of these elements have been proposed
in the literature, but none of them is derived from a direct and faithful
modelling of the description provided by the BPMN standard. In this
work, instead, we provide a direct formalisation, in terms of an oper-
ational semantics, that aims at shedding light on the intricacies of the
behaviour of the exclusive and event-based gateways. The effectiveness
of the approach is shown by illustrating how our semantics can disam-
biguate tricky behaviours in choreography models.

Keywords: BPMN 2.0, Choreographies, Exclusive and Event-Based
Gateways, Operational Semantics.

1 Introduction

The BPMN 2.0 OMG standard [23] (in the following just BPMN) is more and
more adopted by academia and industry as a modelling language for distributed
systems. Its diffusion is mainly due to its capability to describe the behaviour
of components by means of an appealing graphical notation. In particular, a
BPMN choreography diagram provides a global specification focusing on compo-
nent interactions, while a BPMN collaboration diagram describes the implemen-
tation of every single component, possibly deployed and managed by different
organisations, in terms of exchanged messages and internal behaviour. In such a
setting, organisations that are willing to cooperate to achieve a specific objective
can refer to choreography specifications for describing the interactions between
different parties. On the other hand, interested organisations can put in place
the cooperation by relying on collaboration models able to describe both the
communication patterns and the internal activities of a component.

2 Corradini, Morichetta, Re, and Tiezzi

The community widely accepts the BPMN standard for its expressiveness
and adaptability to many fields. Despite this advantage, its complex semantics
can generate possible flaws during the design phase [4] [7]. This phenomenon is
accentuated by the lack of rigour of the standard in the element descriptions,
due to the use of natural language for the semantic definitions. This problem
is witnessed by the differences that can be observed between the available busi-
ness process management systems: from one implementation to another different
semantics are used for the same element, disorienting the expectation of the de-
signer [11]. This lack of transparency in the standard, joint with the inability of
being executable, has reduced the adoption of BPMN choreography diagrams in
favour of collaboration diagrams that played for years a more relevant role [2].
Despite this, BPMN choreography is considered the most appropriate notation
to model the coordination of the interactions between different participants when
the process cannot be controlled in a centralised manner [3]. Moreover, the in-
creasing diffusion of blockchain technology, natively implementing decentralised
trusted scenarios, is asking for adequate modelling languages [13]. Choreogra-
phies are promising modelling abstractions for contracts between two or more
organisations, being both communication-centric and human understandable by
business analysts and IT specialists. The whole area of choreographies may be
revitalised by such technological evolution [2]. This raises the need of making
even clearer the semantics of choreography diagrams before their wider adoption.

In a distributed scenario, without a clear semantics for choreographies, the
difficulty on producing high-quality models for the global perspective may rep-
resent a barrier in the development of each single components. The problem
is further compounded by the fact that ambiguities on the semantics also re-
gard largely used elements, such as the exclusive and the event-based gateways,
exploited to express in BPMN choreographies different forms of choice among
alternative execution paths. To fill this gap, in this paper we first present a de-
tailed analysis of the the natural language descriptions provided by the BPMN
standard about the semantics of key choreography elements. We specifically fo-
cus on the two gateway elements mentioned above. We then propose an informal
characterisation, by resorting to a graphical notation, of the semantics of the two
gateways, which combines all requirements stated in the standard. Finally, to
provide a clear understanding of the ambiguous points of the standard, we pro-
vide a formalisation of the BPMN choreographies semantics, given in terms of an
operational semantics defined on top of a textual representation of the models.
The proposed work is motivated and validated by relying on an example coming
from the literature and presenting an evident issue caused by a misunderstanding
of the standard.

The rest of the paper is organised as follows. Section 2 provides background
notions on BPMN choreographies and collaborations. Section 3 motivates our
work by detailing issues resulting from the standard. Section 4 informally de-
scribes the semantics of exclusive and event-based gateways. Section 5 proposes
the formalisation of choreography syntax and semantics. Section 6 discusses re-
lated works. Finally, Section 7 concludes the paper and discusses future work.

Semantics of Exclusive and Event-Based Gateways in BPMN Choreographies 3choreography elements

Start Event End Event

Task Name
(One-Way)

Iniziator

Receipient

message
name

Task Name
(Two-Way)

Iniziator

Receipient

message
name

message
name

Parallel
Gateway

Exclusive
Gateway

Event Based
Gateway

Common Elements Choreography Elements

Sequence Flow

ChoreographyElement

Task Name
(One-Way)

Initiator

Recipient

Task Name
(Two-Way)

Initiator

Recipient

message
name

message
name

message
name

Choreography Elements

CollaborationElements

Po
ol

Task

Intermediate Receive
Event

Intermediate Send
Event

Collaboration Elements

message flow

a. Flow elements b. Choreography tasks c. Collaboration elements

Fig. 1. BPMN 2.0 Elements.

2 Background

This section presents the relevant elements of choreography and collaboration
diagrams we use in the paper.

