

Introduction to Enterprise Architecture and Enterprise Modelling

Barbara Re

Are we speaking about buildings?

In the literature and community of practices, there are various **perspectives** in regards to the meaning of the term **enterprise architecture**

From a terminological point of view

- The term enterprise can be defined as describing an organizational unit, organization, or collection of organizations that share a set of common goals and collaborate to provide specific products or services to customers
 - The term enterprise covers various types of organizations, regardless of their size, ownership model, operational model, or geographical distribution
 - It includes those organizations' complete socio-technical systems, including people, information, processes, and technologies
- The term architecture refers to fundamental concepts or properties of a system in its environment, embodied in its elements, relationships, and in the principles of its design and evolution

Enterprise Architecture Definitions

- The MIT Center for Information Systems Research defined enterprise architecture as the specific aspects of a business that are under examination:
 - Enterprise architecture is the organizing logic for business processes and IT infrastructure reflecting the integration and standardization requirements of the company's operating model for delivering goods and services to customers
- The Enterprise Architecture Body of Knowledge defines enterprise architecture as a practice, which analyzes areas of common activity within or between organizations, where information and other resources are exchanged to guide future states from an integrated viewpoint of strategy, business, and technology
- IT analysis firm Gartner defines the term as a discipline where an enterprise is led through change
 - Enterprise architecture (EA) is a discipline for proactively and holistically leading enterprise responses to disruptive forces by identifying and analyzing the execution of change toward desired business vision and outcomes
 - Enterprise architecture is used to steer decision making toward the evolution of the future state architecture

ISO Definition

"Architecture" names that which is fundamental about a **system**; the set of essential **properties** of a system which determine its form, **function**, **value**, **cost**, and **risk**

That which is fundamental to a system takes several forms

- its **elements**: the constituents that make up the system
- the **relationships**: both internal and external to the system
- the principles of its design and evolution

ISO/IEC/IEEE 42010 - http://www.iso-architecture.org/ieee-1471/cm

Enterprise Architecture: Overall View

WHY ENTERPRISE ARCHITECTURE ?

UNICAM Università di Camerino 1336

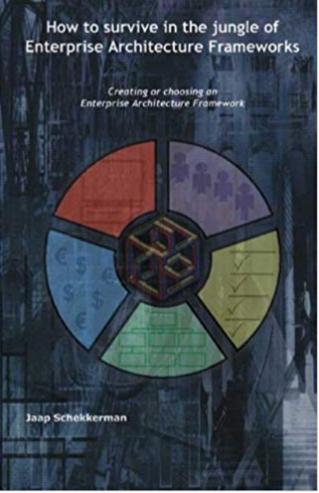
Architecture and Architecture Description

- An architecture is a conception of a system i.e., it is in the human mind. An architecture may exist without ever being written down
- An architecture description (AD) is an artifact that expresses an Architecture to share with others
- An Architecture Description consists of one or several Architecture Models
- A Model is a reproduction of a relevant part of reality which contains the essential aspects to be investigated.

Enterprise Architecture (Description)

- An "Architecture" (for anything) would be the total set of descriptive representations (models) relevant for describing a complex object such that it can be created and that constitute a baseline for changing the object after it has been instantiated
- Therefore "Enterprise Architecture" would be the total set of models relevant for describing an Enterprise, that is, the descriptive representations required
 - to **create** a (coherent, optimal) enterprise
 - to **serve as a baseline for changing** the Enterprise once it is created

Architecture Framework



- An Architecture Framework establishes a common practice for creating, interpreting, analyzing and using architecture descriptions
- It is a logical structure for <u>classifying</u> and <u>organizing</u> the descriptive representations of a system

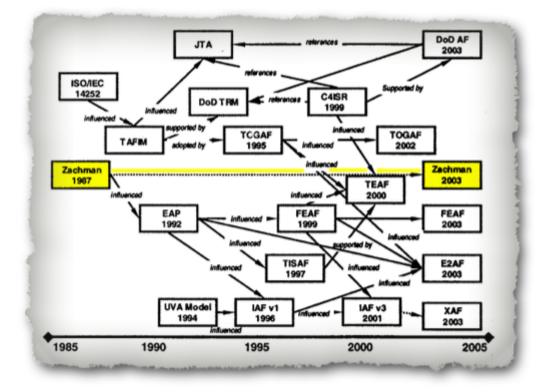
The Jungle of Enterprise Architecture Framework

