Information Systems XXX (XXXX) XXX

Contents lists available at ScienceDirect
Information
Syshms:
Information Systems - S
journal homepage: www.elsevier.com/locate/is s

Formalising and animating multiple instances in BPMN collaborations

Flavio Corradini, Chiara Muzi, Barbara Re *, Lorenzo Rossi, Francesco Tiezzi

School of Science and Technology, University of Camerino, Camerino, Italy

ARTICLE INFO ABSTRACT

Article history:

Received 4 February 2019

Received in revised form 27 June 2019
Accepted 21 October 2019

Available online xxxx

Recommended by Gottfried Vossen

The increasing adoption of modelling methods contributes to a better understanding of the flow of
processes, from the internal behaviour of a single organisation to a wider perspective where several
organisations exchange messages. In this regard, BPMN collaborations provide a suitable modelling
abstraction. Even if this is a widely accepted notation, only a limited effort has been expended in
formalising its semantics, especially for what it concerns the interplay among control features, data
handling and exchange of messages in scenarios requiring multiple instances of interacting partici-
pants. In this paper, we face the problem of providing a formal semantics for BPMN collaborations
BPMN 2.0 including elements dealing with multiple instances, i.e., multi-instance pools and sequential/parallel
Multiple instances multi-instance tasks. For an accurate account of these features, it is necessary to consider the data
Data) perspective of collaboration models, thus supporting data objects, data collections and data stores,
Formal semantics and different execution modalities of tasks concerning atomicity and concurrency. Beyond defining
Animation a novel formalisation, we also provide a BPMN collaboration animator tool, named MIDA, faithfully
implementing the formal semantics. MIDA can also support designers in debugging multi-instance

Keywords:

collaboration models.

© 2019 Elsevier Ltd. All rights reserved.

1. Introduction

Nowadays, modelling is recognised as an important practice
in supporting the continuous improvement of collaborative in-
formation systems. This demands for a clear understanding of
interactions and data exchanges among participants. To ensure
proper carrying out of such interactions, the participants should
be provided with enough information about the messages they
must or may send in a given context. This is particularly im-
portant when multiple instances of interacting participants are
involved. In this regard, BPMN [1] collaboration diagrams result to
be an effective way to reflect how multiple participants cooperate
to reach a shared goal.

Even if widely accepted, a major drawback of BPMN is related
to the complexity of the semi-formal definition of its meta-model
and the possible misunderstanding of its execution semantics
defined by means of natural text description, sometimes contain-
ing misleading information [2]. This becomes a more prominent
issue as we consider BPMN supporting tools, such as animators,
simulators and enactment tools, whose implementation of the ex-
ecution semantics may not be compliant with the standard and be
different from each other, thus undermining models portability
and tools effectiveness.

* Corresponding author.
E-mail addresses: flavio.corradini@unicam.it (F. Corradini),
chiara.muzi@unicam.it (C. Muzi), barbara.re@unicam.it (B. Re),
lorenzo.rossi@unicam.it (L. Rossi), francesco.tiezzi@unicam.it (F. Tiezzi).

https://doi.org/10.1016/j.is.2019.101459
0306-4379/© 2019 Elsevier Ltd. All rights reserved.

To overcome these issues, several formalisations have been
proposed, mainly focussing on the control flow perspective (e.g.,
[3-10]). Less attention has been paid to provide a formal seman-
tics capturing the interplay between control features, message
exchanges, and data. These perspectives are strongly related,
especially when multi-instance participants have to interact. In
fact, to achieve successful collaboration interactions, it is required
to deliver the messages arriving at the receiver side to the appro-
priate instances. As messages are used to exchange data between
participants, the BPMN standard fosters the use of the content of
the messages themselves to correlate them with the correspond-
ing instances. Thus, the data perspective plays a crucial role when
considering multi-instance collaborations. Despite this, no formal
semantics that considers all together these key aspects of BPMN
collaboration models has been yet proposed in the literature.

In this work, we aim at filling this gap by answering the
following research questions:

RQ1: What is the precise semantics of multi-instance BPMN col-
laborations?

RQ2: Can supporting tools assist designers to spot erroneous
behaviours related to multiple instantiation and data han-
dling in BPMN collaborations?

To answer RQ1, we provide an operational semantics of
BPMN collaboration models including multi-instance ele-
ments, while taking into account the data perspective. In par-
ticular, besides multi-instance pools, we support multi-instance
tasks with different execution modalities, resulting from the

Please cite this article as: F. Corradini, C. Muzi, B. Re et al., Formalising and animating multiple instances in BPMN collaborations, Information Systems (2019) 101459,

https://doi.org/10.1016/j.i5.2019.101459.

https://doi.org/10.1016/j.is.2019.101459
http://www.elsevier.com/locate/is
http://www.elsevier.com/locate/is
mailto:flavio.corradini@unicam.it
mailto:chiara.muzi@unicam.it
mailto:barbara.re@unicam.it
mailto:lorenzo.rossi@unicam.it
mailto:francesco.tiezzi@unicam.it
https://doi.org/10.1016/j.is.2019.101459

2 F. Corradini, C. Muzi, B. Re et al. / Information Systems xxx (XXxX) Xxx

combination of parameters concerning atomicity, concurrency
and sequentialisation/parallelisation of task instances. Moreover,
we include all kinds of data elements provided by BPMN: data
objects and data collections, which are local to process instances,
and data stores, persistently storing data shared among different
instances. Besides being useful per se, as it provides a precise
understanding of the ambiguous and loose points of the standard,
a main benefit of this formalisation is that it paves the way for
the development of tools supporting model analysis.

To answer RQ2, we go beyond the mere formalisation, by
developing an animator tool that faithfully implements the
proposed formal semantics and visualises the execution of
multi-instance collaborations. It is indeed well recognised that
process animators play an important role in enhancing the under-
standing of business processes behaviour [11] and that, to this
aim, the faithful correspondence with the semantics is essen-
tial [12], although it is not always supported [13]. Our tool, named
MIDA, supports model designers in achieving a priori knowledge
of collaborations behaviour, in terms of executed activities, ex-
changed messages, and evolution of data values for each active
instance. This allows designers to debug their collaboration mod-
els. In this way, they can detect, and hence prevent, undesired
executions, where e.g., a control flow is blocked or an erroneous
interaction arises. Designers can deduce the cause beyond them
by checking the evolution of tokens distribution and of involved
data. MIDA animation features result helpful both in educational
contexts, for explaining the behaviour of BPMN elements, and in
practical modelling activities.

This work is based on the paper “Animating Multiple Instances
in BPMN Collaborations: From Formal Semantics to Tool Sup-
port” [14], published in the proceedings of the 16th International
Conference on Business Process Management. Besides describing
our approach in greater detail, this article extends the scope of
the original conference paper as following reported.

1. We have enriched the proposed formalisation to include:
sequential and parallel multi-instance tasks; different exe-
cution modalities for tasks; and data object collections and
data stores. We have hence extended, and also streamlined,
the formal definitions of our syntax and semantics.

2. We have extended the MIDA tool to support the novel
elements introduced in the formalisation, and improved its
usability.

3. We have considered a new running example, incrementally
enriched to better illustrate the effectiveness and potential-
ities of our formalisation and tool.

The rest of the paper is organised as follows. Section 2 provides
the motivations underlying the work, and presents the running
example. Section 3 introduces the formal framework at the basis
of our approach. Section 4 shows our formalisation at work on
both typical and tricky multi-instance interaction scenarios. Sec-
tion 5 illustrates how the formal concepts have been practically
realised in the MIDA 2.0 tool. Section 6 compares our work with
the related ones. Finally, Section 7 closes the paper with lessons
learned and opportunities for future work.

2. The interplay between multiple instances, messages and
data objects in BPMN collaborations

To deal with multiple instances in BPMN collaboration models,
it is necessary to take into account the data flow. Indeed, the
dynamic creation of process instances can be triggered by the
arrival of messages, which contain data. Within a process instance,
data can be accessed from data objects, data collections and data
stores (here, and in the following, we use the term data elements
to refer to all of them together), and drives the instance exe-
cution. Values of data elements can be used to fill the content

of outgoing messages and, vice versa, the content of incoming
messages can be stored in data elements. We clarify below the in-
terplay between such concepts. To this aim, we introduce a BPMN
collaboration model, used as a running example throughout the
paper, concerning the preparation of a cake.

The example in Fig. 1 illustrates the collaboration between
a Pastry Chef and his Assistants in the preparation of a three-
layer cake with decorations, as requested by a Customer. The
example is used throughout the paper to illustrate in detail the
characteristics of the proposed approach.

The collaboration model combines the activities of the in-
volved participants as following. The Customer provides details
about the desired cake and checks the final result. The Pastry Chef
coordinates the activities of the Assistants, combines the layers
to assemble the cake, and delivers it to the Customer. Finally,
the Assistant is the one in charge to prepare the layers of the
cake. Since more than one Assistant is involved, each of them
is modelled as a process instance of a multi-instance pool (in
our example we have three Assistants, one for each layer of the
cake). The collaboration is started by the Customer, who sends to
the Pastry Chef a cake request including the information about
the cake layers. This information, specified as a data input in
the Customer process, concerns a description of the three layers
of the cake, i.e., top, middle and bottom, and for each layer
specifies the colour of the icing, i.e., brown, blue and pink. The
request, initially stored in the Layers Info data object, is checked
and then rearranged by the Pastry Chef in the Layers Plan data
collection. Then, the Pastry Chef activates the Assistants by as-
signing a layer (i.e., an item of the Layers Plan collection) to each
of them, via a parallel multi-instance task with loop cardinality
set to three, according to the number of involved Assistants for
the cake preparation. In this way, we will have three Assistants
working in parallel: one on the bottom layer, one on the middle
layer, and one on the top layer. Each Assistant immediately starts
to prepare the assigned layer of the cake, and then waits to
receive from the Pastry Chef the corresponding decorations to
be applied. The decorations are indeed provided to the Pastry
Chef by the Customer at a later time, and each kind of decoration
must be properly associated to a specific cake layer. As soon as
an Assistant has applied the received decorations, he sends back
his decorated layer to the Pastry Chef. When all three layers are
received by the Pastry Chef (via a sequential multi-instance task),
the Pastry Chef combines the layers and provides the resulting
cake to the Customer. The Customer checks the received cake: if it
meets the expectation, both in term of layers assembly and in the
combination of layers with decorations, he celebrates; otherwise
he will be disappointed.

In this scenario, data support is crucial to precisely render
the message exchanges between participants, especially because
multiple instances of the Assistant process are created. In fact,
messages coming into this pool might start a new process in-
stance, or be routed to existing instances already underway.
Messages and process instances must contain enough information
to determine, when a message arrives at a pool, if a new process
instance is needed or, if not, which existing instance will handle
it. To this aim, BPMN makes use of the concept of correlation: it is
up to each single message to provide the information that permits
to associate the message with the appropriate (possibly new)
instance. This is achieved by embedding values, called correlation
data, in the content of the message itself. As reported in the
standard, “Correlation is used to associate a particular Message |[...]
between two particular Process instances. BPMN allows using exist-
ing Message data for correlation purposes [...] rather than requiring
the introduction of technical correlation data” [1, Sec. 8.3.2]. In
particular, in our formalisation, we rely on pattern-matching to
enable the correlation of exchanged messages. Considering our

Please cite this article as: F. Corradini, C. Muzi, B. Re et al., Formalising and animating multiple instances in BPMN collaborations, Information Systems (2019) 101459,

https://doi.org/10.1016/j.i5.2019.101459.

F. Corradini, C. Muzi, B. Re et al. / Information Systems xxx (XXxx) Xxx

D< D
g Sad Customer
£ Layers Info
L
17
1 Send
© Send Decorations Celebrate
Cake Request R
equest
Cake Happy Customer
Request
J Cake Request IDecora!ions L e e e e e e e = = = Cake
t t T
r——=-== Lo — — |
| g I I I B S e
I : :
H | Decorations H H
H Layers Request H Decorated Layer H H
| \/ vers red v Request H Cake M
. v, (] =] = []
[53 " . "
3] CT:CK e Assign Layers Receive Assign Receive & Send Cake
> equest Decorations Decorations Combine Layers
§ i = Cake
Preparation A B A Delivered
| H | |
..................... Lot 203 ISR S !
|
LayersPan | - === |
|

Layer Request

Decoration

Prepare Layer

Layer Preparation

Send Decorated
Layer

Receive

Decoration Apply Decoration

Layer Delivered

Assistant

Fig. 1. Cake preparation

example, every time the Pastry Chef sends a kind of decorations
to an Assistant, the message must contain information (in our
case the layer position of the decorations) to be correlated to the
correct process instance of the Assistant multi-instance pool. In
this way, the decorations designed to be placed in the bottom
layer will be properly delivered to the Assistant instance working
on the bottom layer, the decorations for the middle layer will be
delivered to the Assistant working on the middle layer, and so on.

According to the BPMN standard, data elements do not have
any direct effect on the sequence flow or message flow of pro-
cesses, since tokens do not flow along data associations [1, p.
221]. However, this statement is questionable. Indeed, on the one
hand, the information stored in data elements can be used to
drive the execution of process instances, as they can be referred
in the conditional expressions of XOR split gateways to take
decisions about which branch should be taken. On the other hand,
data elements can be connected in input to tasks. In particular,
the standard states that “the Data Objects as inputs into the Tasks
act as an additional constraint for the performance of those Tasks.
The performers [...] cannot start the Task without the appropriate
input” [1, p. 183]. In both cases, a data element has an implicit
indirect effect on the execution, since it can drive the decision
taken by a XOR split gateway or acts as a guard condition on a
task. In our running example, for instance, according to the value
of the Desiderata data object, the conditional expression Is the
cake good? is evaluated and a branch of the XOR split gateway
is chosen. In particular, the task Celebrate can be executed only if
the received cake fits with the desiderata of the Customer stored
in the Desiderata data object. As another example, the task Send
Cake in the Pastry Chef pool can be executed only if the fields of
the Cake data object are filled.

Concerning the content of data elements, the standard left
underspecified its structure, in order to keep the notation in-
dependent from the kind of data structure required from time

collaboration model.

to time. We consider here a generic record structure, assuming
that a data object/store is just a list of fields, characterised by a
name and the corresponding value. Instead, data collections are
thought of as special data objects consisting of lists of elements
that, in their own turn, are structured as list of fields. Fig. 2
reports the structure of the data elements used in our running
example. Messages are structured as tuples of values; the latter
can be manipulated and inserted into data elements fields via
assignments performed by tasks.

Guards, assignments, and structure of data elements and mes-
sages are not explicitly reported in the graphical representation
of the BPMN model, but are defined as attributes of the involved
BPMN elements. We provide information on their definition and
functioning in Section 3, and show how MIDA 2.0 users can
specify them in Section 5.

3. A formal account of multi-instance collaborations

In this section we formalise the semantics of BPMN collabora-
tions. We focus on those BPMN elements, informally presented
in the previous section, that are strictly needed to deal with
multiple instantiation of collaborations, namely multi-instance
pools, message exchanges, multi-instance tasks (both in sequence
and in parallel), data objects, data collections and data stores.
Additionally, in order to define meaningful collaborations, we also
consider some core BPMN elements (e.g., gateways and events).

To simplify the formal treatment of the semantics, we resort
to a textual representation of BPMN models, which is more man-
ageable for writing operational rules than the graphical notation.
Notice that we do not propose an alternative modelling notation,
but we just define a Backus-Naur Form (BNF) syntax of BPMN
model structures.

Please cite this article as: F. Corradini, C. Muzi, B. Re et al., Formalising and animating multiple instances in BPMN collaborations, Information Systems (2019) 101459,

https://doi.org/10.1016/j.i5.2019.101459.

4 F. Corradini, C. Muzi, B. Re et al. / Information Systems xxx (XXxX) Xxx

LayersInfo {top, middle, bottom}
LayersRequest {top, middle, bottom}

DecoratedLayer {layer}

Desiderata {top, middle, bottom, cake}
DecorationsInfo {top, middle, bottom}
DecorationsRequest {top, middle, bottom}

LayersPlan {position, layerColor, decorationColor}

LayerPlan {position, layerColor, decorationColor}

Cake {cake}

Cake {cake, numLayers}

Layer {layer, position, status}

Fig. 2. Structures of data elements of the cake preparation example.

C == pool(p,P) | miPool(p,P,max) | C| C

P = start(e,e’) | startRcv(m:t,e) | end(e) | endSnd(e, m:exp)
| terminate(e) | eventBased(e, (my:ti,e1),...,(mp:th, ep))
| andSplit(e, E) | xorSplit(e, G) | andJoin(E,e) | xorJoin(E,e)
| interRcv(e,m:t,e’) | interSnd(e, m:exp,€’)
| T | mipTask(e,exp,T,c,exp’,e’) | misTask(e,exp, T, c,exp’,¢e)
| PlP

T == task(e,n,M,exp, A,€e') | taskRcv(e,n, M, exp, A,m:t,¢€)
| taskSnd(e,n, M, exp, A, m:exp,€)

M == a | N

N == na_c | na_nc

A == € | dof:=exp | dsf:=exp | get(do) | push(do) | A A

Fig. 3. BNF syntax of BPMN collaboration structures.

3.1. Textual notation of BPMN collaborations

We report in Fig. 3 the BNF syntax defining the textual no-
tation of BPMN collaboration models. This syntax only describes
the structure of models. Notably, even if our syntax would allow
to write collaborations that cannot be expressed in BPMN, we
consider here only those terms of the syntax that can be derived
from BPMN models.