Figure 1(a) depicts the most used modelling elements that can be included
in both diagrams. Events are used to represent something that can happen.
An event can be a start event, representing the point in which the choreog-
raphy/collaboration starts, while an end event is raised when the choreogra-
phy/collaboration terminates. Gateways are used to manage the flow of a chore-
ography/collaboration both for parallel activities and choices. Gateways act as
either join nodes (merging incoming sequence edges) or split nodes (forking into
outgoing sequence edges). Different types of gateways are available. A parallel
gateway (AND) in join mode has to wait to be reached by all its incoming edges
to start, and respectively all the outgoing edges are started simultaneously in
the split case. An exclusive gateway (XOR) describes choices; it is activated
each time the gateway is reached in join mode and, in split mode, it activates
exactly one outgoing edge. An event-based gateway is similar to the XOR-split
gateway, but its outgoing branches activation depends on the occurrence of a
catching event in the collaboration and on the reception of a message in the
choreography; these events/messages are in a race condition, where the first one
that is triggered wins and disables the other ones. Sequence Flows are used
to connect collaboration/choreography elements to specify the execution flow.

Focusing on the choreography diagram, we underline its ability to specify the
message exchanges between two or more participants. This is done by means of
Choreography Tasks in Figure 1(b). They are drawn as rectangles divided
in three bands: the central one refers to the name of the task, while the others
refer to the involved participants (the white one is the initiator, while the gray
one is the recipient). Messages can be sent either by one participant (One-Way
tasks) or by both participants (Two-Way tasks). Concerning choreography tasks,
we rely on the follow design choices. In relation to the Two-Way choreography
task, the OMG standard states that it is “an atomic activity in a choreogra-
phy process” execution [23, p. 323]. However, this does not mean that the task
blocks the whole execution of the choreography. In fact, participants are usually
distributed, and we assume that other choreography tasks involved in differ-
ent parallel paths of the choreography can be executed. Thus, here we intend
atomicity to mean that both messages exchanged in a Two-Way task have to be

4 Corradini, Morichetta, Re, and Tiezzi

received before triggering the execution along the sequence flow outgoing from
the task. Therefore, even if we allow Two-Way tasks in the choreography models,
we safely manage them as pairs of One-Way tasks preserving the same meaning.

In a collaboration diagram, together with the flow elements, the elements in
Figure 1(c) can be included. Pools are used to represent participants involved in
the collaboration. Tasks are used to represent specific works to perform within
a collaboration by a participant. Intermediate Events represent something
that happens during the flow of the process, such as sending or receiving of a
message. Message Edges are used to visualize communication flows between
participants, by connecting communication elements within different pools.

3 Motivations

A choreography model represents a guideline for driving the communication
interactions between organisations and represents a reference point for the im-
plementation of each single component. For this reason a shared and clear un-
derstanding of the meaning of BPMN elements is needed in order to improve
the quality of the designed model.

Unfortunately, such a common understanding cannot be taken for granted.
Even if we deal with BPMN, which being a standard language should guaran-
tee a certain level of rigorousness, the practice gives evidences of various issues.
Looking in the literature, only few choreography models are available. Most of
them are partial specifications, which miss to specify, e.g., messages and condi-
tions. Moreover, when these are included, they are often incorrectly used, due to
misunderstandings resulting by inaccuracies and inconsistencies in the standard.
A typical example of such problems concerns the exclusive and event-based gate-
ways, two elements that despite their tricky semantics are largely used in chore-
ography diagrams. As a reference example, we report in Figure 2 an erroneous
choreography model drawn from the literature [24]. It shows the interactions
between two participants: the SugarPerson, asking for sugar, and SugarGrid,
looking for sugar. The model under consideration contains a mistake on the

Fig. 2. An erroneous choreography model (source [24]).

Semantics of Exclusive and Event-Based Gateways in BPMN Choreographies 5

Fig. 3. Exclusive gateway [23, p. 345].

specification of the first exclusive gateway. In particular, the enforcement of the
“enter?” condition is not correct. In fact, the information about the intention
of the SugarPerson to enter in the sugar grid is sent by the SugarPerson to
the SugarGrid in the “Send intention to enter” task, which is executed after
the execution of the gateway. The exclusive gateway, as explained in the next
section, requires all participants involved in the subsequent tasks to be able to
take the same decision expressed by the gateway condition. But, in this exam-
ple, the decision cannot be properly taken by the SugarGrid participant, since
he does not have yet the information about the SugarPerson’s intention. This
model indeed violates a prescription of the standard [23, p. 345], requesting that
the value used by the gateway in the condition evaluation has to be included in
a message sent before the gateway execution.

Let us now focus more deeply on the description of choreography diagrams
provided by the BPMN standard. We comment on observed contradictions that
can be misleading for designers intending to use it. Here in the following, we
report some excerpt focusing on the use of exclusive and event-based gateways.

Figure 3 is an extract of the standard [23, p. 348] describing the general be-
haviour of the exclusive gateway. The three bullet points stress the importance
to share control information between all participants before to be used in de-
cisions. The text is supported in the standard by two examples representing a
choreography interaction between three participants and the corresponding im-
plementation through collaboration, reported in Figure 4 and 5, respectively.
Few pages later, the standard [23, p. 348] also states that a choreography con-
figuration can be valid only if all the participants have a shared information
upon which the decision is made. Figure 6 shows an excerpt. At this point a
first contradiction in the standard has been detected. It is between the text in
Figure 3 and Figure 6, and the example in Figure 5. The text stresses the need
to share knowledge through messages between senders and receivers, while in
Figure 5 the participant C does not receive any message by participant A and
only the message M1 is exchanged between participants A and B.

