
Formal Languages and Compilers

(A.Y. 2015/2016)

Solutions

July 5th, 2016

First name: Last name:

Matriculation n.: e-mail:

Lexical Analysis

Exercise 1 – 5pt

Consider the following deterministic finite automata on the alphabet Σ (with :

• A1 =< Q1,Σ, δ1,F1, q10 > accepting the regular language L1

• A2 =< Q2,Σ, δ2,F2, q20 > accepting the regular language L2

The language L∧ on alphabet Σ includes all the strings in Σ∗ that belong to
L1 ∩ L2. Is L∧ a regular language? If not, why? if yes, provide a definition for
the elements of automaton A∧ accepting L∧.

In defining an answer to the exercise maybe can be useful to consider that the language L1∪L2
is a regular language for which an accepting deterministic finite automaton can be derived
transforming in a DFA the following NDFA:

• Q∨ = Q1 ∪Q2 ∪ {q∨0 }
• Σ∨ = Σ ∪ ε

• δ∨(q, a) =

 {δ1(q, a)} : q ∈ Q1

{δ2(q, a)} : q ∈ Q2

{q10 , q20} : q = q∨0 ∧ a = ε

• F∨ =

{
F1 ∪ F2 : ε /∈ L1 ∪ L2
F1 ∪ F2 ∪ {q∨0 } : ε ∈ L1 ∪ L2

Moreover, given that the complementary language of a regular language is still a regular

language for which an accepting automaton can be easily defined starting from the automaton

for the original language, it could be an idea to define an intersection in term of union and

complement of regular languages.

1

Solution:
In defining the solution it is useful to rewrite the intersection in terms of com-
plementary sets and union. In particular it is well known that the following
property holds:

L1 ∩ L2 = (L1 ∪ L2) (1)

Given an automaton A =< Q,Σ, δ,F , q0 > recognizing language L it results
that the automaton accepting language L can be built in the following way:

• Q = Q

• Σ = Σ

• δ = δ

• F = Q−F

• q0 = q0

As a result the automaton A∨ recognizing language L1 ∪ L2 can be defined in
the following way:

• Q∨ = Q1 ∪Q2 ∪ {q∨0 }

• Σ∨ = Σ ∪ ε

• δ∨(q, a) =

 {δ
1(q, a)} : q ∈ Q1

{δ2(q, a)} : q ∈ Q2

{q10 , q20} : q = q∨0 ∧ a = ε

• F∨ =

{
(Q1 −F1) ∪ (Q2 −F2) : ε /∈ L1 ∪ L2

(Q1 −F1) ∪ (Q2 −F2) ∪ {q∨0 } : ε ∈ L1 ∪ L2

Therefore automaton A∧ can be derived from automaton A∨ deriving again an
automaton for a complementary language.

Exercise 2 – 4pt

In the definition of a regular expression real languages generally includes the not
operator (in addition to the traditional symbols defining regular expressions).
The operator permits to identify the set of strings that do not match the regular
expression pattern, given an alphabet Σ. So, given a regular expression r on Σ,
the strings matching ¬r on Σ are those not matching r. If useful the operator
can be included in the definition of the regular expressions for the following
languages:

• The language L including strings over the alphabet Σ = {a, b} not con-
taining the subsequence “ab”
(e.g. ab, aab, babba /∈ L, while ε, a, b, aaa, bb ∈ L)

2

• The language L on the alphabet Σ = {0, 1, 2, 3, 4, 5, 6, 7, 8, 9, .} represent-
ing all the possible IPv4 addresses
(e.g. 192.132.255.5, 25.25.255.1, 1.1.1.1 ∈ L, 256.13.25.5, 255.255.255.01 /∈ L)

Solution:

1. ¬((a|b)∗a(a|b)∗b(a|b)∗)

2. (25[0− 5] | ((2[0− 4] | 1[0− 9] | [1− 9])? | [0− 9]).)3

(25[0− 5] | ((2[0− 4] | 1[0− 9] | [1− 9])? | [0− 9]))

3

Syntax Analysis

Exercise 3 – 10pts

Let’s G the grammar defined by the following productions:

S −→ Y XY | Y X X −→ XxY y | ε Y −→ yY x | yx (2)

1. Discuss the applicability of parsing LL(1). In case the parser is not appli-
cable, report all the issues. In such a case revise the grammar to remove
possible issues hindering the applicability of LL(1) parsing and check again
the applicability of LL(1) parsing, on the revised grammar G′.

2. Discuss the applicability of parser LR(0) and SLR for the original grammar
G.

Solution:

1. LL(1) parsing is not directly applicable since:

a. production X −→ XxY y presents a left recursion

b. productions S −→ Y XY | Y X present left factoring issues

c. productions Y −→ yY x | yx present left factoring issues

To solve the issues the listed productions should be substituted by the
following ones:

a. X −→ X ′ X ′ −→ xY yX ′ (removal of left recursion)

b. S −→ Y XS′ S′ −→ Y | ε (left factoring)

c. Y −→ yY ′ Y ′ −→ Y x | x (left factoring)

After having removed the immediate causes hindering the applicability
of LL(1) we should check the applicability of LL(1) parsing for the new
grammar deriving the FIRST and FOLLOW sets (see Table 1) from which
we can derive the parsing table (see Table 2). From the table it can be
inferred that LL(1) parsing is now applicable since the table does not
contain conflicts.