In the proposed grammar, the non-terminal symbols C, P, T,
M, N and A represent Collaboration Structures, Process Structures,
Task Structures, Task Execution Modalities, Non-Atomic Execution
Modalities, and Data Assignments, respectively. The terminal sym-
bols, denoted by the sansserif font, are the typical elements of a
BPMN model, i.e., pools, events, tasks and gateways. The syntax
of these elements is based on the following disjoint sets: the set
P of pool names (ranged over by p, p/, ...); the set E of sequence
edges (ranged over by e, €/, e;, ...) with E € 2F ranging over sets
of edges; the set M of message names (ranged over by m, m’, m;,
...); the set T of task names (ranged over by n, n’, ...); the set C of
counter names (ranged over by c, ¢/, ...); the set D of data object
names (ranged over by do, do/, ...); the set of data store names
(ranged over by ds, ds/, ...); the set of data field names (ranged
over by f, f, ...); the set F of data fields (ranged over by do.f, ds.f,
...); and the set V of values (ranged over by v, v/, ...). We also use
a set EXP of expressions (ranged over by exp, exp/, ...), whose
precise syntax is deliberately not specified; we just assume that
expressions contain, at least, values v, data object fields do.f and
data store fields ds.f. Notation ~ denotes tuples; e.g., exp stands
for a tuple of expressions (expy, ..., exp,).

Intuitively, a BPMN collaboration model is rendered in our
syntax as a collection of (single-instance and multi-instance)
pools, each one specifying a process. Formally, a collaboration C is
a composition, by means of the operator |, of pools either of the
form pool(p, P) (for single-instance pools) or miPool(p, P, max)
(for multi-instance pools), where p is the name that uniquely
identifies the pool, P is the enclosed process, and max is the
maximum number of instances that can be activated in case of
a multi-instance pool. Similarly, a process P is a composition of
process elements by means of the operator ||.

The correspondence between the graphical notation of BPMN
and the textual representation used here is straightforward, ex-
cept for the terms mipTask and misTask where mip and mis
stand for multiple-instance parallel and multiple-instance sequen-
tial, respectively. We exemplify this correspondence by means of
our running example in Fig. 4, where for the sake of readability
we omit the definition of those guard expressions that simply
check the initialisation of data fields (we have only kept exp;
as an example). For a more detailed account of the one-to-one
correspondence the interested reader can refer to Appendix A.
In the textual representation there is some information (content
of messages, receiving templates, data element assignments, etc.)
that is not reported in the graphical notation. In fact, for the
sake of understandability, according to the BPMN standard these
technical details of collaborations are not part of the graphical
representation, but they are part of the low-level XML charac-
terisation of the model. This information is explicitly reported in
our textual representation as it is needed to properly define the
execution semantics of the collaboration models.

Please cite this article as: F. Corradini, C. Muzi, B. Re et al., Formalising and animating multiple instances in BPMN collaborations, Information Systems (2019) 101459,

https://doi.org/10.1016/j.i5.2019.101459.

F. Corradini, C. Muzi, B. Re et al. / Information Systems xxx (XXxx) Xxx 5

Overall cake preparation collaboration scenario:
pool(pe, Pc) || pool(pp, Pp) || miPool(pa, Pa, 3)
Customer process :
P. = start(er,e2) || taskSnd(ez, SendCakeRequest, a, exp;, A1, CakeRequest: exp,, e3) ||

taskSnd(e3, SendDecorationsRequest, a, exps, A2, Decorations: exp,, e4) ||
taskRcv(es, ReceiveCake, a, true, ¢, Cake:ty, es5) ||
xorSplit(es, {(es, Cake.cake # Desiderata.cake), (e7, Cake.cake = Desiderata.cake)}) ||
end(eg) || task(er, Celebrate, a, true, €, eg) || end(eg)

Templates, expressions, assignments :

exp; = LayersInfo.top # null and LayersInfo.middle # null and LayersInfo.bottom # null
A1 = Desiderata.top := LayersInfo.top, Desiderata.middle := LayersInfo.middle,
Desiderata.bottom := LayersInfo.bottom
exp, = (lLayersInfo.top, Layersinfo.middle, Layersinfo.bottom)
As = Desiderata.cake := Desiderata.top + ‘&’+DecorationsInfo.top + ‘on’+Desiderata.middle
+‘&’ +DecorationsInfo.middle + ‘on’+Desiderata.bottom + ‘&’ +DecorationsInfo.bottom
expy = (Decorationslnfo.top, Decorationslnfo.middle, DecorationsInfo.bottom)
t1 = (?Cake.cake)

Pastry Chef process :
P, = startRcv(CakeRequest:tz1,e21) || task(e21, CheckCakeRequest, a, expy, A21,€22) ||

mipTask(e22, 3, taskSnd(e),, AssignlLayers, a, expyy, A2z, LayerRequest : expys, €5), c1, false, e23) ||
taskRcv(ezs, ReceiveDecorations, a, expy,, A23, Decorations:t22, e24) ||
mipTask(e24, 3, taskSnd(e), , AssignDecorations, a, expys, A24, Decoration:e>~q~)267e’25),CQ7 false, eas) ||
misTask(ez2s, 3, taskRev (el , Receive& Combinel ayers, a, expyy, A2s, Layer:ta3, €)), c3, false, ezq) ||
taskSnd(ez6, SendCake, a, expog, €, m:expag, €27) || end(e27)

Templates, expressions, assignments :

tp1 = (?LayersRequest.top, ?LayersRequest.middle, ?LayersRequest.bottom)

A21 = LayersPlan.position := ‘bottom’, LayersPlan.layerColor := LayersRequest.bottom, push(LayersPlan),
LayersPlan.position := ‘middle’, LayersPlan.layerColor := LayersRequest.middle, push(LayersPlan),
LayersPlan.position := ‘top’, LayersPlan.layerColor := LayersRequest.top, push(LayersPlan)

Ago = get(LayersPlan)

expy3 = <(lLayersPlan.layerColor, LayersPlan.position)

Aoz = LayersPlan.position:= ‘bottom’, LayersPlan.decorationColor : = DecorationsRequest.bottom, push(LayersPlan),
LayersPlan.position:= ‘middle’, LayersPlan.decorationColor := DecorationsRequest.middle, push(LayersPlan),
LayersPlan.position := ‘top’, LayersPlan.decorationColor := DecorationsRequest.top, push(LayersPlan)

tpp = (?DecorationsRequest.top, ?DecorationsRequest.middle, ?DecorationsRequest.bottom)
A2s = get(LayersPlan)
expyg = <(LayersPlan.position, LayersPlan.decorationColor)
Ass = Cake.cake := addLayer(DecoratedLayer.layer, DecoratedLayer.position), Cake.numLayers := Cake.numLayers + 1
ta3 = (?DecoratedLayer.layer, ?DecoratedLayer.position)
exppg = Cake.numlLayers = 3
expyg = (Cake.cake)

Assistant process :
P, = startRev(LayerRequest:t31, es1) || task(es1, PrepareLayer, a, expg;, Asq,e32) ||
taskRcv(eg2, ReceiveDecoration, a, true, €, Decoration : 32, e33) ||
task(ess, ApplyDecoration, a, expsy, A32,€34) ||
taskSnd(es4, SendDecoratedLayer, a, expss, €, Layer: expay, €35) || end(ess)
Templates, expressions, assignments :

t3i = (?LayerPlan.layerColor, ?LayerPlan.position)
Asz1 = Layer.status := ‘prepared’
tzz = <(LayerPlan.position, ?LayerPlan.decorationColor)
exp3s = Layer.status = ‘prepared’
Az = Layer.status := ‘decorated’, Layer.position := LayerPlan.position,
Layer.layer := LayerPlan.layerColor + ‘&’ +LayerPlan.decorationColor
expz3 = Layer.status = ‘decorated’
expszy = <(Layer.layer, Layer.position)

Fig. 4. Textual representation of the running example.

Moreover, to support a compositional approach, in the textual
notation each sequence/message edge in the graphical notation
is split in two parts: the part outgoing from the source element
and the part incoming into the target element; the two parts are
correlated by the unique edge name.

We do not provide a direct syntactic representation of data
elements, i.e., data objects, data collections and data stores. The
evolution of their state during the model execution is a semantic
concern (described later in this section). Thus, syntactically, only
the connections between data elements and the other process
elements are relevant. They are rendered by references within
expressions, used to check when a task is ready to start (graph-
ically, the task has an incoming data association from the data
element), to update the values stored in a data field (graphically,
the task has an outgoing data association to the data element),
and to drive the decision of a XOR split gateway. The BPMN
standard is quite loose in specifying what is the actual structure

of data elements. We assume here a generic record structure for
data objects and data stores, so that a data object/store is just
a list of fields, characterised by a name and the corresponding
value. Specifically, the field named f of the data object named
do (resp. the data store named ds) is accessed via the usual
notation do.f (resp. ds.f). A data collection instead is a special data
object consisting of a list of elements that, in their own turn, are
structured as list of fields. The head element of a data collection
do can be retrieved by means of get(do); as effect of the execution
of this action, the fields of the retrieved element can be accessed
as usual by means of do.f. To add an element in a data collection
do, first the fields of the new element are filled with values via
assignments of the form do.f := exp, then the element with the
filled fields is inserted in the tail of the data collection by means
of push(do).

Since we explicitly consider data, messages are characterised
not only by labels, but also by the values that they may carry.

Please cite this article as: F. Corradini, C. Muzi, B. Re et al., Formalising and animating multiple instances in BPMN collaborations, Information Systems (2019) 101459,

https://doi.org/10.1016/j.i5.2019.101459.

6 F. Corradini, C. Muzi, B. Re et al. / Information Systems xxx (XXxX) Xxx

Therefore, a sending action specifies a list of expressions whose
evaluation will return a tuple of values to be sent, while a re-
ceiving action specifies a template to select matching messages
and possibly assign values to data fields. Formally, a message is a
pair m:v, where m is the (unique) message name (i.e., the label
of the message edge) and v is a tuple of values representing the
payload of the message. Sending actions have as argument a pair
of the form m:exp. Receiving actions have as argument a pair of
the form m:t, where t denotes a template, that is a sequence of
expressions and formal fields used as pattern to select messages
received by the pool. Formal fields are data object/store fields
identified by the ?-tag (e.g., ?do.f or ?ds.f) and are used to bind
fields to values. Data elements are associated to a task by means
of a conditional expression, which is a guard enabling the task
execution, and a list of assignments A, each of which assigns
the value of an expression to a data field or retrieves/inserts
information in a data collection. When there is no data element
as input to a task, the guard is simply true, while if there is no
data element in output to a task the list of assignments is empty
(e).

The XOR split gateway specifies guard conditions in its outgo-
ing edges, used to decide which edge to activate according to the
values of data objects. This is formally rendered as a function G :
E — EXP mapping edges to conditional expressions. Notably, we
assume that the set EXP of expressions includes the distinguished
expression default referring to the default sequence edge outgoing
from the gateway (it is assigned to at most one edge). When
convenient, we will deal with function G as a set of pairs (e, exp).

Finally, our formalisation supports the possibility of specifying
the execution modality of tasks. This information is crucial when
the data perspective and multi-instance tasks are taken into
account. In case of a task with atomic execution (modality a), the
evaluation of its enabling guard, the possible sending/receiving of
a message, and the data object assignments, are performed atom-
ically. This semantics fits well in many scenarios, like e.g., when
a task acts on a data element representing a paper document
managed by a human actor that cannot be accessed concur-
rently by other actors involved in the collaboration. However,
there are also some situations where a non-atomic access is
more suitable, e.g.,, when data elements represent shared dig-
ital documents. In the non-atomic case it is also important to
indicate if the instances of a task can be executed concurrently
(modality na_mc) or not (modality na_nc). Actually, the BPMN
standard is intentionally loose on these points, in order to allow
the use of the modelling language in different contexts of use. To
more effectively support designers, we allow them to specify for
each task the corresponding execution modality. This enables the
identification of concurrency issues in those data accesses where
they can actually arise and, at same time, it allows to not take
into account such issues when in the reality they cannot occur.
The role of task execution modalities is particularly crucial in
those cases where tasks act in parallel and access the same data
elements. Parallel execution of tasks can produce in these cases
different effects. This depends on the execution order of the in-
ternal steps of tasks, i.e. guard checks, message sending/receiving,
and data element assignments. Let us consider, for instance, a
simple scenario with two parallel tasks, each of which makes
an assignment producing a violation of the guard of the other
task. If the two tasks are atomic, the execution of one of them
will be deadlocked, while in the non-atomic case such deadlock
can be avoided if both tasks perform the guard checks before
making the assignments. Concurrent and non-concurrent non-
atomic modalities play an active role mainly when the involved
tasks are multi-instance.

3.2. Semantics of BPMN collaborations

The syntax presented so far represents the mere structure
of processes and collaborations. To describe their semantics, we
enrich the structural information with a notion of execution state,
given by the marking of sequence edges with tokens [1, p. 27],
the value of data elements, the status of tasks, and the exchanged
messages. We call process configurations and collaboration con-
figurations these stateful descriptions, which produce local and
global effects, respectively, on the process and collaboration exe-
cution. The operational semantics at collaboration level is defined
by means of a labelled transition system (LTS), whose definition
relies on an auxiliary LTS on the behaviour of processes. We first
present the process semantics and later the collaboration one.

A process configuration has the form (P, o, 640, O4c, O4s, O¢, O¢),
where:

e P is a process structure;

e 0. : E — N is a sequence edge state function specifying, for
each sequence edge, the current number of tokens marking
it (N is indeed the set of natural numbers);

e 04 : F — V is a data object state function assigning values
(possibly null) to data object fields;'

eog : D —» (F — V)" is a data collection state function
assigning to each data collection a tuple of data object state
functions;

® Oy F — YV is a data store state function assigning
values (possibly null) to data store fields; even if this state
function has the same type of o4, we used two separate
state functions because the information in data objects is
treated differently from that in data stores, as this latter kind
of data is permanent and shared among instances;

eo; : T x {a,s,r} — N is a task state function used to
keep track, for each non-atomic task, of the number of task
instances in a given status, i.e., active (a), sending (s), and
message received (r); the status of a task depends on its
evolution (depicted in Fig. 5), where the inactive status
formally corresponds to have zero instances for all other
statuses;

e 0. : C — N is a counter state function used to keep track,
for each multi-instance task, of the number of time that the
task has still to be executed.

For the sake of presentation, in the following we will use
notation oy to denote in a compact way the triple (o4, 04c, 0ds)
representing the state of all data elements. Thus, we will write,
e.g., a process configuration as (P, o., 0y, o, o). We denote by aeo
(resp. 0, 02, 00) the edge (resp. data element, task and counter)
state where all edges are unmarked (resp. all data object/store
fields are set to null, all data collections are empty, all tasks are
inactive, and all counters are set to 0). Formally, aeo(e) =0
Ve € E, 02(do.f) = null V do.f € F, 6)(do) = € Ydo € D,
ol(ds.f) = null V ds.f € F, 02(n,a) = o(n,s) = ol(n,1) =
0Vn € T, and 0%(c) = 0 Vc € C. The state obtained by
updating in o, the number of tokens of the edge e to n, written
as o, - [e — n], is defined as follows: (o, - [e — n])(e’) returns

1 It is worth noticing that in our semantics we associate concrete values
to data object fields. The same applies to data stores and data collections.
This perfectly fits with our purpose of animating the execution of collaboration
models showing the evolution of the specified data. A different approach is
simulation, where batches of executions are performed to collect statistics suit-
able to enable quantitative analysis of process models [15, p. 235]. This can be
achieved, e.g., by ranging the values of data fields for selecting different branches
in the presence of XOR gateways, by relying on probability distributions for
specifying task durations to consider different interleavings, or by specifying
resources allocation. Simulation is indeed out of the scope of this paper and left
as future work (see Section 7).

Please cite this article as: F. Corradini, C. Muzi, B. Re et al., Formalising and animating multiple instances in BPMN collaborations, Information Systems (2019) 101459,

https://doi.org/10.1016/j.i5.2019.101459.

F. Corradini, C. Muzi, B. Re et al. / Information Systems xxx (XXxx) Xxx 7

Task Send Task Receive Task

Inactive <=y Inactive <=y
) 12
) = Guard Guard =
Inactive = Evaluation g Evaluation £
g] &
Guard) % o0
uar R . 5 12
. 2 Active = Active %
Evaluation l < 2 <
g (5] g
) Perform S Message 5
Acti < . : <
CE 5 Assignments Received 5
A, [aW

Sending — Received s

Fig. 5. Task status evolution.

n if ¢ = e, otherwise it returns o.(e’). The update of states oy,
O4e, 0gs, 0t, and o, are similarly defined. To simplify the definition
of the operational rules, we introduce some auxiliary functions
and relations to update states of process configurations (Fig. 6).
Moreover, we will use function edges(P) to get the set of all edges
used in the process P, and function in(T) (resp. out(T)) to get the
edge incoming in (resp. outgoing from) the task T.

The auxiliary LTS on the behaviour of processes is a triple
(P, £, —) where: P is a set of process configurations; £, ranged
over by ¢, is a set of labels; and — C P x £ x P is a transition
relation. We will write (P, o., 64, 0t, 0¢) L (P,o,,04,0/,0/) to
indicate that ((P, o¢, 04, 01, 0¢), £, (P, 0}, 0}, 0/, 0{)) €=, and say
that ‘the process in the configuration (P, o, 04, 0¢, 0¢) can do a
transition labelled by ¢ and evolve to the process configuration
(P,o,,04 0/,0/) in doing so’. To improve the readability of the
operational rules, we apply the following simplifications on the
notation of transitions.

Notational simplifications. We omit: (i) the states o, 0y, o¢, 0
from the source configuration of transitions, since we use for
them the same notation in all rules; (ii) the structure from the
target configuration of transitions, since process execution only
affects the current states and not the process structure; (iii) those
states from the target configuration that are not affected by

e o 4
transitions. Thus, for example, a transition (P, oe, 04, 0¢, 0c) —
. . ¢ o
(P,0;, 04, 0{,0/) will be written as P — (o) when it simple
affects the sequence edge state function.

The labels used by the process transition relation are gener-
ated by the following production rules:

L=

!’

| 'm:V | ?m:et,A | newm:et 1t = € | kil

The meaning of labels is as follows. Label t denotes an action
internal to the process, while !m:v and ? m:et, A denote sending
and receiving actions, respectively. Notation et denotes an eval-
uated template, that is a sequence of values and formal fields.
Notably, the receiving label carries information about the data
assignments A to be executed after the message m is actually
received. Label newm:et denotes taking place of a receiving
action that instantiates a new process instance (i.e., it corresponds
to the occurrence of a start message event in a multi-instance
pool). The meaning of internal actions is as follows: ¢ denotes an
internal computation concerning the movement of tokens, while
kill denotes taking place of the termination event.