Reading more about the description in Figure 7 coming from [23, p. 349] we
observe some constraints on the business process implementing a choreography.
If we check the alignment between the text and the model in Figure 5 we observe
some issues. In particular, the text confirms the usage of the exclusive gateway
in the process of the participant that is the initiator but erroneously state about
the usage of the event-based gateway for the receiver participants (see point 3).
The text in Figure 7 is also misaligned with respect to the general description
of exclusive gateway in Figure 3.

6 Corradini, Morichetta, Re, and Tiezzi

Fig. 4. An example of the ex-
clusive gateway [23, p. 348].

Fig. 5. The corresponding collaboration view of
the choreography in Fig. 4 [23, p. 349].

Fig. 6. Valid choreography configuration [23, p. 348].

Fig. 7. Text Describing Collaboration in Fig. 5 [23, p. 349].

Another confirmation of the inaccuracy of the text in Figure 7 can be ob-
tained by reasoning on the definition of the event-based gateway reported in
Figure 8. It seems that there is no difference in the implementation of the exclu-
sive gateway and event-based gateway when passing from a choreography to a
collaboration model. This is obviously not possible, and the recognised overlap
is a clear contradiction of the standard.

Summing up, in some parts the standard seems to be written with few at-
tention. Moreover, the used examples are not complete and in most of the cases
are inaccurate to substantiate the text. Finally, we believe that a major stum-
bling block is the language in which the standard is defined: natural language is
inadequate when used to define the semantics of choreography elements.

Semantics of Exclusive and Event-Based Gateways in BPMN Choreographies 7

Fig. 8. Event-Based Description [23, p. 351]

4 Discussion on Exclusive and Event-Based Gateways

In this section, we informally clarify the semantics of the choreography diagram
discussing the correct implementation of the exclusive gateway and event-based
gateway through examples mapping choreographies to collaborations.

To make clear the principle at the basis of the choreography design, we first
discuss the data management and realizability. Data in choreography does not
have any control mechanism, so they are not maintained in any central source.
The only way to share information is the exchange of messages. On the other
hand, to be realizable [5] the choreography should respect a general rule where
the initiator of a choreography activity must have been involved as initiator
or receiver in the previous choreography activity. This restriction limits the
combination of participants in the choreography task and in particular when the
tasks sequence includes a gateway in the middle.

Focusing on the admitted combinations of participants, moving from the left-
hand-side of a gateway to the right-hand side, we can have five different possible
configurations: (i) same sender and same receiver; (ii) same sender and different
receivers (iii) different senders and same receiver; (iv) same sender and same
receiver swapped; (v) different senders and different receivers.

Tables 1 shows on the left column of each sub-table the possible choreography
configurations of the exclusive gateway, and on the right column the respective
collaborations implementation. In particular, Table 1(a) depicts the design of
a choreography containing an exclusive gateway in the configuration of “same
senders and different receivers”. The corresponding collaboration should contain
a first sharing of information from the sender S1 to the receivers R1 and R2,
and successively all participants will perform the same choice using the exclusive
gateways with the same condition. Table 1(b) represent the configuration with
different senders and same receiver. In this case, the task before the gateway was
omitted just for the sake of simplicity, but we have always to respect the general
rule defining the continuity between participants involved in consecutive tasks.
In this configuration, both senders will deliver a message towards the receiver,
and it will select the desired message ignoring the others, admitting message loss.
The third configuration in Table 1(c) is with same sender and same receiver. The
messages exchanged before and after the gateway involve the same participants.

8 Corradini, Morichetta, Re, and Tiezzi

Table 1. Exclusive Gateway Implementation

Choreographies Collaborations

a)

b)

c)

d)

e)

Semantics of Exclusive and Event-Based Gateways in BPMN Choreographies 9

C ::= start(id, e) | end(id, e) | andSplit(id, e, E) | andJoin(id, E, e)

| xorSplit(id, e, (e1, exp1), . . . , (ek, expk)) | xorJoin(id, E, e) | task(id, e1, e2, p, p
′,m)

| eventBased(id, e, (e1, p1, p
′
1,m1), . . . , (ek, pk, p

′
k,mk)) | C1|C2

Fig. 9. Syntax of BPMN Choreography Structures.

The sender will communicate to the receiver its will for the choice, and in the
implementation both parties will follow the same path according to the shared
information.

The configuration in Table 1(d) is similar to the previous one except for the
sender and receiver that are swapped on the right-hand side of the gateway.
Again, once the information at the basis of the decision is communicated, the
two participants can continue according to either sending a message or waiting
for another one. The last case in Table 1(e) represents the configuration with
different senders and different receivers. Of course, this can be possible only
respecting the right sequence of messages between the involved participants.
Despite two separated communications, the participants will move according to
the shared information in a coordinated way. Notably, these last two cases are
not always possible, since we should consider the structure of the sequence task.