A wide list of frameworks

Consortia-developed frameworks

- Generalised Enterprise Reference Architecture and Methodology
- IDEAS Group a four-nation effort to develop a common ontology for architecture interoperability
- ISO 19439 Framework for enterprise modelling
- TOGAF The Open Group Architecture Framework a widely used framework including an architectural Development Method and standards for describing various types of architecture

Defense industry frameworks

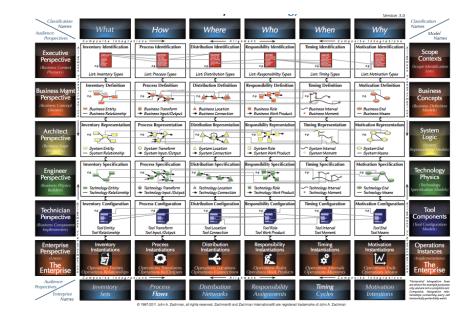

- AGATE the France DGA Architecture Framework
- DoDAF the US Department of Defense Architecture Framework
- MODAF the UK Ministry of Defence Architecture Framework
- NAF the NATO Architecture Framework

Government frameworks

- European Space Agency Architectural Framework (ESAAF) a framework for European space-based Systems of Systems
- Government Enterprise Architecture (GEA) a common framework legislated for use by departments of the Queensland Government
- Treasury Enterprise Architecture Framework (TEAF) a framework for treasury, published by the US Department of the Treasury in July 2000

Open-source framework

- MEGAF is an infrastructure for realizing architecture frameworks that conform to the definition of architecture framework provided in ISO/IEC/IEEE 42010
- Praxeme, an open enterprise methodology, contains an enterprise architecture framework called the Enterprise System Topology
- TRAK a general systems-oriented framework based on MODAF 1.2 and released under GPL/GFDL
- SABSA is an open framework and methodology for Enterprise Security Architecture and Service Management, that is risk based and focuses on integrating security into business and IT management


Enterprise Architecture Frameworks

 We can distinguish two main types of structures for Enterprise Architecture Frameworks

- Matrix of aspects and perspectives
 - e.g. -- Zachmann Enterprise Architecture Framework
- Layer architecture with business, applications and technology
 - e.g. -- ArchiMate A modeling language for EA

The Zachman Framework

John Zachman

Zachman Framework

- Regarded the origin of enterprise architecture frameworks (originally called "Framework for Information Systems Architecture")
- First version published in 1987 by John Zachman
- It is still further developed by Zachman International (http://www.zachman.com)
- Often referenced as a standard approach for expressing the basic elements of enterprise architecture

Zachman, J.A., 1987. A framework for information systems architecture. IBM Systems Journal, 26(3).

Abstractions

						Version 3.0	
Classification Names Audience Perspectives	What	How	Where	Who	When	Why	Classification Names Model Names
	ory Identification	Process Identification	Distribution Identification	Responsibility Identification	Timing Identification	Motivation Identification	A
Executive Perspective (Business Context Planners)	a Inventory Types	eq List: Process Types	List: Distribution Types	e.e.	e.e	e.#	Scope Contexts (Scope Identification Lists)
	4			3			
Business Mgmt Perspective	ntory Definition	Process Definition	Distribution Definition	Responsibility Definition	Timing Definition	Motivation Definition	Business Concepts
	siness Entity siness Relationship	 Business Transform Business Input/Output 	▲ Business Location → Business Connection	 Business Role Business Work Product 	Business Interval Business Moment	 Business End Business Means 	(Business Definition Models)
Invento	G ory Representation	Process Representation	Distribution Representation	Responsibility Representation	Timing Representation	S Motivation Representation	
Architect V Perspective		45 20 4 9 − 4			" The	"\$	System Logic
	stem Entity stem Relationship T	 System Transform System Input /Output 	A System Location → System Connection	System Role → System Work Product ₹	System Interval System Moment	 Gystem End Gystem Means 	Representation Models)
Invent	ory Specification	Process Specification	Distribution Specification	Responsibility Specification	Timing Specification	Motivation Specification	
Engineer Perspective		">>	****	**	" <u>F</u>		Technology Physics
	hnology Entity hnology Relationship	 Technology Transform Technology Input /Output 	▲ Technology Location → Technology Connection	■ Technology Role → Technology Work Product	Technology Interval Technology Moment	Technology End — Technology Means	(Technology Specification Models)
	ory Configuration	Process Configuration	Distribution Configuration	Responsibility Configuration	Timing Configuration	Motivation Configuration	1
Technician Perspective (Business Component		**	" •	4			Tool Components (Tool Configuration
Implementers)	Tool Entity ol Relationship	Tool Transform Tool Input /Output	Tool Location Tool Connection	Tool Role Tool Work Product	Tool Interval Tool Moment	Tool End Tool Means	Models)
	Inventory stantiations	Process Instantiations	Distribution Instantiations	Responsibility Instantiations	Timing Instantiations	Motivation Instantiations	Operations Instances
The Enterprise	vrations Entities ions Relationships	Operations Transforms Operations In/Outputs	Operations Locations Operations Connections	Operations Roles Operations Work Products	Operations Intervals Operations Moments	Operations Ends Operations Means	(Implementations) The Enterprise
Audience	nventory Sets	Process Flows	Distribution Networks	Responsibility Assignments	Timing Cycles	Motivation Intentions	Horizontal integration lines are shown for example purposes only and are not a complete set. Composite, integrative rela- tionships connecting every cell
Names		© 1987-2011 John A. Zachman, al	I richts reserved. Zachman® and Za	chman International® are registered t	rademarks of John A. Zachman		horizontally potentially exist.

