Unliversita di Camerino

1336

Exercises
Exercises

Andrea Polini

Formal Languages and Compilers
Master in Computer Science
University of Camerino

(Formal Langu and Compilers) Exercises 1/15



Regular Languages and Lexical Analysis

ToC

0 Regular Languages and Lexical Analysis

(Formal Langu and Compilers) Exercises 2/15



Regular Languages and Lexical Analysis

Lexical Analysis

@ All strings of lowercase letters that contain the five vowels in order

@ All strings of lowercase letters in which the lettersare in ascending
lexicographic order

@ All strings of lowercase letters that begin and end in'a

@ All strings of digits that contain no leading zeroes

@ All strings of a’s and b’s that contain no three consecutive b’s

@ All strings of a’s and b’s that do not contain the substring 'abb’

@ All strings of a’s and b’s with an even number of a’s and an odd
number of b’s

Interesting exercises are those related to the demonstration of closure
properties for regular languages (i.e. given the two regular languages
L1 and L, demonstrate that £ U L5 is a regular language)

(Formal Languages and Compilers) Exercises 3/15



Context-free languages and syntax analysis

ToC

e Context-free languages and syntax analysis

(Formal Lang nd Compilers) Exercises 4/15



Context-free languages and syntax analysis

Si consideri il linguaggio £ = {a"wa"|n>1 AN we{ab,c}* A w=
wiu{b"'wb" n>0 A we{ab,c}* AN w=Ww} e se nedetermini la
classe di appartenenza in accordo alla classificazione di Chomsky.

@ si derivi una grammatica capace di generare il linguaggio.

(Formal Languages and Compilers) Exercises 5/15



Context-free languages and syntax analysis

Si consideri il linguaggio £ = {&®"b?"¢™m > 1,n > 0} e si risolvano i
seguenti punti:

@ Determinare la classe del linguaggio £ in accordo alla
classificazione di Chomsky definendo altresi le differenti
componenti di un opportuno automa capace di accettare il
linguaggio £

@ Derivare una grammatica G, che non contenga s-produzioni, tale
che L(G) =L

(Formal Languages and Compilers) Exercises 6/15



Context-free languages and syntax analysis

Si consideri la seguente grammatica G:

S—A|C A—cchAala C—cC|c

e si risolvano i seguenti punti:

@ Senza aver derivato gli insiemi FIRST e FOLLOW si decida se la
grammatica G & LL(1) e perché?

@ Si derivino gli insiemi FIRST, FOLLOW e nullable per G indicando
tutte le iterazioni necessarie.

© Si costruisca I'automa LR(0) e le corrispondenti tabelle di parsing
LR(0) ed SLR(1) decidendo per ogni tipo di parsing se &
applicabile e perché.

© Applicando una tra le due tipologie di parsing (a scelta LR(0) o
SLR(1) se entrambe possibili) si mostrino le azioni del parser sulla
stringa “ccccaaa”

(Formal Languages and Compilers) Exercises 7/15



Context-free languages and syntax analysis

Si consideri la grammatica definita nella slide precedente. Si derivi una
nuova grammatica G’ rimuovendo i problemi identificati nel punto 1
dello stesso esercizio. Si discuta se esiste un k > 1 tale che la
grammatica G’ risulti LL(k).

Suggerimento: puo essere utile osservare che il linguaggio generato dalla
grammatica G’ € descritto dalla seguente unione d’insiemi:

L(G)={c"|n>1}u{c®™a™"' | m>0}

(Formal Languages and Compilers) Exercises 8/15



Context-free languages and syntax analysis

Syntax analysis
LL Parsing

Let’s consider the following language:

L ={a"bck|n >0,k >0} U {b"ack|n > 0,k > 0}

@ define a grammar that generates (all and only) the words of the
language
@ decide if the grammar is LL

@ in case it is, derive the parsing table and apply it to the recognition
of the word ’bba’, otherwise try to modify the grammar so to derive
an LL parsable grammar.

(Formal Languages and Compilers) Exercises 9/15



Context-free languages and syntax analysis

Syntax Analysis

Noteworthy languages

Consider the following languages and define grammars in order to
parse them with LL and LR parsers:

@ Ly ={a"b"|ne N}

@ Lo={a"b"ne NAn>m}

@ Lz3={we{ab}|lw=w}

(Formal Languages and Compilers) Exercises

10/15



Context-free languages and syntax analysis

Syntax Analysis

Noteworthy languages

Consider the following languages and define grammars in order to
parse them with LL and LR parsers:

@ Ly ={a"b"|ne N}
@ Lo={a"b"ne NAn>m}
@ Lz3={we{ab}|lw=w}

Consider the following grammars and define grammars parsable with
LL or LR parsing strategies:

e £L={a"a"aln e N}

(Formal Languages and Compilers) Exercises 10/15



Context-free languages and syntax analysis

Syntax Analysis
LR Parsing

Consider the grammar:
Z—+S S—-AAA—-aAA—b
@ Build the table for the LR(1) parser

@ decide if the LALR parser can be applied
@ apply one of the two parser to the acceptance of string abaab

(Formal Languages and Compilers) Exercises

11/15



ToC

e Semantic Analysis

Exercises 12/15



Semantic Analysis

Answer to the following requests:
@ define a grammar for generating any string on the alphabet
Y ={a b}
@ define attributes and the corresponding calculating rules in order

to be able to count the number of ’a’s and ’b’s in the string, and
using an LL(1) parser.

(Formal Languages and Compilers) Exercises 13/15



Semantic Analysis

Let’'s G the grammar defined by the following productions, and that
permits to represent nested lists of numbers:

S—Y Y-—VY:Z|Z Z—(Y)|dgit

The following are samples of correct sentences generated by the
grammar: ((10;13);17), ((3); (7;8);15)
Answer to the following requests:
@ define attributes and semantic rules (SDD) for the grammar, in
order to permit:
o the calculation of the sum of all numbers appearing in a sentence
e the calculation of the total number of parenthesis opened in the
sentence
@ the printing of the position in the list for each number in the
sentence (consider that to implement this feature you could need
accessory attributes).
© show the evaluation tree for the sentence ((5); (8))
© modify the grammar in order to be parsable by an LL(1) parser
modifying productions and rules to obtain a suitable L-attributed
translation scheme.

(Formal Languages and Compilers) Exercises 14/15



Semantic Analysis

Consider the following excerpt from a grammar for a complex programming language:

S — repeat S; until (B)

@ Provide an L-attributed SDD for the command that permits to translate the
command in a three-address code program behaving as expected

@ Convert the SDD into an SDT parsable with an LL parser

@ Show the parse tree and derive the three address code program for the following
code snippet, considering the translation for expressions into three address code
which has been introduced during the course. In particular consider the
productions and their translation schemes:

$§—-8;S S—»id=E E—-E+E E—id B— ErelE

i = 0;
repeat

i = 1i+1;
until (i>=10);

(Formal Languages and Compilers) Exercises 15/15



	Regular Languages and Lexical Analysis
	Context-free languages and syntax analysis
	Semantic Analysis