Table 2 shows on the left column the three choreography configurations that
are admitted for the event-based gateway, and on the right column the respec-
tive collaboration implementations. Differently from the exclusive gateway, here
it is not required the sharing of information before a choice. In Table 2(a) it
is depicted the case with same sender and different receivers. The sender is the
unique participant that takes the decision, and the receivers react consequently.
In the implementation, a timer is used for avoiding the deadlock of the receiver
not considered. Table 2(b) depicts the configuration with different senders and
same receiver. Here the event-based gateway is used in the receiver implemen-
tation, and the logic of senders is simply the delivery of the message. Here we
are in front of a race condition, where the late message is lost. The configura-
tion with same sender and same receiver depicted in Table 2(c) is the standard
communication where the sender takes the decision using an exclusive gateway
and the receiver acts according to the choice taken by the counterpart.

5 Formal Semantics

This section presents our formalisation of BPMN choreographies, which in par-
ticular deals with the peculiarities of the event-based and exclusive gateways.
The aim is to shed light on the semantics of these elements, in a way as much
faithful as possible with the informal semantics provided by the BPMN standard
discussed in the previous section. To enable a formal treatment, we defined a
Backus Normal Form (BNF) syntax providing a textual representation of the
structure of BPMN choreographies, on top of which we have defined the opera-
tional semantics of the BPMN choreography language.

The BNF syntax of the choreography models structure is given in Figure 9.
In the grammar, the non-terminal symbol C represents Choreography Structures,

10 Corradini, Morichetta, Re, and Tiezzi

Table 2. Event-Based Gateway Implementation

Choreographies Collaborations

a)

b)

c)

while the terminal symbols, denoted by the sans serif font, are the considered
elements of a BPMN model, i.e. events, gateways and tasks. Notably, we are not
proposing a new modeling formalism, but we are only using a textual notation
for the BPMN elements. With respect to the graphical notation, the textual one
is more manageable for supporting the formal definition of the semantics.

As a matter of notation, e ∈ E denotes a sequence edge, E ∈ 2E a set of
edges, and m ∈M a message. We also use a set EXP of expressions (ranged over

Semantics of Exclusive and Event-Based Gateways in BPMN Choreographies 11

by exp), whose precise syntax is deliberately not specified; we just assume that
expressions contain values v ∈ V. Such design choice has been influenced by the
fact that the expression language operating on data is left unspecified even by
the BPMN standard. Moreover, id and p denote names uniquely identifying a
model element and a participant, respectively.

The correspondence between the syntax used here and the graphical notation
of BPMN is as follows.

– start(id, e) represents a start event identified by id with outgoing edge e.
– end(id, e) represents an end event identified by id with incoming edge e.
– andSplit(id, e, E) represents an AND split gateway identified by id with in-

coming edge e and outgoing edges E (with |E| > 1).
– andJoin(id, E, e) represents an AND join gateway identified by id with in-

coming edges E (with |E| > 1) and outgoing edge e.
– xorSplit(id, e, (e1, exp1), . . . , (ek, expk)) represents an XOR split gateway iden-

tified by id with incoming edge e and outgoing edges e1, . . . ek (with k > 1)
associated to boolean expressions exp1, . . . , expk, each expression defining if
the corresponding branch can be activated or not.

– xorJoin(id, E, e) represents an XOR join gateway identified by id with incom-
ing edges E (with |E| > 1) and outgoing edge e.

– task(id, e1, e2, p, p
′,m) represents a one-way task identified by id with incom-

ing edge e1, outgoing edge e2, and sending a message m from p1 to p2.
Two-way tasks are rendered in our formal framework as pairs of one-way
tasks, hence they are not explicitly included in the syntax.

– eventBased(id, e, (e1, p1, p
′
1,m1), . . . , (ek, pk, p

′
k,mk)) represents an event-

based gateway identified by id with incoming edge e, and a list (with k > 1)
of tasks to be processed. It is worth noticing that the definition of the task
list is given by quadruples of the form (e, p, p′,m), where e is the outgoing
edge of the task, p and p′ are interacting participants (sender and receiver,
respectively) and m is the exchanged message.

– C1 | C2 represents the composition of elements, which permits to render a
choreography structure in terms of a collection of elements.

To achieve a compositional definition, each sequence edge of the BPMN model
is split in two parts: the part outgoing from the source element and the part
incoming into the target element. The two parts are correlated by means of
unique sequence edge names in the BPMN model. Notably, we only consider
terms of the syntax that are derived from BPMN models.

The operational semantics we propose is given in terms of configurations of
the form 〈C, σ, γ〉, where C is a choreography structure, σ : E→ N is an execution
state function mapping sequence edges to numbers of tokens, and γ : M → V
is a message state function mapping messages to values. The execution state
obtained by updating in the state σ the number of tokens of the edge e to n,
written as σ · {e 7→ n}, is defined as follows: (σ · {e 7→ n})(e′) returns n if e′ = e,
otherwise it returns σ(e′). The message state obtained by updating in the state γ
the value of a message m to a value v, written as γ ·{m 7→ v}, is defined similarly.
The initial states of a choreography, where all sequence edges are unmarked and

12 Corradini, Morichetta, Re, and Tiezzi

all message values are undefined, denoted respectively by σ0 and γ0, are formally
defined as: σ0(e) = 0 ∀e ∈ E, and γ0(m) = undef ∀m ∈M.