FIRST FOLLOW NULLABLE
S y $ no
S’ y $ yes
X x y, $ yes
X’ x y, $ no
Y y x, y, $ no
Y’ x, y x, y, $ no

Table 1: FIRST, FOLLOW and NULLABLE sets

4

$ x y
S S −→ Y XS′

S’ S′ −→ ε S′ −→ Y
X X −→ ε X −→ X ′ X −→ ε
X’ X ′ −→ xY yX ′

Y Y −→ yY ′

Y’ Y ′ −→ x Y ′ −→ Y x

Table 2: LL(1) parsing table

2. To decide if LR(0) and SLR(1) parsing strategies are applicable we de-
rive the LR(0) automaton that is reported in Figure 1. Successively we
can derive the LR(0) parsing table reported in Table 3. To fill the table
productions are numbered according to the following order:

1. S → Y XY 2. S → Y X 3. X → XxY y 4. X → ε 5. Y → yY x
6. Y → yx

From the table we observe that there are conflicts on state 6 that impedes
the applicability of such a kind of parser.

Figure 1: LR(0) automaton

In order to derive the table for the SLR(1) strategy it is necessary to
compute the FOLLOW sets for the various non terminals. The resulting
set is shown in Table 4. In Table 5 the SLR(1) parsing table is then
reported. Since no conflicts are included in the table the parsing strategy
can be applied.

5

x y $ S X Y
0 S3 G2 G1
1 R4 R4 R4 G6
2 acc. acc. acc.
3 S5 S3 G4
4 S9
5 R6 R6 R6
6 S8/R2 S3/R2 R2 G7
7 R1 R1 R1
8 S3 G10
9 R5 R5 R5
10 S11
11 R3 R3 R3

Table 3: LR(0) parsing table

FIRST FOLLOW NULLABLE
S y $
X x x, y, $ yes
Y y x, y, $

Table 4: FIRST, FOLLOW, NULLABLE sets for the original grammar

x y $ S X Y
0 S3 G2 G1
1 R4 R4 R4 G6
2 acc.
3 S5 S3 G4
4 S9
5 R6 R6 R6
6 S8 S3 R2 G7
7 R1
8 S3 G10
9 R5 R5 R5
10 S11
11 R3 R3 R3

Table 5: SLR(1) parsing table

6

Semantic Analysis

Exercise 4 – 14pts

Consider the following excerpt from a grammar for a complex programming
language:

S → alternate S1 and S2 till (B) (3)

The command permits to define a cycle in which at each successive iteration
a different branch is executed. So entering the cycle the first time statement
S1 will be executed, and then the condition checked. If the condition is false
the cycle will be executed a second time. Nevertheless this time time statement
S2 will be executed, and then the condition checked again. If the condition is
false in the next iteration statement S1 will be executed. In conclusion the two
statements in the command will be executed alternatively till the condition will
assume the value true.

• Provide an L-attributed SDD for the command that permits to translate
it in a three-address code program that behaves as expected1

• Show the parse tree and derive the three address code program for the
code snippet below. In doing this refer to the translation schemes for
expressions and commands which have been introduced during the course.
It is not necessary to check the type of the expressions, and it can be
assumed that variables have been declared somewhere before reaching the
statement.

. . .

alternate

i = v + 1

and

v = v - 2

till (i < 0)

. . .

Suggestion: in order to store the information about the turn it can be useful to introduce

a variable (call it “t”) that is instantiated to 0 before entering the command. Then when

statement S1 is executed the variable is increased by one, while is decreased by one when

statement S2 is executed. Therefore at each iteration the statement to execute next, in case

the condition is false, will be decided according to the value of the variable. In particular if

the value is one a jump will redirect the flow to the block of S2 while if is zero the jump will

redirect to statement S2. So the whole command could be closed generating a three address

code intructions that behaves as an if condition on the value of the variable t, that clearly

can only assume the values 0 or 1.

1For your convenience I recall that the function top.get(id.lexeme) permits to retrieve the
address of the specified id, while the function gen(. . .) is used to generate three-address
code in the right format for the different istructions, and finally new Temp() and new Label()
permit to generate a new temporary address and a new label, respectively.

7

Solution:
The command can be translated taking inspiration from the translation for
arithmetic and boolean expressions. In particular a the beginning we define a
nen temporary variable that can assume only values 0 and 1 and then represent
the turn for the next iteration. The variable is followed by the blocks for the
command fragments S1 and S2 and then by the condition B, finally we include
code for the jump according to the turn rule. As a result the following is a
possible SDD satisfying the request:

turn = new Temp(),
S1Begin = new Label(),
S1End = new Label(),
S2Begin = new Label(),
S2End = new Label(),
Cond = new Label(),
Jump = new Label(),
B.true = S.next,
B.false = Jump,
S1.next = S1End,
S2.next = Cond,
S.code = gen(turn ′ =′ ′0′)||

label(S1Begin)||S1.code||label(S1End)||gen(turn ′ =′ ′1′)||
gen(goto Cond)||
label(S2Begin)||S2.code||label(S2End)||gen(turn ′ =′ ′0′)||
label(Cond)||B.Code||
label(Jump)||gen(if turn = 0 goto S1Begin)||
gen(goto S2Begin)

The three-address code corresponding to the snippet, and derived according
to the parse tree shown in Figure 2, will then look like the following:

turn = 0

S1Begin t1 = v + 1

i = t1

S1End turn = 1

goto Cond

S2Begin t2 = v - 2

v = t2

S2End turn = 0

Cond if i < 0 goto SNext

goto Jump

Jump if turn = 0 goto S1Begin

goto S2Begin

SNext ...

8

Figure 2: Parse tree for the code snippet

9