The operational rules defining the transition relation of the
process semantics are given by the inference rules in Figs. 7-11.

We now briefly comment on the rules in Fig. 7. Rule P-Start
starts the execution of a process when it has been activated. To
denote the enabled status of start events we have included in
their syntactical definition an incoming (spurious) edge, named
enabling edge. Thus, the process is activated when the enabling
edge of a start event is marked. The effect of the rule is to
increment the number of tokens in the edge outgoing from the
start event and to decrease the marking of the enabling edge.
Rule P-End instead is enabled when there is at least one token
in the incoming edge of the end event, which is then simply
consumed. Rule P-Terminate is similar, but it produces a kill label
and forces the termination of the process instance by resetting
the marking of edges and the status of tasks. Rule P-StartRcv
starts the execution of a process by producing a label denoting
the creation of a new instance and containing the information
for consuming a received message at the collaboration layer (see
rule C-CreateMi in Fig. 13). Rule P-EndSnd is enabled when there
is at least a token in the incoming edge of the end event, which
is then removed. Moreover, a send label is produced in order
to deliver the produced message at the collaboration layer (see
rule C-DeliverMi in Fig. 13). Rules P-InterRcv and P-InterSnd are
enabled when there is at least a token in their incoming edge
and move it to their outgoing edge, while producing a receive
or a send label, respectively. Rule P-AndSplit is applied when
there is at least one token in the incoming edge of an AND
split gateway; as result of its application, the rule decrements
the number of tokens in the incoming edge, and increments the
tokens in each outgoing edge. Rule P-XorSplit, is applied when a
token is available in the incoming edge of a XOR split gateway
and a conditional expression of one of its outgoing edges is
evaluated to true; the rule decrements the token in the incoming
edge and increments the token in the selected outgoing edge.
Notably, if more edges have their guards satisfied, one of them
is non-deterministically chosen. Rule P-XorSplit, is applied when
all guard expressions are evaluated to false; in this case the
default edge is marked. Rule P-Andjoin decrements the tokens in
each incoming edge and increments the number of tokens of the
outgoing edge, when each incoming edge has at least one token.
Rule P-Xorjoin is activated every time there is a token in one of
the incoming edges, which is then moved to the outgoing edge.
Rule P-EventG is activated when there is a token in the incoming
edge and there is a message m; to be consumed, so that the
application of the rule moves the token from the incoming edge
to the outgoing edge corresponding to the received message. A
label corresponding to the consumption of a message is observed.

Please cite this article as: F. Corradini, C. Muzi, B. Re et al., Formalising and animating multiple instances in BPMN collaborations, Information Systems (2019) 101459,

https://doi.org/10.1016/j.i5.2019.101459.

8 F. Corradini, C. Muzi, B. Re et al. / Information Systems xxx (XXxX) Xxx

inc(oe,e) = o, - [e— oe(e) + 1] increments by one the number of tokens marking the
edge e in the state o,
dec(oe,e) = 0. - [e — g.(e) — 1] decrements by one the number of tokens marking the

edge e in the state o,

inc(oe, E) (resp. dec(oe, E)) increments (resp. decrements) by one the number of

tokens marking all edges in E in the state o,

reset(oe,e) = o, - [e — 0] sets to zero the number of tokens marking the edge e

in the state o,
reset(oe, F) resets all edges in F in the state o,
reset(oe) = o resets all edges in the state o

set(oe,e,h) = o, - [e — h] sets to h the tokens marking the edge e in the state o

eval(exp, o4, V) states that v is one of the possible values resulting
from the evaluation of the expression exp on the data
element state o; this is a relation, because an expres-
sion may contain non-deterministic operators, and is
not explicitly defined, since the syntax of expressions
is deliberately not specified (we only assume that

eval(default, o4, v) implies v = false for any o)

eval(exp, 04,V) and eval(t, o4, et) evaluate tuples of expressions and templates, resp.

upd(oq, A, o) states that o7, is one of the possible states resulting

from the update of o4 with assignment A

inc(og,n,S)=0y- [(n,S)—0¢(n,S)+1] increments by one the number of instances of task n
in the status S € {a, s, 7} in the state oy

dec(oy,n,S)=0y- [(n,S)—0o¢(n,S)+1] decrements by one the number of instances of task n

in the status S € {a, s, 7} in the state oy
reset(a;) = o? sets to inactive the status of all tasks in the state o

isInactive(oy,n) = (o¢(n,a) =0 returns true if the task n is in the inactive status in
=0 the state o
0

set(oe,cyh) = o0 - [c— h] sets to h the value of the counter c in the state o,

reset(oe,c) = o, - [c— 0] resets the value of the counter c in the state o

dec(o¢,c) = 0. - [c— oc(c) — 1] decrements by one the value of c in the state o,

Fig. 6. BPMN process semantics: auxiliary functions and relations for updating states (the formal definitions here omitted for the sake of readability are reported in
Appendix B).

Rules in Fig. 8 deal with task with atomic execution; we show
how this requirement can be relaxed later in this section. Rule
P-Task, deals with non-communicating tasks, possibly equipped
with data objects. It is activated only when the guard expression
exp is satisfied and there is a token in the incoming edge, which is
then moved to the outgoing edge. The rule also updates the values
of the data objects connected in output to the task by performing
the assignments A. Rule P-TaskRcv, is similar, but it produces a
label corresponding to the consumption of a message. In this case,
however, the data updates are not executed, because they must
be done only after the message is actually received; therefore, the

assignments are passed by means of the label to the collaboration
layer (see rule C-ReceiveMi in Fig. 13). Rule P-TaskSnd, sends a
message, updates the data object and moves the incoming token
to the outgoing edge. The produced send label is used to deliver
the message at the collaboration layer (see rule C-DeliverMi in
Fig. 13).

Rules in Fig. 9 deals with task with non-atomic execution,
with both concurrent and non-concurrent modality. According to
the evolution of the task status, shown in Fig. 5, the execution
of non-communicating tasks is split in two steps: task activa-
tion (rule P-Tasky), dealing with the evaluation of the guard

Please cite this article as: F. Corradini, C. Muzi, B. Re et al., Formalising and animating multiple instances in BPMN collaborations, Information Systems (2019) 101459,

https://doi.org/10.1016/j.i5.2019.101459.

F. Corradini, C. Muzi, B. Re et al. / Information Systems xxx (XXxx) Xxx 9

start(e, ') > (inc(dec(oe,e),€')) oae(e) >0 (P-Start)
end(e) = (dec(o.,e)) e(e) >0 (P-End)
terminate(e) =25 (reset(.), reset(0y)) oe(e) > 0 (P-Terminate)
startRcv(m:t, e) mewmset, (inc(oe,e)) eval(t,oq,et) (P-StartRev)
endSnd(e, m:exp) m:v, {dec(oe,e)) ae(e) >0, (P-EndSnd)

eval(exp, o4,V)

interRev(e, m:t, ') RILILA (inc(dec(oe,e),€')) oe(e) >0, (P-InterRcv)
eval(t,oq, et)

. o N Im:vo . ’ Ue(e) > 0, P-InterSnd
interSnd(e, m:exp,e’) —— {inc(dec(o.,e),€')) cval(exp, 0, 9) (P-InterSnd)
andSplit(e, E) < (inc(dec(o.,e), E)) o.(e) >0 (P-AndSplit)
xorSplit(e, {(¢/,exp)} U G) 5 (inc(dec(oe, e), &)y e(&) >0, (P-XorSplit;)
eval(exp, o4, true)
o.(e) >0,
xorSplit(e, {(¢/, default)} U G) = (inc(dec(oe,e),€')) V(ej,exp;) € G . (P-XorSplite)

eval(exp;, 04, false)

andJoin(E,e) S (inc(dec(o.,E),e)y Ve' € E.o.(e) >0 (P-AndJoin)

xorJoin({e} U E,¢') 5 (inc(dec(o.,e),e')) oe(e) >0 (P-XorJoin)
eventBased(e,?(n.ﬁ‘l :~f1,e1), o (macthien) o,(e) >0,1<j<h, (P-BventC)
?mj: etj,€ <inc(dec(06, e)’ ej)> efual(tj ,0d, €t)

Fig. 7. BPMN process semantics: events and gateways.

o.(e) >0,
task(e, n, a, exp, 4,€') = (inc(dec(o.,e),€'), 0> eval(exp, o, true), (P-Taska)
upd(cq, A, o7})

oe(e) >0,
{inc(dec(oe,e),€')y eval(exp, o, true), (P-TaskRcua)
eval(t, o4, et)

~ ?m: et,A
taskRev(e, n, a, exp, A, m:t,¢') ————

o.(e) >0,
eval(exp’, o4, true),
upd(caq, A, 0}y,
eval(exp, o4, V)

taskSnd(e, n, a, exp, A, m:exp, ') dm:3, (inc(dec(oe, €),€), 0l (P-TaskSnda)

Fig. 8. BPMN process semantics: tasks with atomic execution.

and consumption of the token in the incoming edge, and task Notably, in case of non-concurrent execution, the task activation
completion (rule P-Tasky,), dealing with the execution of the is performed only if the task is in the inactive status (i.e., there are
assignments and the insertion of the token in the outgoing edge. no active instances). Similarly, the execution of receiving/sending

Please cite this article as: F. Corradini, C. Muzi, B. Re et al., Formalising and animating multiple instances in BPMN collaborations, Information Systems (2019) 101459,
https://doi.org/10.1016/j.i5.2019.101459.

10 F. Corradini, C. Muzi, B. Re et al. / Information Systems xxx (XXxX) Xxx

task(e, n, N, exp, A,e') 5 (dec(o.,e),inc(og, n,a))

task(e,n, N, exp, A,e') 5 (inc(o.,e'),d),, dec(as,n,a))
taskRev(e, n, N, exp, A, m:t,e’) 5 (dec(o,,e),inc(o¢, n,a))
taskRev(e, n, N, exp, A,m:t,€) fm: ete (inc(dec(ot,n,a),n,r))
taskRev(e, n, N, exp, A, m:t, ') 5 (inc(oe,€'), o), dec(as, n, 1))
taskSnd(e, n, N, exp, A, m:exp, ') 5 {dec(o., €),inc(os,n,a))
taskSnd(e, n, N, exp, A, m:exp,e’) = {0/, inc(dec(oy,n,a), n,s)>

taskSnd(e, n, N, exp, A, m:exp, ') m:v (inc(oe,€'),dec(ot,n,s))

oc(e) > 0, eval(exp, o4, true), P-Task
N = na_nc = isInactive(ay,n) (P-Tasky:)

ai(n,a) > 0,upd(cq, A, o)) (P-Tasknz)

oc(e) > 0, eval(exp, o4, true), (P-TaskReuy;)
N = na_nc = isInactive(oy,n)

ai(n,a) > 0, eval(t, o4, et) (P-TaskRcung)

ai(n,r) > 0,upd(oq4, A, o) (P-TaskRcuns)

oc(e) > 0, eval(exp, o4, true), (P-TaskSndy;)
N = na_nc = isInactive(oy,n)

oi(n,a) > 0,upd(cq, A, o)) (P-TaskSndyg)

ai(n,s) > 0, eval(exp, 04,V) (P-TaskSndys)

Fig. 9. BPMN process semantics: tasks with non-atomic execution.

tasks is split in three steps: task activation, receiving/sending
of the message while the task is running, and task completion.
Again, non-concurrent tasks are activated only if they are in the
inactive status.

Rules in Fig. 10 deal with multi-instance tasks, both in par-
allel and in sequence. A parallel multi-instance task is activated
when it is inactive (i.e., o.(c) = 0) and has an incoming token.
If the loop cardinality expression exp is evaluated to a natural
number h greater than 0 (rule P-MipTask,), this value is as-
signed to the task counter c, and h tokens are inserted in the
incoming edge of the wrapped task T. Instead, if the loop car-
dinality is O (rule P-MipTask,), no execution of T is performed
and the incoming token is moved directly to the outgoing edge.
When the multi-instance task is active, the wrapped task can
be executed according to the task rules previously described
(rule P-MipTasks,). Finally, the multi-instance task completes (rule
P-MipTask,) when either all task instances have completed their
execution (i.e., the number of tokens in the outgoing edge of T
is equal to the loop cardinality stored in the counter c) or the
completion condition expression exp’ is evaluated to true. Rules for
sequential multi-instance task are similar, thus we just discuss
the key differences. When the multi-instance task is activated,
only one token is inserted in the incoming edge of the wrapped
task (rule P-MisTaskq). Then, when the wrapped task produces a
token in its outgoing edge, indicating its termination, if the multi-
instance task has not completed its execution then the wrapped
task is reactivated and the counter decreased (rule P-MisTasky).

The last group of rules, P-Int; and P-Int, in Fig. 11, deal with
interleaving of process elements in a standard way, so that if
an element of a process evolves then the whole process evolves
accordingly.

Now, let us consider the semantics at collaboration level. A
collaboration configuration has the form (C, o;, o, 04s), where:

e C is a collaboration structure;

o 0; : P — 25080y xSoyc xSor xSoc s an instance state function
mapping each pool name to a multiset of instance states,
ranged over by I and containing quintuples of the form
(0¢, Odo, 04c, Ot, 0¢c) (Where S, is the set of states of kind o');

e om:M—2"isa message state function that assigns to each
message name m a multiset of value tuples representing the
messages received along the message edge labelled by m;

e 045 iS a data store state function, defined as for process
configurations.

Notice that our semantics has been defined according to a global
perspective. Indeed, the overall state of a collaboration is col-
lected by functions oy, oy, and oy of its configuration. On the other
hand, the global semantics of a collaboration configuration is
determined, in a compositional way, by the local semantics of the
involved processes, which evolve independently from each other.
The use of a global perspective simplifies (i) the technicalities
required by the formal definition of the semantics, and (ii) the
implementation of the animation of the overall collaboration
execution. The compositional definition of the semantics, anyway,
would allow to easily pass to a purely local perspective, where
state functions are kept separate for each process.

To simplify the definition of the operational rules, we intro-
duce in Fig. 12 some auxiliary functions to update states of col-
laboration configurations. To define the collaboration semantics,
an auxiliary function is needed: match(et, V) is a partial function
performing pattern-matching on structured data (like in [16]),
thus determining if an evaluated template et matches a tuple of
values v. A successful matching returns a list of assignments A,
updating the formal fields in the template; otherwise, the func-
tion is undefined. The formal definition of the pattern-matching
function is reported in Appendix B.

Let us go back to our running example. The scenario in its
initial state is rendered as the collaboration configuration

{(pool(pc, Pc) I pool(pp, Pp) | miPool(pg, P4, 3)), 0, Om, 0ds)

where: oi(pc)={(0¢, 040, Odc, 0¢, 0¢)} With ae:(feo -[e; — 1] and
adozac?o-[Layerslnfo.top, LayersIinfo.middle, Layersinfo.bottom +—
Blue, Pink, Brown]; and oi(pp) = 0i(ps) = @. Notice that the oy,
function of the p. instance is initialised with the content of the
Layersinfo data input.

The labelled transition relation on collaboration configurations
formalises the message exchange and the data update according
to the process evolution. The LTS is a triple (C, L., —.) where:
C is a set of collaboration configurations; £., ranged over by [,
is a set of labels; and —.C C x £, x C is a transition relation.
We apply the same readability simplifications we use for process

Please cite this article as: F. Corradini, C. Muzi, B. Re et al., Formalising and animating multiple instances in BPMN collaborations, Information Systems (2019) 101459,

https://doi.org/10.1016/j.i5.2019.101459.

F. Corradini, C. Muzi, B. Re et al. / Information Systems xxx (XXxx) Xxx

mipTask(e, exp, T, c, exp’, &') = (set(dec(oe, e),in(T), h), set(oe, ¢, h))

mipTask(e, exp, T, c,exp’, e') 5 (inc(dec(o, e),€)>

¢
<T7 Oe; 0d, Ot, 0(1> - <0—:5» 0{17 0-27 Jé>

) 7
mipTask(e,exp, T, c,exp’, &) — (oL, i}, 0, 00>

mipTask(e, exp, T, c, exp’, &') = (inc(reset(oe, edges(T)), '), reset(oe,)

misTask(e, exp, T, c, exp’, €') > (inc(dec(oe, e), in(T)), set(oe, ¢, b))

misTask(e, exp, T, c, exp’, €'), = (inc(dec(o, e),€'))

L
(T,0¢,04,01,0c) = (0¢, 04,0,0¢)

) 7
misTask(e, exp, T, c,exp’, €') — (oL, o, 01, 00>

misTask(e, exp, T, c, exp’, ¢') 5 {inc(dec(oe, out(T)),in(T)), dec(oe, c))

misTask(e, exp, T, c,exp’, &') 5 (inc(dec(oe, out(T)), '), reset(oe, c))

7e(e) > 0,

o.(c) =0,

eval(exp, oq, h)
with h >0

oele) > 0,
oc(c) =0,
eval(exp, 04,0)

oe(out(T)) = oc(c) v

eval(exp’, g, true)

oe(e) >0,

oc(c) =0,

eval(exp, oq, h)
with h >0

oe(e) >0,
oc(c) =0,
eval(exp, 04,0)

J(:(C) > 1,
oe(out(T)) =1,
eval(exp’, o4, false)

oe(out(T)) =1,
(ce(c)=1v
eval(exp’, o4, true))

(P-MipTasky)

(P-MipTasks)

(P-MipTasks)

(P-MipTasky)

(P-MisTasky)

(P-MisTaskz)

(P-MisTasks)

(P-MisTasky)

(P-MisTasks)

Fig. 10. BPMN process semantics: parallel/sequential multi-instance tasks.