The operational semantics is defined by means of a labelled transition sys-
tem (LTS) on choreography configurations, formalising the execution of a chore-
ography in terms of marking evolution and message exchanges. The LTS is a
triple 〈C,A,→〉 where: C is the set of choreography configurations; L, ranged
over by l, is the set of labels (of transitions that choreography configurations
can perform); and →⊆ C × L × C is the transition relation. As usual, we write

〈C, σ, γ〉 l−→ 〈C, σ′, γ′〉 to indicate that (〈C, σ, γ〉, l, 〈C, σ′, γ′〉) ∈→ and say that
the choreography configuration 〈C, σ, γ〉 performs a transition labelled by l and
becomes the configuration 〈C, σ′, γ′〉. Since choreography execution only affects
the current states, and not the choreography structure, for the sake of presenta-
tion, we omit the structure from the target configuration of the transition. Thus,

a transition 〈C, σ, γ〉 l−→ 〈C, σ′, γ′〉 is written as 〈C, σ, γ〉 l−→ 〈σ′, γ′〉. A label l rep-
resents a computational step and is defined by the graphical representation of
the executed BPMN element together with further information: the element id
and, possibly, the set of participants involved in a decision and/or an exchange
of message. Notably, despite the presence of labels, this has to be thought of
as a reduction semantics, because labels are not used for synchronisation (as
instead it usually happens in labelled semantics), but only for keeping track of
the executed elements.

The transition relation over choreography configurations is defined by the
rules in Figure 10. Before commenting on the rules, we introduce the auxiliary
functions they exploit. Specifically, function inc : Se × E → Se (resp. dec :
Se×E→ Se), where Se is the set of execution states, allows updating a state by
incrementing (resp. decrementing) by one the number of tokens marking an edge
in the state. Formally, they are defined as follows: inc(σ, e) = σ · {e 7→ σ(e) + 1}
and dec(σ, e) = σ · {e 7→ σ(e)− 1}. These functions extend in a natural ways to
sets of edges as follows: inc(σ, ∅) = σ and inc(σ, {e} ∪ E)) = inc(inc(σ, e), E);
the cases for dec are similar. The function eval : EXP×Sm → V, where Sm is the
set of message states, evaluates an expression with respect to a given message
state; since the expression language is left unspecified, the definition of eval is
unspecified as well. We also use the function update : Sm×M→ Sm that updates
a message state by assigning a value to a given message; formally, the function
is defined as follows: update(γ,m) = γ · {m 7→ v} for v ∈ V. Finally, function
p : 2E → P, where P is the set of participants, returns all participants involved in
the first tasks encountered along the edges in the set passed as input parameter;
this function can be simply defined on the syntax of the choreography structure
of the model under consideration.

We now briefly comment on the operational rules. Rule Start starts the ex-
ecution of a choreography when it is in its initial state. The effect of the rule is
to increment the number of tokens in the edge outgoing from the start event.
Rule AndJoin decrements the tokens in each incoming edge and increments the
number of tokens of the outgoing edge, when each incoming edge has at least one
token. Rule XorSplit is applied when a token is available in the incoming edge of

Semantics of Exclusive and Event-Based Gateways in BPMN Choreographies 13

(Start)

〈start(id, e), σ0, γ0〉
id−−→ 〈inc(σ0, e), γ0〉

(End)

〈end(id, e), σ, γ〉 id−−→ 〈dec(σ, e), γ〉
σ(e) > 0

(AndSplit)

〈andSplit(id, e, E), σ, γ〉 id−−−→ 〈inc(dec(σ, e), E), γ〉
σ(e) > 0

(AndJoin)

〈andJoin(id, E, e), σ, γ〉 id−−−→ 〈inc(dec(σ,E), e), γ〉
∀e ∈ Ei . σ(e) > 0

(XorSplit)
〈xorSplit(id, e, (e1, exp1), . . . , (ek, expk)), σ, γ〉

id

{
p1, . . . , pn}

−−−−−−−−−−−−−→ 〈inc(dec(σ, e), ei), γ〉

σ(e) > 0
1 ≤ i ≤ k
eval(expi, γ) = true
p({e1, . . . , ek}) =
{p1, . . . , pn}

(XorJoin)
〈xorJoin(id, {e1} ∪ E, e2), σ, γ〉

id−−−→ 〈inc(dec(σ, e1), e2), γ〉

σ(e1) > 0

(Task)
〈task(id, e1, e2, p1, p2,m), σ, γ〉

id

{
}p1 → p2 : m

−−−−−−−−−−−−−−−−−→ 〈inc(dec(σ, e1), e2), γ′〉

σ(ei) > 0
update(γ,m) = γ′

(EventBased1)
〈eventBased(id, e, (e1, p, p1,m1), . . . , (ek, p, pk,mk)), σ, γ〉

id

{
p}p→ pi : mi

−−−−−−−−−−−−−−−→ 〈inc(dec(σ, e), ei), γ′〉

σ(e) > 0
1 ≤ i ≤ k,
update(γ,m) = γ′

(EventBased2)
〈eventBased(id, e, (e1, p1, p,m1), . . . , (ek, pk, p,mk)), σ, γ〉

id

{
}pi → p : mi

−−−−−−−−−−−−−−→ 〈inc(dec(σ, e), ei), γ′〉

σ(e) > 0 , 1 ≤ i ≤ k
∃ j, h . 1 ≤ j, h ≤ k,

pj 6= ph
update(γ,m) = γ′

〈C1, σ, γ〉
l−→ 〈σ′, γ′〉

(Int1)
〈C1|C2, σ, γ〉

l−→ 〈σ′, γ′〉

〈C2, σ, γ〉
l−→ 〈σ′, γ′〉

(Int2)
〈C1|C2, σ, γ〉

l−→ 〈σ′, γ′〉
Fig. 10. Choreography Semantics.