© 1987-2011 John A. Zachman, all rights reserved. Zachman® and Zachman International® are registered trademarks of John A. Zachman

Perspectives

- Each row is different in nature, in content, in semantics from the others representing different perspectives
- Representations do not correspond to different levels of details level of detail is an independent variable, varying within one representation

Abstractions

- There exist different types of descriptions oriented to different aspects
- Zachman associates each aspect with a question word
 - WHAT inventory models
 - HOW functional/process models
 - WHERE location/distribution models
 - WHO organisation models
 - WHEN timing models
 - WHY motivation models

Framework Rules

Rule 1: The columns have no order

Order implies priorities and creates a bias toward one aspect at the expense of others. All columns are equally important because all are abstractions of the same enterprise.

Rule 2: Each column has a simple, basic model

Each column represents an abstraction from the real world for convenience of description. These models include: Data (what), Function (how), Network (where), People (who), Time (when), and Motivation (why)

Rule 3: The basic model of each column must be unique

The individual models may be related to one another because they are all abstractions of the same real-world enterprise, but each model represents a separate and unique concept.

Rule 4: Each row represents a distinct perspective

This rule is most easily demonstrated by the Business Model, System Model, and Technology Model rows, which represent the owner's, architect's, and builder's perspectives. Each perspective is different because it deals with a different set of constraints. For example, the owner deals with usability constraints, both aesthetic and functional, and the architect deals with design constraints, the laws of physics or nature, and the builder deals with construction constraints, the state of the art in methods and technologies.

Rule 5: Each cell is unique

Since each column has a unique basic model that makes each column unique and each row has a different perspective, each cell in the framework is unique.

Rule 6: Combining the cells in one row forms a complete model.

The sum of all cells in a given row is the most complete depiction of reality from the perspective of that row. As new cells in a given row are defined each new cell description must be consistent with the perspective of that row. Each cell in a given row can be defined and is independent of any other cells in the row, yet each cell is but one abstraction of the same perspective of reality. Therefore, each cell is related to every other cell in the same row