4
<P170670d7 Utvgc> g <0/e,0/da O—t/tv 0-;>

4
<P270670d7 Utvac> g <0/e,0/da Jt/tv J;>

P-Intz)

14
Py ” Py — <Ué70&702?02>

L
Py || Py — <Ué70&702702>

(P-Intg)

Fig. 11. BPMN process semantics: interleaving.

add[nSt(Uiv P;0¢,0do, Odc, Ot, Uc) =
;- [p = Uz(p) + {<U€7ad07adC7 Ut7gc>}]

upd[nSt(Uw P;0e;0do; Odcy Ot Oc, I) =
(o [p g {<Ue70d07ad07 Ut7ac>} + I]

adds the new instance {o¢, 040, Odc, Ot, Ocy tO
the multiset of instances of pool p in the state o;

replaces an existing instance of p in the state o,
leaving instances I unaltered

in the state o,,,

add(oy,, m,V) = oy [M — o (m) + {V}] adds the value tuple v for the message name m

rm(Cm, M,V) = 0y [M— 0, (m) — {V}] removes the message with value tuple v for the
message name m from the state o,

Fig. 12. BPMN collaboration semantics: auxiliary functions for updating states (where operators + and — are the union and subtraction operations on multisets).

Please cite this article as: F. Corradini, C. Muzi, B. Re et al., Formalising and animating multiple instances in BPMN collaborations, Information Systems (2019) 101459,

https://doi.org/10.1016/j.i5.2019.101459.

12 F. Corradini, C. Muzi, B. Re et al. / Information Systems xxx (XXxX) Xxx

oi(p) =

VEop,(m)

0 0 0 0\ newm:et S R)
<P7 Ue>0d?0t7ac> <Ue7ad70t7ac>

match(et,V) = A wupd(d), A, olj,, ol al.)

7

|03 (p)| < max
VE op(m)

pool(p, P) =% m:v {addInst(c;,p, 0%, 0, O, Tty 00), T (Om, M, V), 05>

0 0 0 _0\ newm:et A A
<P7 Oe>0d?atvac> <0evgdvat7(fc>

match(et,v) = A wupd(c, A, o)), 0l.,00,)

(C-Create)

newm:v

miPool(p, P, max) ———- {addInst(0;, p, 0L, Olp, Ores Ty Tn)s TIU(T M, V), Tl

Uz(p) = {<O’c70'd0,0'dc70't,a'c>} + 1
<P7 Oey0doyOdcy Odss Ot Uc> 5 <O'é7 0—:107 0—:1[:7 0:1570-270—2>

(C-CreateMsi)

<P7 Oc¢yO0dos Odey Ods; Ot UC>

Ve ap(m) match(et,v) = A’

0i(p) = {{0¢,0do, Odc; 01, 0c)} + 1

?m:et,A

upd(oy, (A’ A), 044, T Tds)

(C-InternalMi)

(0¢,04,01,00)

miPool(p, P, max) m:9, LupdInst (o, p, {al, 0, 0, b, a D} + 1), 1m0, m, V), 0>
ai(p) = {{0¢, Tdos Odc, T4, 0c)} + 1
Im:v
<P: O¢;0doyOdcs Ods, Ot UC> Y <O'év O':iov O'(/icv O':isa 0.1{/7 U::>

(C-ReceiveMi)

l
<Cl7 0i5Om, Uds> - <U£7 U:nv Uzlis>

1
Ci || Cy = (ot 00,045

(C-IntI)

(C-DeliverMzi)

l
<027 05 Om, Ud5> - <0£7 O';nv Uids>

l
Cr] C2— <0—£’O—:"n70-¢/is>

(C-]ntg)

Fig. 13. BPMN collaboration semantics.

configuration transitions. The labels used by the collaboration
transition relation are generated by the following grammar:

=1 | 'mv | ?m:v | newm:v

Notably, internal and sending labels coincides with the same
labels at the process level, while the receiving labels here just
keep track of the received message.

The operational rules defining the transition relation of the
collaboration semantics are given in Fig. 13; except for the rules
used to create new process instances, we only report the rules
for multi-instance pools, as the single-instance ones are similar
(omitted rules are reported in Appendix B). We now briefly com-
ment on the relevant points. The first two rules deal with instance
creation. In the single instance case (rule C-Create), an instance
is created only if no instance exists for the considered pool, and
there is a matching message. As result, the assignments for the
received data are performed, and the message is consumed. In
the multi-instance case (rule C-CreateMi), the created instance is
simply added to the multiset of existing instances of the pool.
Anyway, the instance is created only if the maximum number of
allowed instances is not exceeded. The next three rules allow a
single pool, representing organisation p, to evolve according to
the evolution of one of its process instances. In particular, if the
process instance performs an internal action (rule C-InternalMi)
or a receiving/delivery action (rules C-ReceiveMi or C-DeliverMi),
the pool performs the corresponding action at collaboration layer.
As for instance creation, rule C-ReceiveMi can be applied only
if there is at least one matching message. Recall indeed that at
process level the receiving labels just indicate the willingness of
a process instance to consume a received message, regardless the
actual presence of messages. The delivering of messages is based
on the correlation mechanism: the correlation data are identified

by the template fields that are not formal (i.e., those fields requir-
ing specific matching values). Moreover, when a process performs
a sending action, the message state function is updated in order to
deliver the sent message to the receiving participant. Finally, rules
C-Inty and C-Int, permit to interleave the execution of actions
performed by pools of the same collaboration, so that if a part
of a larger collaboration evolves, the whole collaboration evolves
accordingly.

4. Formalisation at work on multi-instance interaction sce-
narios

In this section we show the capability of our formal approach
to model multi-instance collaborations. In this kind of scenarios
the use of a formalisation is particularly helpful. Indeed, the
overall behaviour resulting from the interactions among multiple
instances of different participants, and driven by local and shared
data, is usually complex and convoluted.

The considered scenarios are introduced as variants of our
running example, where different communication-related aspects
are added with an increasing level of complexity. In particular,
we consider: (i) communication between different multi-instance
pools, where the initiator of the collaboration is single-instance;
(ii) communication between multi-instance pools, where the ini-
tiator of the collaboration is multi-instance; and (iii) commu-
nication between instances of the same pool. For the sake of
readability, we resort here to the graphical representation of the
considered BPMN model examples. The complete specification
of these models in our textual representation is available in

Please cite this article as: F. Corradini, C. Muzi, B. Re et al., Formalising and animating multiple instances in BPMN collaborations, Information Systems (2019) 101459,

https://doi.org/10.1016/j.i5.2019.101459.

F. Corradini, C. Muzi, B. Re et al. / Information Systems xxx (XXxx) Xxx 13

Layers Desiderata® ___\/ Decoration:

Customer

Send Send

Cake Request

o

Request
Cake =
Request

Sad Customer

i Cakes Des\dsrati[g

1

Receive Cake

Celebrate

Happy Customer

1? good?

Decorations

i Layers Request
g e e Request

.
g b

Pastry Chef

v,
Check Cake Assign Layers Receive
Request 'gn Lay Decorations
Cake Preparation Ll

| Layers Plan

Assign Receive &
Decorations Combine Layers Send Cake
I =

Cake Delivered

| Decorated Layer |

| Layer Request

| Decoration

v
=

Receive
Decoration

Send Decorated

Layer Delivered

Assistant

i
Layer Preparation
A

prly Decoration
A

Layer

Fig. 14. Collaboration with two multi-instance pools.

Appendix C, while their .bpmn standard format definitions are
available online.”

Let us first consider the scenario in Fig. 14, where the Customer
pool initiates the collaboration, and the Pastry Chef and the
Assistant multi-instance pools interact together. The collaboration
model revises the running example in order to allow the Customer
to request two different three-layer cakes. To this aim, we have
modified the Customer by making Send Cake Request, as well
the subsequent tasks, sequential multi-instance tasks with loop
cardinality set to two according to the number of cakes to be
produced. The data elements in the Customer pool have been
revised accordingly, in order to provide information on the two
cakes. Consequently, the Pastry Chef is now a multi-instance pool,
with maximum number of instances set to two (we assume that
only two pastry chefs are available on the pastry shop). Finally,
we have added a new correlation field in the template of the
Receive & Combine Layers task, so that each Pastry Chef instance
is able to identify its own cake layer among those received
from the Assistant pool. The revised example is presented in our
syntax in Appendix C - Figs. C.26 and C.27. During the model
execution, according to the proposed semantics (in particular,
rule P-StartRcv at process level and rule C-CreateMi at collabora-
tion level), the Customer triggers the creation of two Pastry Chef
instances, which in their own turn trigger, by means of the same
semantic rules, the creation of an Assistant instance for each cake
layer to be produced (hence, we will have six Assistant instances
in total). The template of the Receive & Combine Layers task is
(? DecoratedLayer.layer, ? DecoratedLayer.position,LayersRequest.
cakelD), where the additional correlation data LayersRequest.
cakelD, which is a cake identifier, guarantees correct delivery and
combination of decorated layers. Indeed, by rule P-TaskRcu,, the
template is evaluated with respect to the current data state oy

2 The .bpmn files of the different variants of the BPMN models of the
cake example introduced in this paper are available at: https://bitbucket.org/
proslabteam/mida/src/master/assets/examples/Cake/.

as (? DecoratedLayer.layer, ? DecoratedLayer.position), v;q, Where
o4(LayersRequest.cakelD) = viq. The correlation between this
template and the received message is formally expressed by the
match function in rule C-ReceiveMi, which produces an assign-
ment, instantiating the formal fields ? DecoratedLayer.layer and
? DecoratedLayer.position, used to update the state o4 by means
of the upd relation. In this way, only the Pastry Chef instance
working on the cake identified by viy can receive the Layer mes-
sage containing the v;q correlation data. Thus, the Customer will
receive the two cakes properly combined, even if they have been
produced concurrently by multiple chef and assistant instances.

Let us extend the scenario in Fig. 14 by making all pools
multi-instance. We obtain in this way the collaboration in Fig. 15
that is reported in our syntax in Appendix C - Fig. C.28. Now,
we have that the minimum and maximum numbers of instances
of the Customer pool are set to two, in order to consider two
separate customers in the collaboration. Notably, the maximum
number of instances is rendered in our textual notation as a
parameter of the miPool term (i.e., miPool(pc, P¢, 2)); instead,
the minimum number is used to initiate the instance state o;
for the Customer pool with two initial instances (i.e., oi(p;) =

’o 0 0o 0 0 0
{(Ge’ O4do» 9dc» Ot » O

N0l 0. 0h. 00, o). The different cakes
are described in the data objects Layers Info and Decorations
Info, which are differently instantiated in the two Customer in-
stances (i.e., o, and oy associate different values to the two
data objects). The collaboration starts with the execution of the
two instances of Customer. Notably, we can observe here how
our formalisation permits the instantiation of different instances
of the same pool using data inputs. More specifically, at the
outset, oj(p.) returns two instances where the edge state func-

tions correspond to o, = o) = ol - [e; + 1], and the
data collection state functions include input data as following:
aéo = 0(?0 - [LayersInfo.top +—> Blue, Layersinfo.middle

Pink, Layersinfo.low > Brown, Decorationsinfo.top +— Blue,
Decorationsinfo.middle +— Pink, Decorationsinfo.low +— Brown],
and oy, is defined similarly. During the model execution, ac-
cording to rules P-StartRcv and C-CreateMi, each Customer in-
stance triggers the creation of a Pastry Chef instance by filling

Please cite this article as: F. Corradini, C. Muzi, B. Re et al., Formalising and animating multiple instances in BPMN collaborations, Information Systems (2019) 101459,

https://doi.org/10.1016/j.i5.2019.101459.

https://bitbucket.org/proslabteam/mida/src/master/assets/examples/Cake/
https://bitbucket.org/proslabteam/mida/src/master/assets/examples/Cake/

14

F. Corradini, C. Muzi, B. Re et al.

/ Information Systems xxx (xXxXx) xxx

Info Cake

Sad Customer

Send

Customer

Cake Request

Cake
Request

P| Receive Cake

Celebrate

Is the cake

i Layers Request

g ¢!

Decorations
Request

=

Receive
Decorations

Check Cake
Request

Pastry Chef

Assign
Decorations

Cake Delivered

Assign Layers
1]

| Layers Plan

=]
Receive &
Combine Layers Send Cake

5
|
|

| Decorated Layer |

| Layer Request

| Decoration

Receive Send Decorated

Layer Delivered

Assistant

AV
v [
@ Prepare Layer Decoration
Layer Preparation
A ‘,

prly Decoration
A
Layer Plan

Fig. 15. Collaboration with three multi-instance pools.

the CakeRequest message with data from its data object state
(i.e., o, or o). Then, as before, each Pastry Chef instance is able
to coordinate the activity of a specific cake with three different
instances of Assistant. The correlation data allows (i) each Pastry
Chef to assign each type of decorations to the right Assistant;
(ii) each Assistant to send back the decorated layer to the correct
Pastry Chef; and (iii) each Pastry Chef to deliver the cake to
the right Customer. This is supported again by the specification
of correlation data and the use of the match function in rule
C-ReceiveMi.

Finally, let us extend again the scenario by considering a
situation where two customers, requesting different cakes, have
to organise a party together and, hence, will celebrate only if
both of them positively judge their cakes. This requires the two
Customer instances to interact each other to coordinate on the
decision about the party celebration. The resulting collaboration
is depicted in Fig. 16 and presented in our syntax in Appendix C -
Fig. C.29. To enable the interaction among instances of the same
pool we resort to a data store, which acts as a shared memory
allowing the instances to indirectly communicate. We recall in-
deed that in our formalisation the data store state function oy
is not included in the state of process instances, but it is defined
at collaboration level. Specifically, in our example we have added
the data store Judgements, where each Customer instance inserts,
via task Judge Cake, a judgement concerning the received cake.
This is made possible by means of the upd function, executed by
rule P-Task,, that updates the value of the evaluation field of the
data store by applying the assignment Judgment.evaluation
Judgment.evaluation A (Cake.cake = Cake.desiderata). Then, the
Take Decision is activated via the P-Task, rule only after both cake
judgements have been inserted in the data store. This is achieved
by means of the task guard Judgment.counter = 2, where the
field counter is increased by one each time an evaluation is

inserted in the data store. In this way, the customer that has
firstly received a cake must wait for the evaluation of the other
customer. The final decision, stored in the data object Decision,
is subsequently used by both Customer instances to evaluate the
XOR gateway conditions.

5. The MIDA 2.0 animation tool

In this section, we present the version 2.0 of our BPMN anima-
tor tool MIDA (Multiple Instances and Data Animator) and provide
details about its implementation and use. We firstly present the
tool and, then, we show how MIDA 2.0 can effectively support
designers in debugging their models. In the description we resort
to our running example in Fig. 1 to illustrate the tool and its
functionalities.

MIDA 2.0 is a web application written in JavaScript, accessible
by users via a web browser without installing any plug-in or
server backend. MIDA 2.0 has been realised by extending the
“bpmn.io Token Simulation” plugin by Camunda [17]. The tool as
well as source code, binaries, tutorial and example models are
freely available at http://pros.unicam.it/mida. As shown in Fig. 17,
the graphical interface of the tool consists of four main parts:
(i) the canvas, where BPMN elements are composed to form a
collaboration diagram; (ii) the palette, to insert elements in the
diagram,; (iii) the property panel including the Mida tab, to specify
attributes of the BPMN elements contained in the diagram; and
(iv) the data panel, to visualise values of data element fields.
MIDA 2.0 permits to locally save models in the standard format
.bpmn and, hence, to load models previously designed.

5.1. From MIDA to MIDA 2.0

MIDA 2.0 revises and extends the previous version of the tool
presented in [18]. It now supports both modelling and animation

https://doi.org/10.1016/j.i5.2019.101459.

Please cite this article as: F. Corradini, C. Muzi, B. Re et al., Formalising and animating multiple instances in BPMN collaborations, Information Systems (2019) 101459,

http://pros.unicam.it/mida

F. Corradini, C. Muzi, B. Re et al. / Information Systems xxx (XXxx) Xxx 15

|Layer Request

Decoration

D
_ Layers Info —Y* Desiderata, Decorations Info : Cake. vV Sad Customer
£ =
£
s
K} Decorations Receive Cake Judge Cake Celebrate
Request
Cake Happy Customer
Request ;
* Decorations
Request
@
2 Check Cake ! Receive Assign Receive &
2 Request Assign Layers Decorations Decorations Combine Layers Send Cake
& | Cake Preparation (] 1l = Cake Delivered
& Q A T Q o
[N
b HE |
N |
| | .
| Layers Plan | Decorated Layer L — — — — — —
I i !
|

Layer

Send Decorated

Layer Delivered

Assistant

! v
v =
Receive
Layer Preparation
T A Y

H Apply Decoration
AT

Tayer

Fig. 16. Collaboration with interaction among instances of the same pool.

Animation Mode @

Choose Files Cake.bpmn X Save & | Property Panel (0 || Data Panel &

Customer

=

Send
Decorations

Request

Send
Cake Request
27 Cake

Request

Task_0k00I81
Sad Customer
General

General

Id

Task_0k00I81 x

Name

Receive &
Combine Layers

Check Cake
Decorations
n

Pastry Chef

Mida
Task type
Atomic

Guard

Add Assignment | +

Assignments

I
|
|
|
!
1
v

Decorat

DecoratedLayer.layers[Dec | x

Ooosa0S000

Cake_numLayers += 1 x

Sand Decoriisd Cake_cake = DecoratedLay = x

Add Message Field +
Layer Delivored

]
o =
N N Receive
@ Prepare Layer Decoration
Layer Preparation {

Layer Plan

Assistant

Hw y Decoration

Fields Correlation
DecoratedLs x
DecoratedLz x

Fig. 17. MIDA 2.0 web interface.

of a wider set of BPMN elements included in the current state
of the formalisation. The usability of MIDA 2.0 has been also
improved. In particular, the introduction of the Mida tab in the
property panel guides the designer to easily specify relevant
information for multi-instance scenarios (e.g., guards and assign-
ment of tasks, data and message fields, which data must be used
for correlation, the maximum and minimum number of instances
to be activated in a pool). Previously, all this information was
unstructured and collected in description fields of the process

elements. The animation and debugging has been also adapted
to support the novel elements.