an XOR split gateway; the rule decrements the token in the incoming edge and
increments the tokens in one of the outgoing edges corresponding to a positive
evaluation of the associated expression. The produced label reports the set of

14 Corradini, Morichetta, Re, and Tiezzi

all participants involved in the first tasks reachable from the gateway; indeed, in
this case all such participants, with both sending and receiving roles, internally
take the same decision in order to ensure the global behaviour prescribed by
the choreography (see Table 1). Rule XorJoin is activated every time there is a
token in one of the incoming edges, which is then moved to the outgoing edge.

Rule Task is activated when there is a token in the incoming edge of a
choreography task, and moves the token from the incoming edge to the outgoing
one. The rule produces a label describing the message exchange and indicating
that no decision is taken by the participants involved in the communication.
Moreover, the message state is updated with a new value for the involved message
name; we abstract from the computation of the message value, which is indeed
non-deterministically selected via the update function.

Notably, as prescribed by the BPMN standard [23, p. 315], the communica-
tion model is synchronous; indeed, according to the standard, a choreography
task completes when the receiver participant reads the message. The rules for
the event-based gateway are enabled each time there is a token in the incoming
edge, which is moved to the activated outgoing edge. Moreover, the value of the
exchanged message is updated in the message state. According to the involved
participants we distinguish two cases: rule EventBased1 is used in case the tasks
following the gateway have the same sender (see Table 2(a) and Table 2(c)),
while rule EventBased2 is used in case the tasks have the same receiver and at
least two distinguished senders (see Table 2(b)); notably, the case with the same
sender and the same receiver is dealt with by the former rule.

Rule EventBased1 produces a label recording, besides the message exchange,
the fact that the sender participant has undertaken an internal decision, accord-
ing to which the message to be sent has been selected. Instead, Rule EventBased2
produces a label reporting just the information about the message exchange, as
the decision about the message to be exchanged is not taken by a participant
but it is the result of a race-condition. Finally, rules Int1 and Int2 deal with
interleaving.

The proposed operational semantics has been conceived to clarify the be-
haviour of the exclusive and event-based gateways in BPMN choreographies.
The formalisation of these elements is therefore intentionally articulate, since it
aims at faithfully capturing their behaviour as informally described in the stan-
dard. Although the two gateways represent choice constructs, our operational
rules significantly differ from the conditional and non-deterministic choice oper-
ators typically used in process algebras. Indeed, the semantics of the gateways
depends on the form of interaction that can be carried out by the participants of
the subsequent tasks, while this information does not affect the behaviour of the
process algebraic constructs. Hence, the latter cannot be used to directly model
the choices on BPMN choreographies. On the other hand, they provide a clearer
semantics that facilitates the modelling activity to the choreography designers.

We conclude the section by showing our formalisation at work on the sugar
harvesting example introduced in Section 3.

Semantics of Exclusive and Event-Based Gateways in BPMN Choreographies 15

start(id1, e1)
| task(id2, e1, e

′
1, SugarPerson, SugarGrid, sugarEnquiry)

| task(id′2, e
′
1, e2, SugarGrid, SugarPerson, sugarInfo)

| xorSplit(id3, e2, (e3, expyes), (e4, expno))
| task(id4, e3, e

′
3, SugarPerson, SugarGrid, intentionToEnter)

| task(id′4, e
′
3, e5, SugarGrid, SugarPerson, response)

| xorSplit(id5, e5, (e6, granted(response) == yes), (e7, granted(response) == no))
| task(id6, e6, e

′
6, SugarPerson, SugarGrid, harvestRequest)

| task(id′6, e
′
6, e8, SugarGrid, SugarPerson, amountHarvested)

| xorJoin(id7, {e4, e7, e8}, e9)
| end(id8, e9)

Fig. 11. Textual representation of the sugar harvesting choreography model.

Example 1. The BPMN choreography model in Figure 2 represents a scenario
where a SugarPerson participant interacts with a SugarGrid participant in order
to enter in a sugar grid and harvest the sugar in the grid. The model is rendered
in our textual notation as shown in Figure 11 (we have specified unique element
identifiers and edge names, which are omitted in the graphical representation).