Motivation/Why

Business goals, objectives and performance measures related to each function

Function/How

High-level business functions

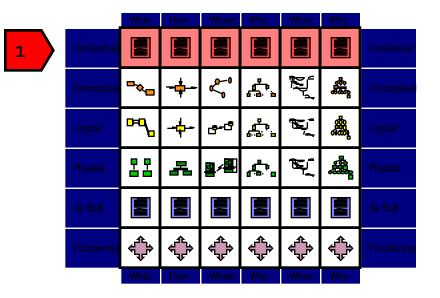
Data/What

High-level data classes related to each function

People/Who

Stakeholders related to each function

Network/Where


VA locations related to each function

Time/When

Cycles and events related to each function

Perspective: scope

Role: planner

Motivation/Why

Policies, procedures and standards for each process

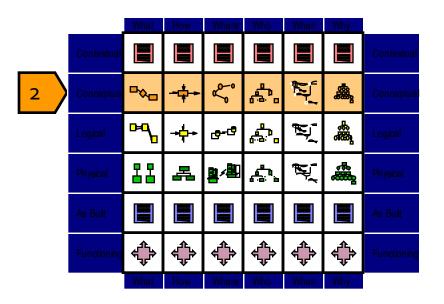
Function/How

Business processes

- Data/What Business data
- People/Who

VA roles and responsibilities in each process

Network/Where


VA locations related to each process

Time/When

Events for each process and sequencing of integration and process improvements

Perspective: business model

Role: owner

Motivation/Why

VA policies, standards and procedures associated with a business rule model

Function/How

Logical representation of information systems and their relationships

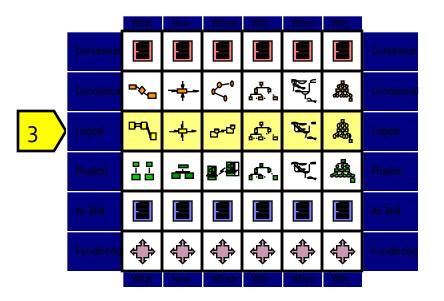
Data/What

Logical data models of data and data relationships underlying VA information

People/Who

Logical representation of access privileges constrained by roles and responsibilities

Network/Where


Logical representation of the distributed system architecture for VA locations

Time/When

Logical events and their triggered responses constrained by business events and their responses

Perspective: system model

Role: designer

Motivation/Why

VA business rules constrained by information systems standards

Function/How

Specifications of applications that operate on particular technology platforms

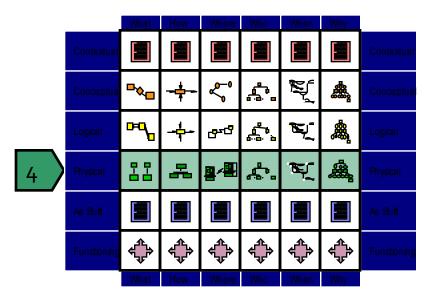
Data/What

Database management system (DBMS) type requirements constrained by logical data models

People/Who

Specification of access privileges to specific platforms and technologies

Network/Where


Specification of network devices and their relationships within physical boundaries

Time/When

Specification of triggers to respond to system events on specific platforms and technologies

Perspective: Technology

Role: builder

Motivation/Why VA business rules constrained by specific technology standards

Function/How

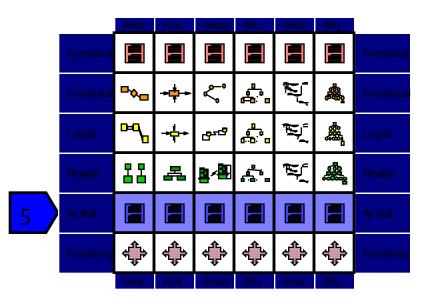
Programs coded to operate on specific technology platforms

Data/What

Data definitions constrained by physical data models

People/Who

Access privileges coded to control access to specific platforms and technologies


Network/Where

Network devices configured to conform to node specifications

Time/When

Timing definitions coded to sequence activities on specific platforms and technologies

- Perspective: Detailed Representation
- Role: sub-contractor

Motivation/Why Operating characteristics of specific technologies constrained by standards

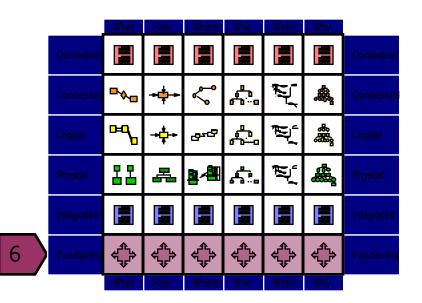
Function/How

Functioning computer instructions

Data/What

Data values stored in actual databases

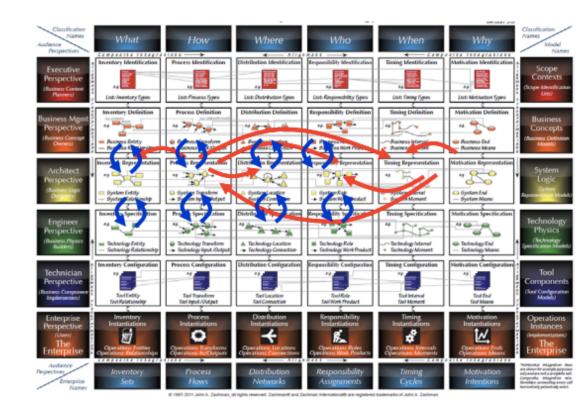
People/Who VA personnel and key stakeholders working within their roles and responsibilities