5.2. Modelling

The starting point to exploit the MIDA 2.0 functionalities is
the modelling of a BPMN collaboration by means of the MIDA
2.0 modelling environment. Notably, the design goes beyond the
graphical representation of the collaboration diagram. The prop-
erty panel plays a key role when modelling collaborations with

Please cite this article as: F. Corradini, C. Muzi, B. Re et al., Formalising and animating multiple instances in BPMN collaborations, Information Systems (2019) 101459,

https://doi.org/10.1016/j.i5.2019.101459.

16 F. Corradini, C. Muzi, B. Re et al. / Information Systems xxx (XXxX) Xxx

Mida

Task type

Atomic

|

Guard

Layer_status == 'prepared’ x

— Add Assignment | +

Assignments

Layer_position

: Layer_layer = LayerPlan_layer- | x
Layer_status = 'decorated’ x

Layer

Fig. 18. Task guard and assignments.

MIDA 2.0, as it permits exploiting XML attributes of the .bpmn
format to specify and save information about the BPMN elements.
Different information needs to be provided depending on the
considered BPMN element. In particular, information about multi-
instance characteristics, data elements, and messages, which rep-
resent the specificities of our formal semantics, is introduced
during the design of the model by means of the Mida tab.

Let us focus on the multi-instance characteristics. By selecting
a pool element, the Mida tab provides two input fields named
Minimum and Maximum. They allow to constrain the number of
instances that will be executed for that pool. In our running ex-
ample, the Assistant pool has Minimum = ‘1’ and Maximum = ‘3’,
hence every time a LayerRequest message is received by the pool,
it triggers the activation of one instance. Three instances at most
will be activated for the Assistant pool. Differently, multi-instance
tasks are defined by selecting the corresponding marker (||| or
=) in the element context pad and by filling with expressions
the loopCardinality and the completionCondition in the Mida tab.
The evaluation of these expressions indicates, respectively, the
number of task instances to be executed and the condition for
an early termination of the multi-instance task. For example, the
parallel multi-instance AssignLayers task in our running exam-
ple has loopCardinality = ‘3’ and completionCondition = ‘false’,
meaning that there will be exactly three parallel executions of
the task.

Data elements are structured in fields that are specified in
the Mida tab as variables names. They can be initialised (e.g.,
Layersinfo.top = ‘blue’), in order to specify data inputs, or left
undefined (e.g., Cake.cake). Using the Mida tab, users can also
select among a simple data object, input/output data object or
data object collection. Notably, a data collection represents a list
of data items that can be retrieved, modified and reinserted. As
prescribed by the formal semantics, MIDA 2.0 provides dedicated
functions to support such features.

According to the BPMN standard, the access to data is rep-
resented by associations between data elements and tasks that
can predicate over field names. These associations can define
preconditions for the execution of a task, expressed in MIDA 2.0
as a task guard. On the other hand, the effects of a task execution
on a data element is instead specified by means of a list of
assignments. In Fig. 18 we show the guard and the assignments
related to the ApplyDecoration task introduced in the Pastry Chef
pool.

Task behaviour can be chosen between atomic, non-atomic
concurrent, or non-atomic non-concurrent by means of the Mida
tab. A gold label at the right-bottom corner of the task shows the
acronym of the execution modality (i.e., a, na_c, na_nc). In our
running example all tasks are atomic.

Concerning sending and receiving tasks, the Mida tab allows
to specify message fields representing, respectively, message ex-
pressions and templates. In particular, in receiving tasks, for each

General
Id
SequenceFlow_0c5575m x
Name
Yes
Mida
Is the cake good? EApIession
Cake_cake === Desiderata_de x

Fig. 19. XOR conditions.

message field there is also the possibility to put a tick on a
correlation box. Fields with a tick (e.g., the LayerPlan.position
message field of Assistant) are used for pattern-matching.

Values stored in data elements can be also used by conditions
associated to the outgoing sequence edges of XOR split gateways,
in order to support decisions. Fig. 19 reports the conditional
expression contained into the Yes branch of the XOR gateway in
the Customer process of our running example. It checks if the
received cake corresponds to the desiderata and consequently
drives the process completion to a happy end.

5.3. Animation & debugging

The key characteristic of MIDA 2.0 is the animation of collabo-
ration models, which enables models debugging. Anyway, like in
software code debugging, the identification and fixing of bugs are
still in charge of the human user.

By selecting the Animation Mode in the MIDA 2.0 interface, a
play button will appear over each fireable start event. Every time
this button is clicked, a new instance of the desired process is ac-
tivated, accordingly with the multi-instance constraints specified
in the modelling phase. Graphically, this corresponds to the cre-
ation of a new token labelled by a fresh instance identifier. Then,
as shown in Fig. 20, the token starts to cross the model according
to the operational rules induced by our formal semantics. The
animation terminates once all tokens cannot move forward, since
no semantic rule can be applied. From the Data Panel, users can
monitor the evolution of the data state function o, of each process
instance, by observing the values associated by the function to
data element fields, which are organised according to the process
instances they belong to. Fig. 21 shows how data values change
after the execution of the task ReceiveDecoration by means of the
application of rules P-TaskRcv, and C-ReceiveMi, which updates
the fields position and decoration of the LayerPlan data object with
the values received via the Decorations message.

MIDA 2.0 can effectively support designers in identifying is-
sues in their business processes. By pausing the animation, he/she
can take a careful look at the flow of tokens and at the evolution
of data representing the state functions o, and oy, respectively,
in order to immediately detect unwanted behaviours. Moreover,
if a token remains blocked or violates conditions (e.g., guard
conditions, XOR conditions, constraints about maximum number
of instances), MIDA 2.0 highlights it in red, as shown in Fig. 22
where the violation comes from the presence of an undefined
field in the Layers Info data input.

Considering our running example, receiving a LayerRequest
message triggers the activation of a new process instance of As-
sistant (rules P-StartRcv in combination with C-CreateMi), while
a Decoration message has to be routed to an already exist-
ing Assistant instance (rules P-TaskRcvs in combination with

Please cite this article as: F. Corradini, C. Muzi, B. Re et al., Formalising and animating multiple instances in BPMN collaborations, Information Systems (2019) 101459,

https://doi.org/10.1016/j.i5.2019.101459.

F. Corradini, C. Muzi, B. Re et al. / Information Systems xxx (XXxx) xxx 17

o B

Customer

1234 ns

Sad Customer

Sena
Decorations
Request

Celebrate

Happy Customer

¥

Decoratons Decorated Layer

Cake

Check Cake
Request

Cake Preparation

Pastry Chef

" Cake Delivered

Layers Plan

i Play Simulation

i Start Simulation

O Layer Preparation

Layor Roquost Decoration | Loyer

Property Panel (D Data Panel &

Global Data

Instance 1 of Customer

Cake cake

Decorationsinfo_bottom "brown*

Decorationsinto_middle "pink”

Decorationsinfo_top “blue”

Desiderata desiderata "bluedbiue on pink&pink on brownabrown"
Layersinfo_bottom
Layersinfo_middle
Layersinfo_top

“brown"
“pink”
"blue"

Instance 2 of Pastry Chef
LayersPlan_ decorationColor “brown”
LayersPlan layerColor undefined
LayersPlan_position “bottom"
Cake_numLayers 0
Cake_cake [
DecoratedLayer layers o
DecoratedLayer layer o
DecoratedLayer position {}
LayersRequest bottom
LayersRequest_middle
LayersRequest_top

1
1
1
1
! !
1
v

Decoration

=
Prepare Layer Recehe
Layer Preparation
K

0

LayerPlan

[
Send Decorated
Apply Decoration oo
Layer Dotvered
A L

Assistant

(1]

DecorationsRequest_bottom "brown”
DecorationsRequest_middle "pink"
DecorationsRequest_top “blue”

Il LayersPlan_decorationColor [“blue”,"pink","brown”]
W LayersPlan layerColor [nullnullnull]

Il LayersPlan_position [“top""middle","bottom"]

Instance 3 of Assistant
Layer_status o
Layer_position o
Layer_layer null
LayerPlan_position "bottem”

© Message received by Layer Preparation match!

© Message received by Receive Decorations match!

N E

LayerPlan_decoration null

mosign Layers

Decorations

Fig. 20. MIDA 2.0 Animation.

Decorations
n

Fesign Layers

Decorations Decorations

e
“Lud

Layers Plan

Assistant

Decoration

Layer Preparation

' ' :

! |

I L 2

| Layers Plan |

1 1

| Layer Request | Decoration Layer Request
I Av4

Vi =3

Receive
Prepare Layer Decoration

Layer Proparation

Assistant

=

C-ReceiveMi). Hence, in the latter case, the message needs to be
properly correlated to the right instance. Otherwise, the Pastry

Chef risks to receive back cake layers with a wrong decoration.

Receive
Decoration

Prepare Layer

A

Layer Plan

(a)

(b)

Fig. 21. Data Panel before (a) and after (b) the execution of task Receive Decoration.

Customer

Layers Info
Send

| 7
O_’ Cake Request
Cake ‘ ;

Decorations

(=1

Send

Request

Request
I Cake Reguest

Fig. 22. Guard violation.

! Decorations

To ensure the correct correlation, the LayerRequest message con-
tains a field representing the position of the cake layer. Each

Assistant instance stores this information inside the Layer data

object. Then,

the Assistant uses the position value for checking

Please cite this article as: F. Corradini, C. Muzi, B. Re et al., Formalising and animating multiple instances in BPMN collaborations, Information Systems (2019) 101459,
https://doi.org/10.1016/].i5.2019.101459.

18 F. Corradini, C. Muzi, B. Re et al. / Information Systems xxx (XXxX) Xxx

the pattern-matching with the value contained in the received
Decoration messages. However, if the correlation check is not
properly specified in the task ReceiveDecoration (e.g., no cor-
relation data is provided), decorations are applied on layers
randomly. This results with a cake different from the desired
one. However, MIDA 2.0 allows to detect, and hence solve, this
correlation issue. Similarly, malformed or unexpected messages
may introduce deadlocks in the execution flow, which can be
easily identified by looking for blocked tokens in the animation.
For instance, in the running example a Decoration message with-
out the decorationColor field would be never consumed by the
task Receive Decoration of the Assistant pool, because the premise
of rule C-ReceiveMi performing the match function check is not
satisfied, thus making the rule not applicable. Finally, since our
animation is based on data elements fields, also issues due to bad
data handling can be detected using MIDA 2.0. Let us suppose that
the sequential multi-instance receive task Receive & Combine Lay-
ers in the pool Pastry Chef has a wrong loop cardinality set to two
(instead of three). Rule P-MisTask; activates the multiple instance
task. Then, after the receiving of two Layers messages from the
Assistant, rules P-TaskRcvy and P-MisTasks can be applied, and
the Pastry Chef composes a cake with just two layers. Finally,
rules P-MisTask; completes the execution of multiple-instance
task passing the token to the Send Cake task. However, the rule
P-TaskSndy related to the task Send Cake cannot be applied, since
the guard condition Cake.numLayers = 3 is violated. This results
in a deadlock easily detectable by means of MIDA 2.o.

To sum up, the MIDA 2.0 tool can support designers in de-
bugging their multi-instance collaboration models, as it permits
to check the evolution of data, messages and processes marking
while executing the models step-by-step.

6. Related work

In this section we discuss the most relevant attempts in for-
malising multiple instances and data for BPMN models. We then
compare MIDA with other animation tools.

On Formalising Multiple Instances and Data. Many works in
the literature attempted to formalise the core features of BPMN.
However, most of them (see, e.g., [3-10]) do not consider multiple
instances and data, which are the focus of our work. Consider-
ing these features in BPMN collaborations, relevant works are
[19-22]. Meyer et al. in [19] focus on process models where
data objects are shared entities and the correlation mechanism
is used to distinguish and refer data object instances. Use of
data objects local to (multiple) instances, exchange of messages
between participants, and correlation of messages are instead our
focus. In [20], the authors describe a model-driven approach for
BPMN to include the data perspective. Differently from us, they
do not provide a formal semantics for BPMN multiple instances.
Moreover, they do not use data in decision gateways. Moreover,
Kheldoun et al. propose in [21] a formal semantics of BPMN cov-
ering features such as message-exchange, cancellation, multiple
instantiation of sub-processes and exception handling, while tak-
ing into account data flow aspects. However, they do not consider
multi-instance pools and do not address the correlation issue.
Semantics of data objects and their use in decision gateways is
instead proposed by El-Saber and Boronat in [22]. Differently
from us, this formal treatment does not include collaborations
and, hence, exchange of messages and multiple instances. Consid-
ering other modelling languages, YAWL [23] and high-level Petri
nets [24] provide direct support for the multiple instance pat-
terns. However, they lack support for handling data. In both cases,
process instances are characterised by their identities, rather than
by the values of their data, which are however necessary to
correlate messages to running instances.

Regarding choreographies, relevant works are [25-27]. Lépez
et al. [25] study the choreography problem derived from the syn-
chronisation of multiple instances necessary for the management
of data dependencies. Knuplesch et al. [26] introduces a data-
aware collaboration approach including formal correctness crite-
ria. However, they define the data perspective using data-aware
interaction nets, a proprietary notation, instead of the wider
accepted BPMN. Improving data-awareness and data-related ca-
pabilities for choreographies is the goal of Hahn et al. [27]. They
propose a way to unify the data flow across participants with the
data flow inside a participant. The scope of data objects is global
to the overall choreography, while we consider data objects with
scope local to participant instances, as prescribed by the BPMN
standard. Apart from the specific differences mentioned above,
our work differs from the others for the focus on collabora-
tion diagrams, rather than on choreographies. This allows us to
specifically deal with multiple process instantiation and messages
correlation.

Concerning the correlation mechanism, the BPMN standard
and, hence, our work have been mainly inspired by works in the
area of service-oriented computing (see the relationship between
BPMN and WS-BPEL [28] in [1, Sec. 14.1.2]). In fact, when a service
engages in multiple interactions, it is generally required to create
an instance to concurrently serve each request, and correlate
subsequent incoming messages to the created instances. Among
the others, the COWS [16] formalism captures the basic aspects of
service-oriented systems, and in particular service instantiation
and message correlation a la WS-BPEL. From the formal point
of view, correlation is realised by means of a pattern-matching
function similar to that used in our formal semantics. Let us focus
more on how correlation is dealt with in BPMN [1, Sec. 8.3.2]. The
standard identifies two mechanisms to manage the correlation of
messages with process instances. The first is a key-based mecha-
nism that couples sender and receiver by means of the concept of
correlation key. Any message, to be properly correlated, needs to
carry values of a correlation key within its payload. Those values
are initialised during the first interaction and then extracted,
even partially, to correctly match the follow-up messages. The
second is instead a context-based mechanism, as it depends on the
process data (i.e., the content of data elements) associated to the
process instances. This is a more expressive form of correlation
with respect to key-based correlation, since this latter can only
populate a correlation key implicitly from the values of the first
message. Instead, in this case a correlation key can contain formal
expressions dynamically evaluated at runtime using the process
context, hence the correlation key can be automatically updated
whenever the underlying data elements change. “In that sense,
changes in the Process context can alter the correlation condition” [1,
p. 75]. Similarly, in our formalisation we define correlation keys
in the receiving elements to match the correct messages and to
store their payload. In particular, in our case correlation keys are
identified by the template fields that are not formal (i.e., without
the ?-tag). Since non formal fields are either values or expres-
sions, our approach based on pattern-matching is able to mime
both the key-based and the context-based mechanism. However,
BPMN considers a correlation key as “a composite key out of
one or many CorrelationProperties that essentially specify extraction
Expressions atop Messages” and, in the context-base case, “atop
the Process context" [1, pp. 75-76]. Thus, correlation properties
can be quite articulate expressions, especially when they have
to be used to match messages with complex structures. Instead,
in our case, messages have a simple tuple structure, i.e., they
are ordered lists of values. As consequence, our templates are
ordered lists as well, and the correlation mechanism, once the
template expressions have been evaluated, simply performs a
(field-by-field) pattern-matching check.

https://doi.org/10.1016/j.i5.2019.101459.

Please cite this article as: F. Corradini, C. Muzi, B. Re et al., Formalising and animating multiple instances in BPMN collaborations, Information Systems (2019) 101459,

F. Corradini, C. Muzi, B. Re et al. / Information Systems xxx (XXxx) Xxx 19

Concerning data-awareness in process modelling, several works
refer to the data-centric approach (see, e.g., the surveys [29-
31]). This approach uses data elements as first class citizens
and focusses on their life cycles (i.e.,, on the data flow) [32].
Differently, our approach focusses on BPMN as reference lan-
guage, thus concentrating on activities and, more generally, on
control flow. Data elements act as pre- and post-conditions for
activity execution, and as main decision indicator at exclusive
gateways. Moreover, our main interest is the study of the BPMN
management of multiple instances that, even if it is affected by
data, keeps the focus on the control flow perspective.

Finally, to the best of our knowledge, no work in the literature
permits to specify different execution modalities (i.e., atomic,
non-atomic concurrent, non-atomic non-concurrent) for tasks of
BPMN models. This feature allows us to study, e.g., the impact of
different settings of such modalities in BPMN models involving
multi-instance tasks that access data.

Business Process Animation. Relevant contributions about ani-
mation of business processes are proposed in literature and from
modelling tool vendors. Differently from us, in these implemen-
tations the interplay between multiple instances, messages and
data is not fully supported. Allweyer and Schweitzer [33] propose
a tool for animating BPMN models that considers only processes,
as it discards message exchanges, both semantically and graph-
ically. In addition, gateway decisions are performed manually
by users during the animation, instead of depending on data.
Aysolmaz [34] proposes an animator for BPMN process models,
decoupling the animation from the modelling that is not directly
supported by the tool. Even though the graphic approach is
notable, several modelling elements are not implemented in the
tool, in particular data and multiple instances. The animator of the
Signavio [35] modeller allows users to step through the process
element-by-element and to focus completely on the process flow.
However, it discards important elements, such as message flows
and data objects. Hence, Signavio animates only non-collaborative
processes, without data-driven decisions, which instead are key
features of our approach. Finally, Visual Paradigm [36] provides
an animator that supports also collaboration diagrams. This tool
allows users to visualise the flow of messages and implements the
semantics of receiving tasks and events, but it does not animate
data evolution and multiple instances.