In the graphical representation of the BPMN model, the decision of the first
XOR gateway is abstracted by means of the enter? condition. According to
the BPMN standard, XOR gateway decisions have to be based on the message
data. In our case, focussing on the previously exchanged messages, we have to
consider sugarEnquiry and/or sugarInfo. Let us consider only the latter message
(the following reasoning does not change if we consider the former message or
both of them). In our textual notation we would instantiate the expressions
specified in the first XOR gateway (i.e., the element with identifier id3) as follows:

expyes = (enter(sugarInfo) == yes) expno = (enter(sugarInfo) == no)

where function enter() abstracts the decision to enter or not taken by the Sug-
arPerson. According to our semantics, from the initial choreography configura-
tion 〈C, σ0, γ0〉, where C is the choreography structure in Figure 11, by applying
rule Start and then twice rule Task (and by properly applying, each time, the in-
terleaving rules), we can reach the configuration 〈C, σ, γ〉, with σ = σ0 ·{e2 7→ 1}
and γ = γ0 · {sugarEnquiry 7→ v1} · {sugarinfo 7→ v2}. Now, according to rule
XorSplit , depending on the evaluation of the guard expressions, we can observe
the following transitions:

〈C, σ, γ〉
id

{
SugarPerson,SugarGrid}

3−−−−−−−−−−−−−−−−−−−−−−−→ 〈σ′, γ〉

〈C, σ, γ〉
id

{
SugarPerson,SugarGrid}

3−−−−−−−−−−−−−−−−−−−−−−−→ 〈σ′′, γ〉

with σ′ = σ0 · {e3 7→ 1} and σ′′ = σ0 · {e4 7→ 1}. Both transitions produce the
same label, indicating that the entering decision is taken by both the SugarPer-
son and the SugarGrid. However, in this specific scenario, while the sugarInfo
message data can allow the SugarPerson to take the decision, since this partic-
ipant represents the person that actually decides whether to enter or not in the

16 Corradini, Morichetta, Re, and Tiezzi

grid, this data cannot be enough for the SugarGrid to decide whether the Sug-
arPerson intends to enter or not. In fact, the intention to enter will be reported
in the message intentionToEnter, which is sent by SugarPerson to the Sugar-
Grid after the execution of the XOR gateway. Anyway, by using this message as
argument of the expressions expyes and expno, we will have that the configuration
〈C, σ, γ〉 will be deadlocked, because the evaluation of the two expressions will
be undefined as γ(intentionToEnter) = undef .

Our semantics has hence spotted a semantic inconsistency in the considered
BPMN choreography model. Indeed, in this specific example, the designer has
accidentally used the wrong element for the modelling the choice about entering
in the sugar grid. The decision to use the event-based vs. the exclusive gateway
in fact is strictly correlated to the availability of information for all involved
participants, that in this case is absent for the SugarGrid. A possible fix to make
the model compliant with the standard is to replace the XOR gateway with an
event-based one. Since the SugarGrid has no knowledge about the intention of
the SugarPerson, at this stage of the protocol it should be able to accept any
decision coming from the counterpart. The suggested replacement falls in the
specific case of Table 2(c), and is formally represented by the operational rule
EventBased1 , which indeed produces a label indicating that the decision is taken
only by the SugarPerson. ut

6 Related Works

In this section, we first discuss observed issues of the BPMN language, then we
discuss other choreography formalizations available in the literature.

BPMN 2.0 Observed Ambiguities. Due to its complexity, BPMN 2.0 stan-
dard has been studied to make more explicit the meaning of the elements and
their semantics [8, 1, 9]. The investigation was also done through an analytic
work highlighting the problems of the standard according to supported work-
flow patterns [7]. In particular, the author states that the standard is ambigu-
ous due to the numerous underspecified descriptions of semantics for relevant
concepts (e.g., data conditions, and data dependencies between processes). The
highlighted problems are justified by the gap between conceptual and executable
BPMN models and the fact that on average the designers use less than the 20%
of the available elements. The same problem was discussed some years before in
[22]. Other relevant studies investigate the standard and its support for systems
implementation. In [16, 14, 17] the authors suggested a series of implementation
clarifications useful to designers for a more accurate tool selection.

Choreography Formalisations. Formalisations of choreography syntax and
semantics are proposed in different works [12, 18, 25, 15]. The authors of [12]
present an efficient algorithm for extracting concrete choreographic programs
with asynchronous messaging. They use the core choreography language, where
the semantics is given in terms of labelled reductions. In [18] the authors pro-
pose a framework able to synthesize local code for processes starting from global
choreographies containing the component ports, the model composition and the

Semantics of Exclusive and Event-Based Gateways in BPMN Choreographies 17

coordination elements. In [25] the authors propose two abstract semantics of
choreographies formalised as pomsets of communication events and as hyper-
graphs of events. In [15] the authors demonstrate that it is possible to perform
reversible computation monitoring choreography models. Other formal seman-
tics rely on types [19], programs [21], graphs [20, 6]. It is worth noticing that
many proposed works provide the semantics by translation in other formalisms,
while in our work we have preferred to develop a direct semantics. We believe
indeed that extending available translations, like those into Petri Nets, may re-
sult in the generation of convoluted and large models, which may undermine the
understanding of the formal meaning of the BPMN execution semantics, and
their verification. In [10] we propose a deeper study based on direct formaliza-
tions for choreographies and collaborations, and considering their conformance
via behavioural equivalences.