Network/Where

Sending and receiving messages

Time/When

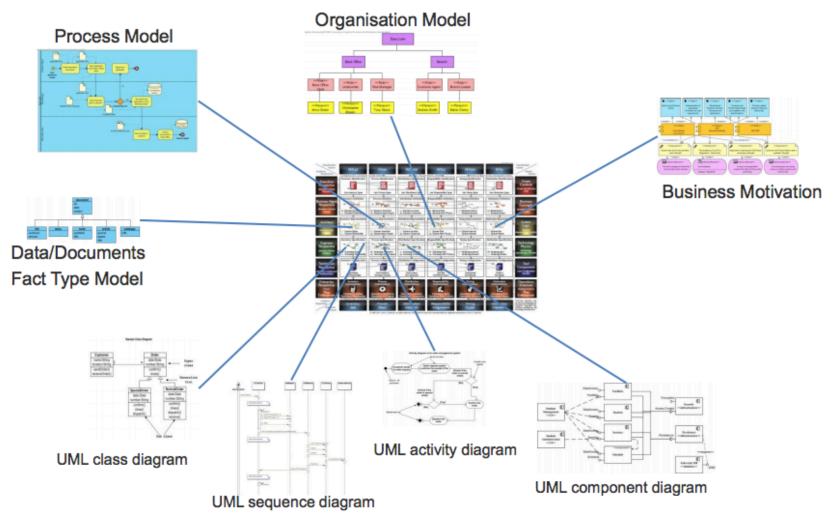
Timing definitions operating to sequence activities


- Perspective: Functioning Enterprise
- Role: user view

UNICAM Università di Camerino 1336

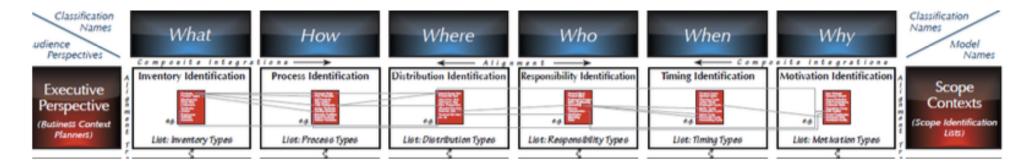
Relations between Models

- There are relations between (elements of) the models
- Horizontal Relations: In same perspective, e.g.
 - Data used in a process
 - Application implementing a process activitiy
- Vertical relations: Between different perspectives
 - Implementation of an application
 - Database model for an entity relationship model



Models and the Zachman Framework

Examples of Models Kinds



rsità di Came 1336

Exercise - Executive Perspective of Alitalia Enterprise Architecture

For the Alitalia Airlines, what information can you find to describe the enterprise architecture according to the Zachman Framework from the executive perspective (scope contexts).

List of flies Booking - Airport Director To serve the 6 years --Hour of flyies Pilot **Pilots** -Fiumicino customer _ List of destination Selection/Control **Optimize the** Crew -Disability services -**Assistance Staff** Safe time/money Director **Optimize the** Partnership **Budget constrains** Website The financial ticket prize to sell 4 months 4 -management with Prize of tickets Agencies department more hotels Hot destinations

The financial

department offices

-

Booking

-

•

•

•

•

•

•

•

•

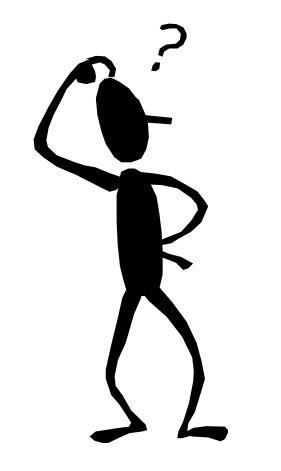
List of flyers

Lists of hotels

S

UNICAM Università di Camerino 1336

List of airplanes
 Types of airplanes
 Airplane
 List of companies
 Maintenance
 Garage
 Garage
 Maintainence
 Division
 List of staff
 Booking seats
 Malpensa
 Maintainace Crew


Visual Paradigm

UNICAM Università di Camerino 1336

https://ap.visual-paradigm.com/universita-di-camerino

Questions?