7. Concluding remarks

In this paper we provide a novel operational semantics clari-
fying the interplay between control features, data, message ex-
changes and multiple instances. Moreover, we propose MIDA,
an animator tool, based on our formal semantics, that provides
the visualisation of the behaviour of a collaboration by taking
into account the data-based correlation of messages to process
instances. We have shown, on our running example, that MIDA
supports designers to spot erroneous behaviours. It is worth
noticing that beyond the case study we use in the paper as
running example, in the MIDA web page we also make avail-
able a collection of BPMN models referring to different scenarios
ready to be animated (concerning, e.g., conference paper review-
ing, travel booking, smart home heating system management,
procedures for student internship and exam registration).> Each
example is provided in different variants, to show to the user how
MIDA can spot different execution issues.

3 These BPMN models are available at: https://bitbucket.org/proslabteam/
mida/src/36a18b195b5a/assets/examples/.

Fig. 23. Atomic vs non-atomic task execution.

We conclude the paper by discussing lessons learned, and the
assumptions and limitations of our approach, also touching upon
directions for future work.

Lessons learned. The BPMN standard has the flavour of a frame-
work rather than of a concrete language, because some aspects
are not covered by it, but left to the designer [37]. For example,
the standard left underspecified the internal structure of data
objects: “Data Object elements can optionally reference a DataState
element |[...] The definition of these states, e.g., possible values and
any specific semantics are out of scope of this specification” [1, p.
206]. The situation does not change if we refer to the internal
structure of data stores and data collections. This gap left by the
BPMN standard must be filled in order to concretely deal with
data in our formalisation, and hence in the animation of BPMN
collaboration models. To this aim, we consider a generic record
structure for data elements. Similarly, the expression language
operating on data is left unspecified by the standard. This is
not an issue for the formalisation, but the expression language
has to be instantiated in the concrete implementation of the
animator. In MIDA 2.0, for the sake of simplicity, we resort to the
expression language of JavaScript, as this is the language used for
implementing the tool.

The BPMN standard also lacks of a clear description of the task
execution modality. The paper contributes to fill this gap thanks
to the capability of our semantics to manage different modalities
of task execution taking into account atomicity and concurrency.
We explain this feature by means of the process model in Fig. 23.
It provides a minimal example whose execution consists in per-
forming firstly Task A, then Task B and Task C in parallel, and when
both complete, the process ends. All these tasks can access to the
data object Data composed by three fields a, b, and c. Guards and
assignments are specified as follows: (i) Task A has true as guard
condition and performs the assignment Data.a := 1; (ii) Task B
has Data.a = 1 as guard and performs Data.b := 2 and Data.a :=
0 as assignments; and (iii) Task C has Data.a = 1 as guard and
performs Data.c := 5 and Data.a := 0 as assignments. The
execution of this process can produce different results depending
on the execution modality setting of its tasks. In case all tasks
are executed with the atomic modality, the assignment to the
field a performed by the firstly executed task between Task B
and Task C disables the other task (because it makes the task’s
guard become false). Therefore, regardless the order of execution
of the parallel tasks, the execution of the overall process never
reaches the end. In the non-atomic case, instead, different process
executions can take place, as the task execution is now split in
two steps: (i) guard evaluation, and (ii) assignments execution.
Depending on how these steps of the execution of Task B and
Task C interleave, the process may ends properly or not. Finally,
in case the tasks could be activated more than once at the same
time (e.g., in case they would be multi-instance tasks, or in case of
an unsafe process), the overall behaviour would be also affected
by the setting of the concurrent execution modality, which may
allow or not the interleaved execution among instances of the
same task.

Please cite this article as: F. Corradini, C. Muzi, B. Re et al., Formalising and animating multiple instances in BPMN collaborations, Information Systems (2019) 101459,

https://doi.org/10.1016/j.i5.2019.101459.

https://bitbucket.org/proslabteam/mida/src/36a18b195b5a/assets/examples/
https://bitbucket.org/proslabteam/mida/src/36a18b195b5a/assets/examples/

20

ORGA

ORGB

()

F. Corradini, C. Muzi, B. Re et al. / Information Systems xxx (XXxX) Xxx

ORGA

(b)

Fig. 24. Parallel multi-instance send tasks (a) and its macro expansion (b).

In addition, the lack of a formal semantics in the standard
may lead to different interpretations of the tricky features of
BPMN. In this work we aim at clarifying the interplay between
multiple instances, messages and data objects. In particular, the
standard provides an informal description of the mechanism used
to correlate messages and process instances [1, p. 74], which
we have formalised and implemented by following the solution
adopted by the standard for executable business processes [28].
However, the BPMN standard does not provide any hint on how
instances of the same process can communicate with each other.
As discussed in Section 4, this may be particular useful in practical
scenarios when instances of the same pool have to coordinate
(in case, e.g., they need to achieve an agreement on a shared
decision). To this aim, we have exploited a data store to share
persistent information among the instances.

Finally, even if from the semantic point of view it is a common
practice to consider multi-instance tasks as macros, we have
provided in this paper a direct characterisation of their semantics.
Concerning the sequential case, we are aware that the multi-
instance task can be simply dealt with as a macro: it corresponds
to a task enclosed within a sort of ‘for’ loop. Indeed, this was
the solution we adopted in [14]. However, to keep track of the
number of executed instances it is necessary to add to the model
a further data object, to be used as a counter, for each multi-
instance task. Moreover, to provide a complete specification of
this BPMN element, loop cardinality expression and completion
condition have to be considered. Even if formally sound, the use
of this macro alters the original model, increasing its complexity,
and hence is not practical in supporting tools, like the MIDA 2.0
animator. This is why we have decided to introduce a syntactic
term for sequential multi-instance tasks with its own semantic
rules. The parallel case, instead, is more tricky. It is commonly
considered as a macro as well: the parallel multi-instance task is
thought of as a set of tasks between AND split and join gateways
[6,23], assuming to know at design time the number of instances
to be generated. However, this replacement is no longer admis-
sible when this kind of element is used within multi-instance
pools, thus requiring a direct definition of its formal seman-
tics. In fact, consider for example the collaboration fragment in
Fig. 24(a), where a multi-instance receiving task communicates
with a multi-instance pool. Supposing to have three instances of
Task A, by applying the mentioned macro replacement we would
obtain the collaboration fragment in Fig. 24(b), which however
is not semantically equivalent. Indeed, each instance of ORG B
in Fig. 24(a) has a Task B that sends only one message, while in
Fig. 24(b) each instance has a Task B sending three times the same
messages, one for each copy of Task A in ORG A. This suggests that
parallel multi-instance tasks are not simple macros, but they re-
quire their own direct formalisation, as we have done in our work.

Assumptions and limitations. Our formal semantics focusses on
the communication mechanisms of collaborative systems, where

multiple participants cooperate and share information. Thus, we
have left out those features of BPMN whose formal treatment is
orthogonal to the addressed problem, such as timed events and
error handling.

Moreover, to keep our formalisation more manageable, sub-
processes are left out, despite they can be relevant for multi-
instance collaborations. Introducing sub-processes in our formal-
isation cannot be done by including it as a mere macro. In fact, in
general, simply flattening a process by replacing its sub-process
elements by their expanded processes results in a model with
different behaviour. This because a sub-process, for example,
delimits the scope of the enclosed data objects and confines
the effect of termination events. Therefore, it would be neces-
sary to explicitly deal with the resulting multi-layer perspective,
which adds complexity to the formal treatment. The formalisa-
tion would become even more complex if we consider multi-
instance sub-processes, which would require an extension of the
correlation mechanism.

Finally, in our work we use concrete values for data elements,
since our aim is to support model animation. This data man-
agement approach is however not adequate to support model
simulation, where many executions of the same model can be
automatically produced by constraining the involved values.

Future Work. We plan to continue our programme to effectively
support modelling and animation of BPMN multi-instance collab-
orations, by overcoming the above limitations. In particular, we
intend to extend the treatment of data perspective, by consider-
ing more sophisticated definitions of the internal structure of data
elements (e.g., based on UML) with respect to the generic record
structure considered here. In addition, we plan to investigate
other expression languages operating on data (e.g., the language
FEEL [38, Ch. 10]). Moreover, we plan to extend our work, both
from the formal and practical perspective. To this aim, we intend
to first define a symbolic formal semantics, like that in [39], and
then to extend the MIDA implementation accordingly. The use
of SMT solvers will be considered to deal with the constraints
generated by the symbolic semantics. Finally, we plan to ex-
ploit the formal semantics, and its implementation, to enable the
verification of properties using, e.g., model checking techniques.

Declaration of competing interest

The authors declare that they have no known competing finan-
cial interests or personal relationships that could have appeared
to influence the work reported in this paper.

Acknowledgment

This work has been partially supported by the PRIN projects
“SEDUCE" n. 2017TWRCNB and “Fluidware" n. 2017KRC7KT.

https://doi.org/10.1016/j.i5.2019.101459.

Please cite this article as: F. Corradini, C. Muzi, B. Re et al., Formalising and animating multiple instances in BPMN collaborations, Information Systems (2019) 101459,

F. Corradini, C. Muzi, B. Re et al. / Information Systems xxx (XXxX) XxX 21

Table A.1
Correspondence between graphical and textual notation: pools and events.

Appendix A. One-to-one correspondence between the BPMN
graphical notation and textual notation and our textual no-

Graphical Notation Textual Notation

pool(p, P)

tation (most relevant cases).

See Tables A.1-A.3.

miPool(p, P, max)

start(e’, e)

O
= v o

3

startRev(m:t, e)

<]—

©

end(e)

endSnd(e, m:exp)

terminate(e)

®®- O

©
>®
o

interRcv(e, m:t,e’)

3

O._

@
@

interSnd(e, m:exp, ¢)

<3

Appendix B. Omitted formal definitions of auxiliary functions
and relations

We report in this appendix the formal definitions of auxiliary
functions and relations that, for the sake of readability, have been
omitted in the body of the paper.

e Functions inc and dec on o, extend in a natural ways to sets
E of edges. Specifically, inc is inductively defined as follows:

- inc(oe,) = 0,
- inc(oe, {e} UE) = inc(inc(oe, €), E)
while dec is inductively defined as follows:
- dec(o,, @) = o,
- dec(oe, {e} UE) = dec(dec(o,, €), E)
e Function reset on o, extends in a natural ways to sets of
edges as follows:
- reset(oe, D) = 0,
- reset(o., {e} UE) = reset(reset(o,, e), E)

e Relation upd is inductively defined as follows, for any oy,
Odc, Ods-

- upd(adm Odcs Ods, €, Odo, Odc» Uds)
- upd(0go, Odc, Ods, do.f := exp, oo - [do.f > V], oyc, 04s)
with v such that eval(exp, 649, 04c, Ods, V)
upd(c o, Odc, 0ds, ds.f := exp, 04, Oc, s -

[ds.f — v])

Table A.2

with v such that eval(exp, 640, 04c, Ods, V)
upd(oao, Odc, Ods, get(do), ouo - 04y, 0}, Ods) With ac(do)
= (odlo, adzo, ...,o4) and oy such that o;.(do) =

Correspondence between graphical and textual notation: gateways.

Graphical Notation Textual Notation
2
o1 3 andSplit(el, {€2, e3,e4})
e4
e2v1
» @2 xorSplit(el, {(e2, query = v1), (€3, query = v»), (e4, default)})
query
el
2 o4 andJoin({el, e2, e3}, e4)
e3
el
2 o4 xorJoin({el, e2, e3}, e4)
e3
eventBased(el, (m2:12,€2), (m3:t3,e3), (m4:ty, e4))

Please cite this article as: F. Corradini, C. Muzi, B. Re et al., Formalising and animating multiple instances in BPMN collaborations, Information Systems (2019) 101459,

https://doi.org/10.1016/j.i5.2019.101459.

22

Table A.3

F. Corradini, C. Muzi, B. Re et al. / Information Systems xxx (XXxX) Xxx

Correspondence between graphical and textual notation: tasks.

Graphical Notation Textual Notation

task(e, n, N,exp(dy, da), (ds.f1 := expy,...,ds.fy :=exp,),€’)

taskRev(e, n, N, exp(dy, da), (d3.f1 := expy, ..., ds.fy := exp,), m:%,€’)

taskSnd(e, n, N, exp(dq, d2), (d3.f := expy, ..., d3.fy := exp,), m:exXp, ¢’)

mipTask(e, exp, task(e”, n, N, notEmpty(d;),
(get(dy),da.f1 :=expyq,...,da.fy := exp,,
push(d2)), "), c,exp’, &’)

misTask(e, exp, task(e”, n, N, notEmpty(d;),
(get(dy),da.f1 1= expyq, ..., do.fy 1= exp,,
push(d2)),e”), c,exp’, &)

T / / / / / /
<P7 Oe,O0do, O'dC,O'dS70't,O'C> - <0-370'd070'dca O4s> Ot Uc>

Uz(p) = {<U€70d070dcagtvgc>}

pool(p, P) = {updInst(c;,p, 0L, 01y Olies Ohy 0y &), 0

<P7 Oey;0dosOdcyOdsy Ot UC>
Ve am(m)

(C-Internal)

0i(p) = {{0¢, 0do, Oac, 01, 0¢)}

?m:et,A

d == (01, 0,04,00)
match(et, V) = A’ upd(oly, (A", A), 00}, 00, 0l.)

pool(p, P) Im:v, CupdInst(o;, p, {0, 0oy Oy Tty Tor})s T(T i, M, V), 07

/ o
<P 0670d0a0d670d870t706> —’ <O’e,0'do70'dc,0'ds,0't,0'c>

(C-Receive)

U’L() - {<0-670-d070—d670-tvo-c>}

pool(p, P) dm:v, CupdInst(oy, p, {0, 040, Ohey 01, 0oV}, add(0p, M, V), 00>

(C-Deliver)

Fig. B.25. BPMN collaboration semantics (omitted rules).

(crdzo, ...,o4) and o;.(do’) = o4(do’) with do # do/, - upd(cdo, Odc, 0as, (A1, Az), 0, 04, 04) With oy, oy, oy

where oy - 0

0,(doq.fr), ..., do,.fy >0, (do,.f,)], Vdo,.f; € F such

that Uéo(doi.f;) 75 null

= upd(04o, Tdc, 0ds, push(do), oo, Oécy ogs) with oyc(do) =
(04,02,...,08) and o}, such that oj(do) =
(UJO, Ofys -1 04y 04 and oy.(do’) = oyc(do’) for

do’ # do, and o}, such that ¢ (do”.f) = og,(do”.f) if

! 4 ! " " " U !
such that upd(oy,, 0., 04, Az, 04, 04, 04) and oy, 0.

= lof - [doj.fy >
do [dos o, such that upd(ogo. 0ac, Ogs, A1, 0y, Oler T4)

e Function match is inductively defined as follows:

match(v, v) =

match(?do.f, v) (do.f:=v)

match(?ds.f, v) = (ds.f ;= v)

match((et', et), (V/, V)) = match(et’, v'), match(et, V)

e The omitted rules of the collaboration semantics are re-

do” = do and o (do”.f) = null if do” # do ported in Fig. B.25.

Please cite this article as: F. Corradini, C. Muzi, B. Re et al., Formalising and animating multiple instances in BPMN collaborations, Information Systems (2019) 101459,

https://doi.org/10.1016/j.i5.2019.101459.

F. Corradini, C. Muzi, B. Re et al. / Information Systems xxx (XXxx) Xxx 23
Appendix C. Textual representation of the running example
revisions

For sake of presentation, guards that check the initialisation of
data fields are omitted in the following model specifications.

