
1. Introduction
Why studying compilers construction

Andrea Polini

Formal Languages and Compilers
Master in Computer Science

University of Camerino

March 1st , 2016

(Formal Languages and Compilers) 1. Introduction March 1st , 2016 1 / 19



ToC

WARNING
Slides are distributed to help students in their preparation to the exam.
In no way they intend to substitute text books. Instead a thorough
study of text books constitutes the most wise strategy to maximize
the chances to pass the final exam.

1 General Information

2 Intro to Compilers

(Formal Languages and Compilers) 1. Introduction March 1st , 2016 2 / 19



General Information

ToC

1 General Information

2 Intro to Compilers

(Formal Languages and Compilers) 1. Introduction March 1st , 2016 3 / 19



General Information

Teacher and Course

Andrea Polini
e-mail: andrea.polini@unicam.it
web: http://www.cs.unicam.it/polini/

Formal Languages and Compilers
lessons:

Tuesday 11am to 1pm
Wednesday 3pm to 5pm

web: http://didattica.cs.unicam.it/...

Exam dates:
June 14th and July 5th, 2016
September 6th and 27th, 2016
February 7th and 21st, 2017

(Formal Languages and Compilers) 1. Introduction March 1st , 2016 4 / 19

mailto:andrea.polini@unicam.it
http://www.cs.unicam.it/polini/
http://didattica.cs.unicam.it/doku.php?id=didattica:magistrale:flc:ay_1516:main


General Information

Course Objective

At the end of the course:
you will know the basic theories and methodologies behind the
construction of a compiler
you should be able to understand the basic issues related to
compilers construction.
you should have acquired basic skills to develop a compiler for a
simple language.

(Formal Languages and Compilers) 1. Introduction March 1st , 2016 5 / 19



General Information

Study material

Reference book:

Alfred V. Aho, Monica S. Lam, Ravi Sethi, Jeffrey D. Ullman
Compilers – Principles, Techniques and Tools, 2nd Ed.
Addison-Wesley, 2007.

Terence Parr
The Definitive ANTLR4 Reference
The Pragmatic Programmers, 2012.

Further references provided by the teacher

(Formal Languages and Compilers) 1. Introduction March 1st , 2016 6 / 19

http://dragonbook.stanford.edu/
https://pragprog.com/book/tpantlr2/the-definitive-antlr-4-reference


General Information

Final Exam!!!

1. Group project (2 members)
You will be asked to develop a compiler for a simplified language
using the ANTLR4 parser generator

2. Written paper – date fixed for the exam
The paper will contain exercises that ask to the student to solve
problems not solved during classes. We will instead develop
solution for similar exercises.

3. [Oral paper] – student choice

Correct steps
Students have to follow the order. (1) They deliver the project sending the workspace
in zip format to the teacher (at least one week before the exam date). (2) They come
to the first exam date. If they pass the exam (minimum mark 16) (3) they come to
discuss the project (date fixed by the teacher). In case they would like to do the oral
paper (4) they can do it the same day.

(Formal Languages and Compilers) 1. Introduction March 1st , 2016 7 / 19



Intro to Compilers

ToC

1 General Information

2 Intro to Compilers

(Formal Languages and Compilers) 1. Introduction March 1st , 2016 8 / 19



Intro to Compilers

Compilers vs. Interpreters

Two approaches to permit the execution of a program, written using an
high level language, on a physical machine:

Compilers: use of a program that can read a program in one
language (source) and translate it into an equivalent program in
another language (target)
Interpreters: use of a program that takes in input the program and
data and run the program on the data without the need to make an
explicit translation into the machine code

(Formal Languages and Compilers) 1. Introduction March 1st , 2016 9 / 19



Intro to Compilers

Birth

1954 – IBM develops the 704 (software cost > hardware cost)
1954 - 1957 – FORTRAN I (FORmula TRANslating system) is
developed (In 1958 50% of code is written in FORTRAN)

The definition of the first compiler led to an enourmous body of
theoretical work

Compiler constuction is a complex engineering activity (practice) which
need to be based on well defined theoretical background (theory)

(Formal Languages and Compilers) 1. Introduction March 1st , 2016 10 / 19



Intro to Compilers

Structure of a Compiler

(Formal Languages and Compilers) 1. Introduction March 1st , 2016 11 / 19



Intro to Compilers

Lexical analysis

After having defined the alphabet to be used, the first things to do is to
recognize words

This is a sentence

The lexical analysis divides the program text into words and produce a
sequence of tokens (〈token-name, attribute-value〉)

position = initial + rate * 60

(Formal Languages and Compilers) 1. Introduction March 1st , 2016 12 / 19



Intro to Compilers

Lexical analysis

After having defined the alphabet to be used, the first things to do is to
recognize words

This is a sentence

The lexical analysis divides the program text into words and produce a
sequence of tokens (〈token-name, attribute-value〉)

position = initial + rate * 60

(Formal Languages and Compilers) 1. Introduction March 1st , 2016 12 / 19



Intro to Compilers

Syntax Analysis

After having understood the words we need to understand the
sentence structure. Not so much different from the syntax of what we
do for understanding natural language

This line includes a long sentence

(Formal Languages and Compilers) 1. Introduction March 1st , 2016 13 / 19



Intro to Compilers

Semantic Analysis

Once the structure of the sentence is clear we need to understand the
meaning:

Humans can manage quite well this activity, the same is not so
true for machines

Examples:
Jack said Jerry left his assignment at home
Jack said Jack left his assignment at home?
Jack left her assignment at home

Compilers perform many semantic checks besides variable
bindings.

