
Formal Languages and Compilers

(A.Y. 2015/2016)

2h30m

June 14th, 2016

Lexical Analysis

Exercise 1 – 3pt

Consider the automaton A =< Q,Σ, δ,F , q0 > accepting the regular language
L. The language L on alphabet Σ includes all the strings in Σ∗ that do not
belong to L. Is L a regular language? If not, why? if yes, provide a definition
for the elements of automaton A accepting L
Solution:
In order to derive a language L that includes all and only the strings that do
not belong to a language, it is enough to revise the definition of the final state
set to include all and only the states in Q that are not in F . So the elements of
the new automaton A will be (obviously on the assumption that the automaton
is deterministic):

• Q = Q

• Σ = Σ

• δ = δ

• F = Q−F

• q0 = q0

1



Exercise 2 – 6pt

In the definition of a regular expression real languages generally includes the not
operator (in addition to the traditional symbols defining regular expressions).
The operator permits to identify the set of strings that do not match the regular
expression pattern, given an alphabet Σ. So, given a regular expression r on Σ,
the strings matching ¬r on Σ are those not matching r. If useful the operator
can be included in the definition of the regular expressions for the following
languages:

1. The language L on the alphabet Σ = {0, 1, 2, 3, 4, 5, 6, 7, 8, 9} including
only even numbers with no leading zeros.
(e.g. 2, 4, 146, 1000 ∈ L, while ε, 15, 016 /∈ L)

2. The language L on the alphabet Σ = {0, 1} representing numbers that are
multiple of 2 but not those that are also multiple of 8 (obviously in binary
format - no leading 0 should be included)
(e.g. 10, 100, 1010, 10100 ∈ L, while 1000, 11000, 110000, 1, 101, 0, 010, ε /∈ L)

3. The language L including strings over the alphabet Σ = {a, b} containing
at least one ’a’ and one ’b’
(e.g. ab, aab, ba, babba ∈ L, while ε, a, b, aaa, bb /∈ L)

Solution:

1. ([1− 9][0− 9]∗ | ε)[0, 2, 4, 6, 8]

2. (1(0|1)∗|ε)1(0|00)

3. ¬(a∗|b∗)

2



Syntax Analysis

Exercise 3 – 10pts

Let’s G the grammar defined by the following productions:

S −→ Az A −→ aA | azB B −→ bA | bB | ε (1)

1. Discuss the applicability of parsing LL(1). In case the parser is not ap-
plicable, discuss why is not applicable. In such a case revise the grammar
to remove possible issues hindering the applicability of LL(1) parsing and
check again the applicability of LL(1) parsing, on revised grammar G′.

2. Discuss the applicability of parser LR(0) and SLR(1) for the original gram-
mar G.

Solution:

• LL Parsing strategies cannot be applied since the grammar presents pro-
ductions with the same starting sub-string for the same non-terminal. The
issue could be solved applying the left-factoring strategy to the following
produtions:

– A −→ aA | azB
– B −→ bA | bB

Applying the left-factoring rules the previous productions will be substi-
tuted by the following ones:

– A −→ aX X → A | zB
– B −→ bY Y → A | B

After the modification there are no evident issues to the applicability
of LL(1) parsing therefore we proceed deriving the FIRST, FOLLOW,
NULLABLE sets that is shown in Table 1.

FIRST FOLLOW NULLABLE
S a $
A a z
B b z yes
X a, z z
Y a, b z yes

Table 1: FIRST, FOLLOW, NULLABLE sets

The resulting LL(1) parsing table is shown in Table 2, and since it does
not contain conflicts we can conclude that LL(1) parsing is applicable.

3



a b z $
S S → Az
A A→ aX
B B → bY B → ε
X X → A X → zB
Y Y → A Y → B Y → B

Table 2: LL(1) parsing table

• To decide if the LR(0) and SLR(1) parsing strategies are applicable we
derive the LR(0) automaton that is reported in Figure 1. Successively we
derive the LR(0) parsing table that is reported in Table 3. To fill the table
production are numbered according to the following order:

1. S → Az 2. A→ aA 3. A→ azB 4. B → bA 5. B → bB 6. B → ε

From the table we observe that it includes conflicts on states 5 and 7 that
impedes the applicability of such a kind of parser.

Figure 1: LR(0) automaton

In order to derive the table for the SLR(1) strategy it is necessary to
compute the FOLLOW sets for the various non terminal. The resulting
set is shown in Table 4. In Table 5 the SLR(1) parsing table is then
reported. Since no conflicts are reported this parsing strategy results to
be applicable.

4



a b z $ S A B
0 s3 G1 G2
1 acc. acc. acc. acc.
2 s4
3 s3 s5 G6
4 r1 r1 r1 r1
5 r6 r6/s7 r6 r6 G8
6 r2 r2 r2 r2
7 r6/s3 r6/s7 r6 r6 G9 G10
8 r3 r3 r3 r3
9 r4 r4 r4 r4
10 r5 r5 r5 r5

Table 3: LR(0) parsing table

FIRST FOLLOW NULLABLE
S a $
A a z
B b z yes

Table 4: FIRST, FOLLOW, NULLABLE sets for the original grammar

a b z $ S A B
0 s3 G1 G2
1 acc.
2 s4
3 s3 s5 G6
4 r1
5 s7 r6 G8
6 r2
7 s3 s7 r6 G9 G10
8 r3
9 r4
10 r5

Table 5: SLR(1) parsing table

Semantic Analysis

Exercise 4 – 14pts

Consider the following excerpt from a grammar for a complex programming
language:

S → for (id = num1 to num2) do S1 rof (2)

The command permits to define a cycle that will be executed a fixed number of
time, given by the difference of the two numbers (num2−num1). In particular

5



in case the second number is smaller or equal to the first one the cycle will not
be executed at all. Exiting from the cycle the variable used to index the cycle
will have a value equal to the starting value plus the number of times the cycle
has been executed. In fact after each cycle is executed the value of id should
be increased by one.

• Provide an L-attributed SDD for the command that permits to translate
it in a three-address code program behaving as expected1

• Show the parse tree and derive the three address code program for the
code snippet below. In doing this refer to the translation schemes for
expressions and commands which have been introduced during the course.

for (i = 5 to 10) do

v = v + i

rof

Solution:
The command can be translated taking inspiration from the translation for

arithmetic and boolean expressions. The idea is to instantiate the variable with
the initial value, then to check the condition and in case the cycle is entered
to increase the indexing variable before exiting. As a result the following is a
possible SDD satisfying the request:

addr = top.get(id.lexeme),
t1 = new Temp(),
start = new Label(),
end = new Label(),
S1.next = end,
S.code = gen(addr ′ =′ num1.val)||label(start)||

gen(if addr ≥ num2.val goto S.next)||S1.code||label(end)||
gen(t1

′ =′ addr ′ +′ 1)||gen(addr ′ =′ t1)||gen(goto start)

The three-address code corresponding to the snippet, and derived according
to the parse tree shown in Figure 2, will then look like the following:

i = 5

start if i>=10 goto snext

t2 = v + i

v = t2

end t1 = i + 1

i = t1

goto start

snext ...

1For your convenience I recall that the function top.get(id.lexeme) permits to retrieve the
address of the specified id, while the function gen(. . . ) is used to generate three-address
code in the right format for the different istructions, and finally new Temp() and new Label()
permit to generate a new temporary address and a new label respectively.

6



Figure 2: Parse tree for the code snippet

7