Overall cake preparation collaboration scenario:
pool(pc, Pe) || miPool(pp, Pp,2) || miPool(pa, Pa, 6)
Customer process :
P. = start(er,e2) || misTask(ez, 2, taskSnd(e}, SendCakeRequest, a, exp;, A1, CakeRequest : exp,, €}), c1, false, e3) ||

misTask(es3, 2, taskSnd (e, SendDecorationsRequest, a, exps, A2, Decorations: expy, €}), c2, false, e4) ||
misTask(eq, 2, taskRev (e}, ReceiveCake, a, true, Az, Cake:ty, €}), c3, false, es) ||
task(es, JudgeCakes, a, exps, A4, e6) || xorSplit(es, {(e7, Evaluation.result = false), (eg, Evaluation.result = true)}) ||
end(e7) || task(es, Celebrate, a, true, €, eg) || end(eg)

Templates, expressions, assignments :

A1 = get(LayersInfo), LayersDesiderata.top := LayersInfo.top, LayersDesiderata.middle := LayersInfo.middle,
LayersDesiderata.bottom := LayersInfo.bottom, push(LayersDesiderata)
exp, = <(LayersInfo.top, LayersInfo.middle, Layersinfo.bottom, LayersInfo.cakelD)
As = get(LayersDesiderata), get(Decorationsinfo), CakesDesiderata.cake := LayersDesiderata.top + ‘&’ +

DecorationsInfo.top + ‘on’+LayersDesiderata.middle + ‘&’ +DecorationsInfo.middle + ‘on’+
LayersDesiderata.bottom + ‘&’+DecorationsInfo.bottom,
CakesDesiderata.cakelD := LayersDesiderata.cakelD, push(CakesDesiderata)

expy = (Decorationsinfo.top, DecorationsInfo.middle, DecorationsiInfo.bottom, LayersDesiderata.cakelD)
A3z = push(Cakes)
t1 = (?Cakes.cake, ?Cakes.cakelD)
A4 = Evaluation.result := compare(CakesDesiderata, Cakes)
Pastry Chef process :
P, = startRcv(CakeRequest:t31,e01) || task(eo1, CheckCakeRequest, a, expyy, A21,e22) ||

mipTask(ez2, 3, taskSnd(e),, AssignLayers, a, expy,, Az, LayerRequest : expos3, €5, Cs, false, e23) ||
taskRcv(e23, ReceiveDecorations, a, expy,, A3, Decorations: t2o, €24) ||
mipTask(ez4, 3, taskSnd(e,,, AssignDecorations, a, exp,s, A2s, Decoration :e>~<|326, e%s), Cs, false, exs) ||
misTask(ezs, 3, taskRev (el , Receive& CombineLayers, a, expy7, Aos, Layer: ta3, €)¢), c7, false, ex) ||
taskSnd(e2¢, SendCake, a, expog, €, Cake: expyg, €27) || end(ez7)

Templates, expressions, assignments :

to1 = (?LayersRequest.top, ?LayersRequest.middle, ?LayersRequest.bottom, ?LayersRequest.cakelD)

A21 = LayersPlan.position := ‘bottom’, LayersPlan.layerColor := LayersRequest.bottom,
LayersPlan.cakelD := LayerRequest.cakelD, push(LayersPlan),
LayersPlan.position := ‘middle’, LayersPlan.layerColor := LayersRequest.middle,
LayersPlan.cakelD := LayerRequest.cakelD, push(LayersPlan),
LayersPlan.position := ‘top’, LayersPlan.layerColor := LayersRequest.top,
LayersPlan.cakelD := LayerRequest.cakelD, push(LayersPlan)

Azo = get(LayersPlan)

expy3 = (LayersPlan.layerColor, LayersPlan.position, LayersPlan.cakelD)
Ag23 = LayersPlan.position:=‘bottom’, LayersPlan.decorationColor := DecorationsRequest.bottom,

LayersPlan.cakelD := LayerRequest.cakelD, push(LayersPlan),

LayersPlan.position := ‘middle’, LayersPlan.decorationColor := DecorationsRequest.middle,
LayersPlan.cakelD := LayerRequest.cakelD, push(LayersPlan),

LayersPlan.position := ‘top’, LayersPlan.decorationColor := DecorationsRequest.top,
LayersPlan.cakelD := LayerRequest.cakelD, push(LayersPlan)

tzo = (?DecorationsRequest.top, ?DecorationsRequest.middle, ?DecorationsRequest.bottom, LayerRequest.cakelD)
Azs = get(LayersPlan)
expyg = (LayersPlan.position, LayersPlan.decorationColor, LayerRequest.cakelD)
Ags = Cake.cake := addLayer(DecoratedLayer.layer, DecoratedLayer.position),
Cake.numlayers := Cake.numLayers + 1, Cake.cakelD := LayersRequest.cakelD
t3 = (7Decoratedlayer.layer, ?DecoratedLayer.position, LayerRequest.cakelD)
expag = Cake.numLayers = 3
expyg = (Cake.cake, Cake.cakelD)

Fig. C.26. Textual representation of the running example (first revision, part 1/2).

Assistant process :
P, = startRev(LayerRequest:t31,e31) || task(es1, Preparelayer, a, exps;, As1, e32) ||
taskRcv(e32, ReceiveDecoration, a, true, €, Decoration : t32, e33) || task(ess, ApplyDecoration, a, exps,, A3z, e34) ||
taskSnd(e34, SendDecoratedLayer, a, expss, €, Layer: expsy, e35) || end(ess)
Templates, expressions, assignments :
t31 = {(7LayerPlan.layerColor, ?LayerPlan.position, ?Layer.id)
Asz1 = Layer.status := ‘prepared’
tzz = <{LayerPlan.position, ?LayerPlan.decorationColor, Layer.id)
expzy, = Layer.status = ‘prepared’
Aso = Layer.status := ‘decorated’, Layer.position := LayerPlan.position, Layer.layer := LayerPlan.layerColor+
‘&’ +LayerPlan.decorationColor
expgz3 = Layer.status = ‘decorated’
expsy = (Layer.layer, Layer.position, Layer.id)

Fig. C.27. Textual representation of the running example (first revision, part 2/2).

Please cite this article as: F. Corradini, C. Muzi, B. Re et al., Formalising and animating multiple instances in BPMN collaborations, Information Systems (2019) 101459,
https://doi.org/10.1016/j.i5.2019.101459.

24 F. Corradini, C. Muzi, B. Re et al. / Information Systems xxx (XXxX) Xxx

Overall cake preparation collaboration scenario:
miPool(pc, Pc,2) || miPool(pp, Pp,2) || miPool(pq, Pa, 6)
Customer process :
P. = start(eq,e2) || taskSnd(e2, SendCakeRequest, a, exp;, A1, CakeRequest : exp,, e3) ||

taskSnd(es, SendDecorationsRequest, a, exp3, Az, Decorations: expy, es) ||
taskRcv(eq, ReceiveCake, a, true, ¢, Cake:t1, es) ||
xorSplit(es, {(es, Cake.cake # Desiderata.cake), (e7, Cake.cake = Desiderata.cake)}) ||
end(eg) || task(er, Celebrate, a, true, €, eg) || end(es)

Templates, expressions, assignments :

A1 = Desiderata.top := LayerslInfo.top, Desiderata.middle := LayersInfo.middle,
Desiderata.bottom := LayersInfo.bottom
expy, = (layerslnfo.top, Layersinfo.middle, Layersinfo.bottom, customerName())
Az = Desiderata.cake := Desiderata.top + ‘&’+DecorationsInfo.top + ‘on’+Desiderata.middle
+¢&’+DecorationsInfo.middle + ‘on’+Desiderata.bottom + ‘&’ +DecorationslInfo.bottom
expy = (DecorationsInfo.top, DecorationsInfo.middle, Decorationslnfo.bottom, customerName())
t1 = (?Cake.cake, customerName())
Pastry Chef process :
P, = startRev(CakeRequest:ty1,ep1) || task(e21, CheckCakeRequest, a, expyy, A2, €22) ||

mipTask(e22, 3, taskSnd(e5,, AssignLayers, a, expyy, A2z, LayerRequest : expys, e55), c1, false, e23) ||

taskRcv(e2s, ReceiveDecorations, a, exp,,, A2z, Decorations: t32, e24) ||

mipTask(ez4, 3, taskSnd (e}, , AssignDecorations, a, expys, A24, Decoration :e>~<f)26, ehs), C2, false, es5) ||

misTask(e2s, 3, taskRev(e}; , Receive& Combinelayers, a, exp,7, Aos, Layer : 23, €)¢), c3, false, e26) ||

taskSnd (e, SendCake, a, expag, €, Cake: expyg, €27) || end(e27)

Templates, expressions, assignments :
ts1 = (?LayersRequest.top, ?LayersRequest.middle, ?LayersRequest.bottom, ?LayersRequest.customerName)
Ag1 = LayersPlan.position := ‘bottom’, LayersPlan.layerColor := LayersRequest.bottom,

LayersPlan.customerName := LayersRequest.customerName, push(LayersPlan),
LayersPlan.position := ‘middle’, LayersPlan.layerColor := LayersRequest.middle,
LayersPlan.customerName := LayersRequest.customerName, push(LayersPlan),
LayersPlan.position := ‘top’, LayersPlan.layerColor := LayersRequest.top,
LayersPlan.customerName := LayersRequest.customerName, push(LayersPlan)

Ao = get(LayersPlan)
expy3 = <(LayersPlan.layerColor, LayersPlan.position, LayersPlan.customerName)

Agz = LayersPlan.position:= ‘bottom’, LayersPlan.decorationColor := DecorationsRequest.bottom,
LayersPlan.customerName := LayersRequest.customerName, push(LayersPlan),
LayersPlan.position :=‘middle’, LayersPlan.decorationColor := DecorationsRequest.middle,
LayersPlan.customerName := LayersRequest.customerName, push(LayersPlan),
LayersPlan.position:= ‘top’, LayersPlan.decorationColor := DecorationsRequest.top,
LayersPlan.customerName := LayersRequest.customerName, push(LayersPlan)

tpo = (?DecorationsRequest.top, ?DecorationsRequest.middle, 7DecorationsRequest.bottom, LayersRequest.customerName)
Agq4 = get(LayersPlan)
expog = <(LayersPlan.position, LayersPlan.decorationColor, LayersPlan.customerName)
Ass = Cake.cake := addLayer(DecoratedLayer.layer, DecoratedLayer.position),
Cake.numLayers := Cake.numLayers + 1, Cake.cakelD := LayersRequest.customerName
ta3 = (?DecoratedLayer.layer, ?DecoratedLayer.position, LayersRequest.customerName)
expgg = Cake.numlayers = 3
expyg = <(Cake.cake, Cake.cakelD)
Assistant process :
P, = startRev(LayerRequest:t31,e31) || task(esi, Preparelayer, a, exps;, Az, e32) ||

taskRcv(es2, ReceiveDecoration, a, true, e, Decoration : t32, e33) ||

task(ess, ApplyDecoration, a, exps,, Az2, €34) ||

taskSnd(es4, SendDecoratedLayer, a, expss, €, Layer:expsg, e35) || end(ess)
Templates, expressions, assignments :

t31 = (?LayerPlan.layerColor, ?LayerPlan.position, ?Layer.id)
A3y = Layer.status := ‘prepared’
tzz = <(LayerPlan.position, ?LayerPlan.decorationColor, Layer.id)
exp3y = Layer.status = ‘prepared’
Aszo = Layer.status := ‘decorated’, Layer.position := LayerPlan.position,
Layer.layer := LayerPlan.layerColor + ‘&’ +LayerPlan.decorationColor
expsz = Layer.status = ‘decorated’
exps, = <{Layer.layer, Layer.position, Layer.id)

Fig. C.28. Textual representation of the running example (second revision).

Please cite this article as: F. Corradini, C. Muzi, B. Re et al., Formalising and animating multiple instances in BPMN collaborations, Information Systems (2019) 101459,
https://doi.org/10.1016/j.i5.2019.101459.

F. Corradini, C. Muzi, B. Re et al. / Information Systems xxx (XXxx) Xxx 25

Overall cake preparation collaboration scenario:
miPool(pe, Pe, 2) || miPool(pp, Pp,2) || miPool(pa, Pa, 6)
Clustomer process :
P. = start(er,e2) || taskSnd(ez, SendCakeRequest, a, exp;, A1, CakeRequest : exp,, e3) ||

taskSnd(es, SendDecorationsRequest, a, expsz, A2, Decorations: exp,, es) ||
taskRcv(eq, ReceiveCake, a, true, €, Cake: t1, es5) || task(es, JudgeCake, a, true, Az, eg) ||
task(eg, TakeDecision, a, exps, As, e7) || xorSplit(e7, {(eg, Decision.result = false), (eg, Decision.result = true)}) ||
end(eg) || task(eg, Celebrate, a, true, €, e19) || end(e1p)

Templates, expressions, assignments :

A; = Desiderata.top := LayersInfo.top, Desiderata.middle := LayersInfo.middle,
Desiderata.bottom := LayersInfo.bottom
exp, = (LayersInfo.top, Layersinfo.middle, Layersinfo.bottom, customerName())
Az = Desiderata.cake := Desiderata.top + ‘&’ +DecorationsInfo.top + ‘on’+Desiderata.middle
+¢&’+DecorationsInfo.middle + ‘on’+Desiderata.bottom + ‘&’ +DecorationsInfo.bottom
expy = <{DecorationsInfo.top, DecorationsInfo.middle, DecorationsInfo.bottom, customerName())
t1 = (7Cake.cake, customerName())
Az = Judgment.evaluation := Judgment.evaluation A (Cake.cake = Cake.desiderata),
Judgment.counter := Judgment.counter + 1
exp; = Judgment.counter = 2
A4 = Decision.result := Judgment.evaluation

Pastry Chef process :
P, = startRcv(CakeRequest:t31,e21) || task(ez1, CheckCakeRequest, a, expyy, A21, €22) ||

mipTask(e22, 3, taskSnd (e}, , AssignLayers, a, expyy, A2z, LayerRequest : expos, €35), c1, false, e23) ||
taskRcv(e23, ReceiveDecorations, a, exp,,4, A23, Decorations:t2;, e24) ||
mipTask(e24, 3, taskSnd (e}, AssignDecorations, a, exp,s, Az4, Decoration:: e>§b26, €5), C2, false, eos) ||
misTask(e2s, 3, taskRcv(el 5, Receive&Combinelayers, a, expy;, Aos, Layer: t23, €)), c3, false, ex) ||
taskSnd(ezq, SendCake, a, expyg, €, Cake: expyg, €27) || end(ez7)

Templates, expressions, assignments :

to1 = (7LayersRequest.top, ?LayersRequest.middle, ?LayersRequest.bottom, ?LayersRequest.customerName)

Ao1 = LayersPlan.position := ‘bottom’, LayersPlan.layerColor := LayersRequest.bottom,
LayersPlan.customerName := LayersRequest.customerName, push(LayersPlan),
LayersPlan.position := ‘middle’, LayersPlan.layerColor := LayersRequest.middle,
LayersPlan.customerName := LayersRequest.customerName, push(LayersPlan),
LayersPlan.position := ‘top’, LayersPlan.layerColor := LayersRequest.top,
LayersPlan.customerName := LayersRequest.customerName, push(LayersPlan)

Aza = get(LayersPlan)

expys = (LayersPlan.layerColor, LayersPlan.position, LayersPlan.customerName)
Agz = LayersPlan.position:=‘bottom’, LayersPlan.decorationColor := DecorationsRequest.bottom,

LayersPlan.customerName := LayersRequest.customerName, push(LayersPlan),
LayersPlan.position := ‘middle’, LayersPlan.decorationColor := DecorationsRequest.middle,
LayersPlan.customerName := LayersRequest.customerName, push(LayersPlan),
LayersPlan.position:= ‘top’, LayersPlan.decorationColor := DecorationsRequest.top,
LayersPlan.customerName := LayersRequest.customerName, push(LayersPlan)

tzo = (?DecorationsRequest.top, 7DecorationsRequest.middle, 7DecorationsRequest.bottom, LayersRequest.customerName)
Asq4 = get(LayersPlan)
expyg = (LayersPlan.position, LayersPlan.decorationColor, LayersPlan.customerName)
Ass = Cake.cake := addLayer(DecoratedLayer.layer, DecoratedLayer.position),
Cake.numLayers := Cake.numLayers + 1, Cake.cakelD := LayersRequest.customerName
ta3 = (?DecoratedLayer.layer, ?DecoratedLayer.position, LayersRequest.customerName)
expyg = Cake.numlayers = 3
expyg = (Cake.cake, Cake.cakelD)
Assistant process :
P, = startRcv(LayerRequest:t31,es1) || task(es1, Preparelayer, a, exps;, As1, e32) ||

taskRcv(es2, ReceiveDecoration, a, true, €, Decoration : t3, e33) ||

task(ess, ApplyDecoration, a, exps,, Az2, €34) ||

taskSnd(ess, SendDecoratedLayer, a, expss, €, Layer:exps,, e35) || end(ess)
Templates, expressions, assignments :

ts1 = (?LayerPlan.layerColor, ?LayerPlan.position, ?Layer.id)
As; = Layer.status := ‘prepared’
tzp = (LayerPlan.position, ?LayerPlan.decorationColor, Layer.id)
expgy = Layer.status = ‘prepared’
Asa = Layer.status := ‘decorated’, Layer.position := LayerPlan.position,
Layer.layer := LayerPlan.layerColor + ‘&’ +LayerPlan.decorationColor
expgzz3 = Layer.status = ‘decorated’
expsy = (Layer.layer, Layer.position, Layer.id)

Fig. C.29. Textual representation of the running example (third revision).

References [3] Flavio Corradini, Andrea Polini, Barbara Re, Francesco Tiezzi, An operational
semantics of BPMN collaboration, in: FACS, in: LNCS, vol. 9539, Springer,
2016, pp. 161-180.

[1] OMG, Business Process Model and Notation (BPMN V 2.0), 2011. [4] Flavio Corradini, Chiara Muzi, Barbara Re, Lorenzo Rossi, Francesco Tiezzi,
[2] Anna Suchenia, et al., Selected approaches towards taxonomy of business Global vs. local semantics of BPMN 2.0 or-join, in: SOFSEM, in: LNCS, vol.
process anomalies, in: Advances in Business ICT, in: SCI, vol. 658, Springer, 10706, Springer, 2018, pp. 321-336.
2017, pp. 65-85. [5] Flavio Corradini, Fabrizio Fornari, Andrea Polini, Barbara Re, Francesco

Please cite this article as: F. Corradini, C. Muzi, B. Re et al., Formalising and animating multiple instances in BPMN collaborations, Information Systems (2019) 101459,
https://doi.org/10.1016/j.i5.2019.101459.

http://refhub.elsevier.com/S0306-4379(19)30511-3/sb2
http://refhub.elsevier.com/S0306-4379(19)30511-3/sb2
http://refhub.elsevier.com/S0306-4379(19)30511-3/sb2
http://refhub.elsevier.com/S0306-4379(19)30511-3/sb2
http://refhub.elsevier.com/S0306-4379(19)30511-3/sb2
http://refhub.elsevier.com/S0306-4379(19)30511-3/sb3
http://refhub.elsevier.com/S0306-4379(19)30511-3/sb3
http://refhub.elsevier.com/S0306-4379(19)30511-3/sb3
http://refhub.elsevier.com/S0306-4379(19)30511-3/sb3
http://refhub.elsevier.com/S0306-4379(19)30511-3/sb3
http://refhub.elsevier.com/S0306-4379(19)30511-3/sb4
http://refhub.elsevier.com/S0306-4379(19)30511-3/sb4
http://refhub.elsevier.com/S0306-4379(19)30511-3/sb4
http://refhub.elsevier.com/S0306-4379(19)30511-3/sb4
http://refhub.elsevier.com/S0306-4379(19)30511-3/sb4
http://refhub.elsevier.com/S0306-4379(19)30511-3/sb5
http://refhub.elsevier.com/S0306-4379(19)30511-3/sb5

26

6

(7

8

[9

[10]

(1]

F. Corradini, C. Muzi, B. Re et al. / Information Systems xxx (XXxx) Xxx

Tiezzi, A formal approach to modeling and verification of business process
collaborations, Sci. Comput. Program. 166 (2018) 35-70.

Remco M. Dijkman, Marlon Dumas, Chun Ouyang, Semantics and analysis
of business process models in BPMN, Inf. Softw. Technol. 50 (12) (2008)
1281-1294.