(Formal Languages and Compilers) 1. Introduction March 1st , 2016 14 / 19



Intro to Compilers

Intemediate Code Generation

Easy to produce and easy to translate code format. Tipically based on
a three-address code form:

t1 = inttofloat(60)
t2 = id3 * t1
t3 = id2 + t2
id1 = t3

(Formal Languages and Compilers) 1. Introduction March 1st , 2016 15 / 19



Intro to Compilers

Code Optimization

Not so important for natural language! It is now the most complex and
effort prone activity in the construction of modern compilers

The compilers modify the program so that it
runs faster
uses less memory
uses less power
makes less database accesses
uses less bandwidth
. . .

t1 = id3 * 60.0
id1 = id2 + t1

(Formal Languages and Compilers) 1. Introduction March 1st , 2016 16 / 19



Intro to Compilers

Code generation

Permits to produce assembly code to be run on the target machine

LDF R2, id3
MULF R2, R2, #60.0
LDF R1, id2
ADDF R1, R1, R2
STF id1, R1

Proportions of the various phases
changed from the pioneering era

(Formal Languages and Compilers) 1. Introduction March 1st , 2016 17 / 19



Intro to Compilers

Code generation

Permits to produce assembly code to be run on the target machine

LDF R2, id3
MULF R2, R2, #60.0
LDF R1, id2
ADDF R1, R1, R2
STF id1, R1

Proportions of the various phases
changed from the pioneering era

(Formal Languages and Compilers) 1. Introduction March 1st , 2016 17 / 19



Intro to Compilers

General remarks

New computer architectures need new compilers
parallelism
memory hierarchies

New linguistic construction ask for the development of new
algoritms and new data structure to translate the code
Code optimization faces many undecidable problems, so theory
alone is not enough and we need euristics and good engineers
and programmers
Scope (static and dynamic), environment and states
Parameter passing mechanisms

(Formal Languages and Compilers) 1. Introduction March 1st , 2016 18 / 19



Intro to Compilers

General remarks

New computer architectures need new compilers
parallelism
memory hierarchies

New linguistic construction ask for the development of new
algoritms and new data structure to translate the code
Code optimization faces many undecidable problems, so theory
alone is not enough and we need euristics and good engineers
and programmers
Scope (static and dynamic), environment and states
Parameter passing mechanisms

(Formal Languages and Compilers) 1. Introduction March 1st , 2016 18 / 19



Intro to Compilers

General remarks

New computer architectures need new compilers
parallelism
memory hierarchies

New linguistic construction ask for the development of new
algoritms and new data structure to translate the code
Code optimization faces many undecidable problems, so theory
alone is not enough and we need euristics and good engineers
and programmers
Scope (static and dynamic), environment and states
Parameter passing mechanisms

(Formal Languages and Compilers) 1. Introduction March 1st , 2016 18 / 19



Intro to Compilers

General remarks

New computer architectures need new compilers
parallelism
memory hierarchies

New linguistic construction ask for the development of new
algoritms and new data structure to translate the code
Code optimization faces many undecidable problems, so theory
alone is not enough and we need euristics and good engineers
and programmers
Scope (static and dynamic), environment and states
Parameter passing mechanisms

(Formal Languages and Compilers) 1. Introduction March 1st , 2016 18 / 19



Intro to Compilers

General remarks

New computer architectures need new compilers
parallelism
memory hierarchies

New linguistic construction ask for the development of new
algoritms and new data structure to translate the code
Code optimization faces many undecidable problems, so theory
alone is not enough and we need euristics and good engineers
and programmers
Scope (static and dynamic), environment and states
Parameter passing mechanisms

(Formal Languages and Compilers) 1. Introduction March 1st , 2016 18 / 19



Intro to Compilers

Interesting Questions?

Why are there so many programming languages?
Application domains have distinctive needs (scientific computing,
business applications, system programming, etc.)

Why are there new programming languages?
Cost of training programmers is the dominant cost for a
programming language
productivity > training cost?

What is a good programming language?
Is it the one programmers use?

(Formal Languages and Compilers) 1. Introduction March 1st , 2016 19 / 19



Intro to Compilers

Interesting Questions?

Why are there so many programming languages?
Application domains have distinctive needs (scientific computing,
business applications, system programming, etc.)

Why are there new programming languages?
Cost of training programmers is the dominant cost for a
programming language
productivity > training cost?

What is a good programming language?
Is it the one programmers use?

(Formal Languages and Compilers) 1. Introduction March 1st , 2016 19 / 19



Intro to Compilers

Interesting Questions?

Why are there so many programming languages?
Application domains have distinctive needs (scientific computing,
business applications, system programming, etc.)

Why are there new programming languages?
Cost of training programmers is the dominant cost for a
programming language
productivity > training cost?

What is a good programming language?
Is it the one programmers use?

(Formal Languages and Compilers) 1. Introduction March 1st , 2016 19 / 19


	General Information
	Intro to Compilers