7 Concluding remarks

In this paper, we discuss in detail issues raised walking through the BPMN stan-
dard, with a specific focus on the exclusive and event-based gateways, which have
a tricky semantics in case of choreography diagrams. These issues arose from the
use in the standard of natural language for providing informal descriptions of
the elements, and are emphasised by the lack of a clear semantics for chore-
ography models. We discuss good practices in the use of the notation, and we
provide a direct formalisation of the choreography elements in order to remove
any ambiguity. As a future work, we intend to exploit the proposed formalisation
to develop a modelling tool to support the designers during the specification of
choreography models.

References

1. van der Aalst, W.M.: Business process management: a comprehensive survey. ISRN
Software Engineering 2678, 1–12 (2013)

2. et. al, J.M.: Blockchains for business process management - challenges and oppor-
tunities. ACM Trans. Management Inf. Syst. 9(1), 4:1–4:16 (2018)

3. et. al, R.B.: Towards living inter-organizational processes. In: Business Informatics.
pp. 363–366. IEEE Computer Society (2013)

4. Anna Suchenia et al.: Selected Approaches Towards Taxonomy of Business Process
Anomalies, pp. 65–85. Springer (2017)

5. Basu, S., Bultan, T., Ouederni, M.: Deciding choreography realizability. In: POPL.
pp. 191–202. ACM (2012)

6. Bertolino, A., Marchetti, E., Morichetta, A.: Adequate monitoring of service com-
positions. In: 9th Joint Meeting of the European Software Engineering Conference
and the ACM SIGSOFT Symposium on the Foundations of Software Engineering.
pp. 59–69 (2013)

7. Börger, E.: Approaches to modeling business processes. Soft. & Syst. Modeling
11(3), 305–318 (2012)

18 Corradini, Morichetta, Re, and Tiezzi

8. Chinosi, M., Trombetta, A.: BPMN: An introduction to the standard. Computer
Standards & Interfaces 34(1), 124–134 (2012)

9. Corradini, F., Fornari, F., Polini, A., Re, B., Tiezzi, F.: A formal approach to
modeling and verification of business process collaborations. Sci. Comput. Pro-
gram. 166, 35–70 (2018)

10. Corradini, F., Morichetta, A., Polini, A., Re, B., Tiezzi, F.: Collaboration vs. chore-
ography conformance in BPMN 2.0: From theory to practice. In: EDOC. pp. 95–
104. IEEE (2018)

11. Corradini, F., Muzi, C., Re, B., Rossi, L., Tiezzi, F.: Global vs. Local Semantics of
BPMN 2.0 OR-Join. In: SOFSEM. LNCS, vol. 10706, pp. 321–336. Springer (2018)

12. Cruz-Filipe, L., Larsen, K.S., Montesi, F.: The Paths to Choreography Extraction.
In: FOSSACS. LNCS, vol. 10203, pp. 424–440. Springer (2017)

13. Dumas, M., Hull, R., Mendling, J., Weber, I.: Blockchain technology for collabo-
rative information systems. Dagstuhl Reports 8(8), 67–129 (2018)

14. Evéquoz, F., Sterren, C.: Waiting for the miracle: Comparative analysis of twelve
business process management systems regarding the support of BPMN 2.0 palette
and export. Tech. rep., HES-SO (2011)

15. Francalanza, A., Mezzina, C.A., Tuosto, E.: Reversible Choreographies via Moni-
toring in Erlang. In: DAIS. LNCS, vol. 10853, pp. 75–92. Springer (2018)

16. Geiger, M., Wirtz, G.: BPMN 2.0 serialization-standard compliance issues and
evaluation of modeling tools. Enterprise Modelling and Information Systems Ar-
chitectures (2013)

17. Gutschier, C., Hoch, R., Kaindl, H., Popp, R.: A pitfall with BPMN execution. In:
WEB. pp. 7–13 (2014)

18. Hallal, R., Jaber, M., Abdallah, R.: From Global Choreography to Efficient Dis-
tributed Implementation. In: HPCS. pp. 756–763. IEEE (2018)

19. Honda, K., Yoshida, N., Carbone, M.: Multiparty asynchronous session types. J.
ACM 63(1), 9:1–9:67 (2016)

20. Lange, J., Tuosto, E., Yoshida, N.: From Communicating Machines to Graphical
Choreographies. In: POPL. pp. 221–232. ACM (2015)

21. Mila Dalla Preda and Maurizio Gabbrielli and Saverio Giallorenzo and Ivan Lanese
and Jacopo Mauro: Dynamic Choreographies - Safe Runtime Updates of Dis-
tributed Applications. In: COORDINATION. LNCS, vol. 9037, pp. 67–82. Springer
(2015)

22. zur Muehlen, M., Recker, J.: How Much Language Is Enough? Theoretical and
Practical Use of the Business Process Modeling Notation. In: Seminal Contri-
butions to Information Systems Engineering, 25 Years of CAiSE, pp. 429–443.
Springer (2013)

23. OMG: Business Process Model and Notation (BPMN V 2.0) (2011)
24. Onggo, B.S.: Agent-based simulation model representation using BPMN. In: For-

mal languages for computer simulation, pp. 378–400. IGI Global (2014)
25. Tuosto, E., Guanciale, R.: Semantics of global view of choreographies. JLAMP 95,

17–40 (2018)