Gero Decker, Remco Dijkman, Marlon Dumas, Luciano Garcia-Baiiuelos,
Transforming BPMN diagrams into YAWL nets, in: BPM, in: LNCS, vol. 5240,
Springer, 2008, pp. 386-389.

Peter Y.H. Wong, Jeremy Gibbons, A process semantics for BPMN, in:
Formal Methods and Soft. Eng., in: LNCS, vol. 5256, Springer, 2008, pp.
355-374.

Egon Borger, Bernhard Thalheim, A method for verifiable and validatable
business process modeling, in: Advances in Software Engineering, in: LNCS,
vol. 5316, Springer, 2008, pp. 59-115.

Pieter Van Gorp, Remco Dijkman, A visual token-based formalization of
BPMN 2.0 based on in-place transformations, Inf. Softw. Technol. 55 (2)
(2013) 365-394.

Andreas Hermann, Hendrik Scholta, Sebastian Brduer, Jorg Becker, Col-
laborative business process management - a literature-based analysis of
methods for supporting model understandability, in: Towards Thought
Leadership in Digital Transformation. Wirtschaftsinformatik, 2017.

[12] Jorg Becker, Martin Kugeler, Michael Rosemann, Process Management: A

[13]

[14]

[15]

[16]

[17]

(18]

[19]

[20]

Guide for the Design of Business Processes, Springer Science & Business
Media, 2013.

Romain Emens, Irene T.P. Vanderfeesten, Hajo A. Reijers, The dynamic
visualization of business process models: a prototype and evaluation, in:
BPM, in: LNBIP, vol. 256, Springer, 2016, pp. 559-570.

Flavio Corradini, Chiara Muzi, Barbara Re, Lorenzo Rossi, Francesco Tiezzi,
Animating multiple instances in BPMN collaborations: from formal seman-
tics to tool support, in: BPM, in: LNCS, vol. 11080, Springer, 2018, pp.
83-101.

Marlon Dumas, Marcello La Rosa, Jan Mendling, Hajo A. Reijers, et al.,
Fundamentals of Business Process Management, vol. 1, Springer, 2013.
Rosario Pugliese, Francesco Tiezzi, A calculus for orchestration of web
services, J. Appl. Log. 10 (1) (2012) 2-31.

Philipp Fromme, Sebastian Warnke, Patrick Dehn, Bpmn-js token
simulation, 2017, https://github.com/bpmn-io/bpmn-js-token-simulation.
Flavio Corradini, Chiara Muzi, Barbara Re, Francesco Tiezzi, Lorenzo Rossi,
MIDA: multiple instances and data animator, in: Dissertation Award,
Demonstration, and Industrial Track at BPM 2018, CEUR Workshop
Proceedings, vol. 2196, 2018, pp. 86-90.

Andreas Meyer, Luise Pufahl, Dirk Fahland, Mathias Weske, Modeling and
enacting complex data dependencies in business processes, in: BPM, in:
LNCS, vol. 8094, Springer, 2013, pp. 171-186.

Andreas Meyer, et al, Data perspective in process choreographies:
modeling and execution, Techn. Ber. BPM Center Report BPM-13-29, 2013.

[21]

[22]

(23]

[24]

(25]

(26]

[27]

(28]

[29]

(30]

(31]

(32]

(33]

(34]
(35]
(36]

(37]
(38]
(39]

Ahmed Kheldoun, Kamel Barkaoui, Malika loualalen, Formal verification
of complex business processes based on high-level petri nets, Inform. Sci.
385-386 (2017) 39-54.

Nissreen A.S. El-Saber, CMMI-CM compliance checking of formal BPMN
models using Maude (Ph.D. thesis), Department of Computer Science, 2015.
Petia Wohed, Wil M.P. van der Aalst, Marlon Dumas, Arthur H.M. ter
Hofstede, Nick Russell, Pattern-based analysis of UML activity diagrams,
Research school for operations management and logistics, Eindhoven,
2004.

Wil M.P. Van Der Aalst, Arthur H.M. Ter Hofstede, YAWL: yet another
workflow language, Inform. Syst. 30 (4) (2005) 245-275.

Maria Teresa Goémez Loépez, et al, Guiding the creation of chore-
ographed processes with multiple instances based on data models, in:
BPMWorkshops, in: LNBIP, vol. 281, 2016, pp. 239-251.

David Knuplesch, Ridiger Pryss, Manfred Reichert, Data-aware interac-
tion in distributed and collaborative workflows: modeling, semantics,
correctness, in: CollaborateCom, IEEE, 2012, pp. 223-232.

Michael Hahn, Uwe Breitenbiicher, Oliver Kopp, Frank Leymann, Modeling
and execution of data-aware choreographies: an overview, Comput. Sci.
Res. Dev. (2017) 1-12.

OASIS, Web services business process execution language version 2.0,
Technical report, 2007.

Hajo A. Reijers, Irene Vanderfeesten, Marijn G.A. Plomp, Pieter Van Gorp,
Dirk Fahland, Wim L.M. van der Crommert, H. Daniel Diaz Garcia, Eval-
uating data-centric process approaches: does the human factor factor
in? Softw. Syst. Model. 16 (3) (2017) 649-662.

Diego Calvanese, Giuseppe De Giacomo, Marco Montali, Foundations of
data-aware process analysis: a database theory perspective, in: Proceedings
of the 32Nd ACM SIGMOD-SIGACT-SIGAI Symposium on Principles of
Database Systems, in: PODS ’13, ACM, New York, NY, USA, 2013, pp. 1-12.
Richard Hull, Jianwen Su, Roman Vaculin, Data management perspectives
on business process management: tutorial overview, in: Proceedings of the
2013 ACM SIGMOD International Conference on Management of Data, in:
SIGMOD’13, ACM, New York, NY, USA, 2013, pp. 943-948.

Andreas Meyer, Mathias Weske, Activity-centric and artifact-centric pro-
cess model roundtrip, in: Business Process Management Workshops,
Springer, 2014, pp. 167-181.

Thomas Allweyer, Stefan Schweitzer, A tool for animating BPMN token
flow, in: Int. Workshop on BPMN, in: LNBIP, vol. 125, Springer, 2012, pp.
98-106.

Banu Aysolmaz, PRIME process animation, http://prime.cs.vu.nl/.

Signavio GmbH, Signavio, 2018, http://www.signavio.com/.

Visual Paradigm, Business process design with powerful BPMN software,
https://www.visual-paradigm.com/features/bpmn-diagram-and-tools/.
Mathias Weske, Business Process Management, Springer, 2007.

OMG, Decision model and notation (DMN V. 1.1), 2016.

Michele Boreale, Rocco De Nicola, A symbolic semantics for the pi-calculus,
Inform. and Comput. 126 (1) (1996) 34-52.

Please cite this article as: F. Corradini, C. Muzi, B. Re et al., Formalising and animating multiple instances in BPMN collaborations, Information Systems (2019) 101459,
https://doi.org/10.1016/j.i5.2019.101459.

http://refhub.elsevier.com/S0306-4379(19)30511-3/sb5
http://refhub.elsevier.com/S0306-4379(19)30511-3/sb5
http://refhub.elsevier.com/S0306-4379(19)30511-3/sb5
http://refhub.elsevier.com/S0306-4379(19)30511-3/sb5
http://refhub.elsevier.com/S0306-4379(19)30511-3/sb5
http://refhub.elsevier.com/S0306-4379(19)30511-3/sb5
http://refhub.elsevier.com/S0306-4379(19)30511-3/sb5
http://refhub.elsevier.com/S0306-4379(19)30511-3/sb5
http://refhub.elsevier.com/S0306-4379(19)30511-3/sb5
http://refhub.elsevier.com/S0306-4379(19)30511-3/sb6
http://refhub.elsevier.com/S0306-4379(19)30511-3/sb6
http://refhub.elsevier.com/S0306-4379(19)30511-3/sb6
http://refhub.elsevier.com/S0306-4379(19)30511-3/sb6
http://refhub.elsevier.com/S0306-4379(19)30511-3/sb6
http://refhub.elsevier.com/S0306-4379(19)30511-3/sb7
http://refhub.elsevier.com/S0306-4379(19)30511-3/sb7
http://refhub.elsevier.com/S0306-4379(19)30511-3/sb7
http://refhub.elsevier.com/S0306-4379(19)30511-3/sb7
http://refhub.elsevier.com/S0306-4379(19)30511-3/sb7
http://refhub.elsevier.com/S0306-4379(19)30511-3/sb8
http://refhub.elsevier.com/S0306-4379(19)30511-3/sb8
http://refhub.elsevier.com/S0306-4379(19)30511-3/sb8
http://refhub.elsevier.com/S0306-4379(19)30511-3/sb8
http://refhub.elsevier.com/S0306-4379(19)30511-3/sb8
http://refhub.elsevier.com/S0306-4379(19)30511-3/sb9
http://refhub.elsevier.com/S0306-4379(19)30511-3/sb9
http://refhub.elsevier.com/S0306-4379(19)30511-3/sb9
http://refhub.elsevier.com/S0306-4379(19)30511-3/sb9
http://refhub.elsevier.com/S0306-4379(19)30511-3/sb9
http://refhub.elsevier.com/S0306-4379(19)30511-3/sb10
http://refhub.elsevier.com/S0306-4379(19)30511-3/sb10
http://refhub.elsevier.com/S0306-4379(19)30511-3/sb10
http://refhub.elsevier.com/S0306-4379(19)30511-3/sb10
http://refhub.elsevier.com/S0306-4379(19)30511-3/sb10
http://refhub.elsevier.com/S0306-4379(19)30511-3/sb11
http://refhub.elsevier.com/S0306-4379(19)30511-3/sb11
http://refhub.elsevier.com/S0306-4379(19)30511-3/sb11
http://refhub.elsevier.com/S0306-4379(19)30511-3/sb11
http://refhub.elsevier.com/S0306-4379(19)30511-3/sb11
http://refhub.elsevier.com/S0306-4379(19)30511-3/sb11
http://refhub.elsevier.com/S0306-4379(19)30511-3/sb11
http://refhub.elsevier.com/S0306-4379(19)30511-3/sb12
http://refhub.elsevier.com/S0306-4379(19)30511-3/sb12
http://refhub.elsevier.com/S0306-4379(19)30511-3/sb12
http://refhub.elsevier.com/S0306-4379(19)30511-3/sb12
http://refhub.elsevier.com/S0306-4379(19)30511-3/sb12
http://refhub.elsevier.com/S0306-4379(19)30511-3/sb13
http://refhub.elsevier.com/S0306-4379(19)30511-3/sb13
http://refhub.elsevier.com/S0306-4379(19)30511-3/sb13
http://refhub.elsevier.com/S0306-4379(19)30511-3/sb13
http://refhub.elsevier.com/S0306-4379(19)30511-3/sb13
http://refhub.elsevier.com/S0306-4379(19)30511-3/sb14
http://refhub.elsevier.com/S0306-4379(19)30511-3/sb14
http://refhub.elsevier.com/S0306-4379(19)30511-3/sb14
http://refhub.elsevier.com/S0306-4379(19)30511-3/sb14
http://refhub.elsevier.com/S0306-4379(19)30511-3/sb14
http://refhub.elsevier.com/S0306-4379(19)30511-3/sb14
http://refhub.elsevier.com/S0306-4379(19)30511-3/sb14
http://refhub.elsevier.com/S0306-4379(19)30511-3/sb15
http://refhub.elsevier.com/S0306-4379(19)30511-3/sb15
http://refhub.elsevier.com/S0306-4379(19)30511-3/sb15
http://refhub.elsevier.com/S0306-4379(19)30511-3/sb16
http://refhub.elsevier.com/S0306-4379(19)30511-3/sb16
http://refhub.elsevier.com/S0306-4379(19)30511-3/sb16
https://github.com/bpmn-io/bpmn-js-token-simulation
http://refhub.elsevier.com/S0306-4379(19)30511-3/sb19
http://refhub.elsevier.com/S0306-4379(19)30511-3/sb19
http://refhub.elsevier.com/S0306-4379(19)30511-3/sb19
http://refhub.elsevier.com/S0306-4379(19)30511-3/sb19
http://refhub.elsevier.com/S0306-4379(19)30511-3/sb19
http://refhub.elsevier.com/S0306-4379(19)30511-3/sb20
http://refhub.elsevier.com/S0306-4379(19)30511-3/sb20
http://refhub.elsevier.com/S0306-4379(19)30511-3/sb20
http://refhub.elsevier.com/S0306-4379(19)30511-3/sb21
http://refhub.elsevier.com/S0306-4379(19)30511-3/sb21
http://refhub.elsevier.com/S0306-4379(19)30511-3/sb21
http://refhub.elsevier.com/S0306-4379(19)30511-3/sb21
http://refhub.elsevier.com/S0306-4379(19)30511-3/sb21
http://refhub.elsevier.com/S0306-4379(19)30511-3/sb22
http://refhub.elsevier.com/S0306-4379(19)30511-3/sb22
http://refhub.elsevier.com/S0306-4379(19)30511-3/sb22
http://refhub.elsevier.com/S0306-4379(19)30511-3/sb24
http://refhub.elsevier.com/S0306-4379(19)30511-3/sb24
http://refhub.elsevier.com/S0306-4379(19)30511-3/sb24
http://refhub.elsevier.com/S0306-4379(19)30511-3/sb25
http://refhub.elsevier.com/S0306-4379(19)30511-3/sb25
http://refhub.elsevier.com/S0306-4379(19)30511-3/sb25
http://refhub.elsevier.com/S0306-4379(19)30511-3/sb25
http://refhub.elsevier.com/S0306-4379(19)30511-3/sb25
http://refhub.elsevier.com/S0306-4379(19)30511-3/sb26
http://refhub.elsevier.com/S0306-4379(19)30511-3/sb26
http://refhub.elsevier.com/S0306-4379(19)30511-3/sb26
http://refhub.elsevier.com/S0306-4379(19)30511-3/sb26
http://refhub.elsevier.com/S0306-4379(19)30511-3/sb26
http://refhub.elsevier.com/S0306-4379(19)30511-3/sb27
http://refhub.elsevier.com/S0306-4379(19)30511-3/sb27
http://refhub.elsevier.com/S0306-4379(19)30511-3/sb27
http://refhub.elsevier.com/S0306-4379(19)30511-3/sb27
http://refhub.elsevier.com/S0306-4379(19)30511-3/sb27
http://refhub.elsevier.com/S0306-4379(19)30511-3/sb28
http://refhub.elsevier.com/S0306-4379(19)30511-3/sb28
http://refhub.elsevier.com/S0306-4379(19)30511-3/sb28
http://refhub.elsevier.com/S0306-4379(19)30511-3/sb29
http://refhub.elsevier.com/S0306-4379(19)30511-3/sb29
http://refhub.elsevier.com/S0306-4379(19)30511-3/sb29
http://refhub.elsevier.com/S0306-4379(19)30511-3/sb29
http://refhub.elsevier.com/S0306-4379(19)30511-3/sb29
http://refhub.elsevier.com/S0306-4379(19)30511-3/sb29
http://refhub.elsevier.com/S0306-4379(19)30511-3/sb29
http://refhub.elsevier.com/S0306-4379(19)30511-3/sb30
http://refhub.elsevier.com/S0306-4379(19)30511-3/sb30
http://refhub.elsevier.com/S0306-4379(19)30511-3/sb30
http://refhub.elsevier.com/S0306-4379(19)30511-3/sb30
http://refhub.elsevier.com/S0306-4379(19)30511-3/sb30
http://refhub.elsevier.com/S0306-4379(19)30511-3/sb30
http://refhub.elsevier.com/S0306-4379(19)30511-3/sb30
http://refhub.elsevier.com/S0306-4379(19)30511-3/sb31
http://refhub.elsevier.com/S0306-4379(19)30511-3/sb31
http://refhub.elsevier.com/S0306-4379(19)30511-3/sb31
http://refhub.elsevier.com/S0306-4379(19)30511-3/sb31
http://refhub.elsevier.com/S0306-4379(19)30511-3/sb31
http://refhub.elsevier.com/S0306-4379(19)30511-3/sb31
http://refhub.elsevier.com/S0306-4379(19)30511-3/sb31
http://refhub.elsevier.com/S0306-4379(19)30511-3/sb32
http://refhub.elsevier.com/S0306-4379(19)30511-3/sb32
http://refhub.elsevier.com/S0306-4379(19)30511-3/sb32
http://refhub.elsevier.com/S0306-4379(19)30511-3/sb32
http://refhub.elsevier.com/S0306-4379(19)30511-3/sb32
http://refhub.elsevier.com/S0306-4379(19)30511-3/sb33
http://refhub.elsevier.com/S0306-4379(19)30511-3/sb33
http://refhub.elsevier.com/S0306-4379(19)30511-3/sb33
http://refhub.elsevier.com/S0306-4379(19)30511-3/sb33
http://refhub.elsevier.com/S0306-4379(19)30511-3/sb33
http://prime.cs.vu.nl/
http://www.signavio.com/
https://www.visual-paradigm.com/features/bpmn-diagram-and-tools/
http://refhub.elsevier.com/S0306-4379(19)30511-3/sb37
http://refhub.elsevier.com/S0306-4379(19)30511-3/sb39
http://refhub.elsevier.com/S0306-4379(19)30511-3/sb39
http://refhub.elsevier.com/S0306-4379(19)30511-3/sb39

	Formalising and animating multiple instances in BPMN collaborations
	Introduction
	The interplay between multiple instances, messages and data objects in BPMN collaborations
	A formal account of multi-instance collaborations
	Textual notation of BPMN collaborations
	Semantics of BPMN collaborations

	Formalisation at work on multi-instance interaction scenarios
	The MIDA 2.0 animation tool
	From MIDA to MIDA 2.0
	Modelling
	Animation & debugging

	Related work
	Concluding remarks
	Declaration of competing interest
	Acknowledgment
	Appendix A. One-to-one correspondence between the BPMN graphical notation and textual notation and our textual notation (most relevant cases).
	Appendix B. Omitted formal definitions of auxiliary functions and relations
	Appendix C. Textual representation of the running example revisions
	References

