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Lexical Analysis: What we wanna do?

Lexical Analysis

if (i==j)
z=0;

else
z=1;

\tif (i==j)\n\t\tz=0;\n\telse\n\t\tz=1;
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Lexical Analysis: What we wanna do?

Token, Pattern Lexeme

Token
A token is a pair consisting of a token name and an optional attribute
value. The token names are the input symbols that the parser
processes.

Pattern
A pattern is a description of the form that the lexemes of a token may
take. In the case of a keyword as a token, the pattern is just the
sequence of characters that form the keyword.

Lexeme
A lexeme is a sequence of characters in the source program that
matches the pattern for a token and is identified by the lexical analyzer
as an instance of that token.
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Lexical Analysis: What we wanna do?

Lexical Analysis

Token Class (or Class)
- In English: Noun, Verb, Adjective, Adverb, Article, . . .

- In a programming language: Identifier, Keywords, “(“, “)”, Numbers,
. . .
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Lexical Analysis: What we wanna do?

Lexical Analysis

Token classes corresponds to sets of strings

Identifier
- strings of letter or digits starting with a letter

Integer
- a non-empty string of digits

Keyword
- “else”, “if”, “while”, . . .

Whitespace
- a non-empty sequence of blanks, newlines, and tabs
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Lexical Analysis: What we wanna do?

Lexical Analysis

Therefore the role of the lexical analyzer (Lexer) is:
Classify program substring according to role (token class)
communicate tokens to parser
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Lexical Analysis: What we wanna do?

Lexical Analysis

Let’s analyze these lines of code:

\tif (i==j)\n\t\tz=0;\n\telse\n\t\tz=1;

x=0;\n\twhile (x<10) {\n\tx++;\n}

Token Classes: Identifier, Integer, Keyword, Whitespace
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Lexical Analysis: What we wanna do?

Lexical Analysis

Therefore an implementation of a lexical analyzer must do two things:
Recognize substrings corresponding to tokens

the lexemes

Identify the token class for each lexemes
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Lexical Analysis: What we wanna do?

Lexical Analysis - Tricky problems

FORTRAN rule: whitespace is insignificant
i.e. VA R1 is the same as VAR1

DO 5 I = 1,25

DO 5 I = 1.25

In FORTRAN the “5” refers to a label you will find in the following of the program code
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Lexical Analysis: What we wanna do?

Lexical Analysis - Tricky problems

1 The goal is to partition the string. This is implemented by reading
left-to-right, recognizing one token at a time

2 “Lookahead” may be required to decide where one token ends
and the next token begins

if (i==j)
z=0;

else
z=1;
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Lexical Analysis: What we wanna do?

Lexical Analysis - Tricky problems

PL/1 keywords are not reserved

IF ELSE THEN THEN = ELSE; ELSE ELSE = THEN

DECLARE(ARG1,...,ARGN)
Is DECLARE a keyword or an array reference?

Need for an unbounded lookahead
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Lexical Analysis: What we wanna do?

Lexical Analysis - Tricky problems

C++ template syntax:

Foo<Bar>

C++ stream syntax:

cin >> var;

Foo<Bar<Barr>>
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Short Notes on Formal Languages

Languages

Language
Let Σ be a set of characters generally referred as the alphabet. A
language over Σ is a set of strings of characters drawn from Σ

Alphabet = English character =⇒ Language = English sentences
Alphabet = ASCII =⇒ Language = C programs

Given Σ = {a,b} examples of simple languages are:
L1 = {a,ab,aa}
L2 = {b,ab,aabb}
L3 = {s|s has an equal number of a and b}
. . .
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Short Notes on Formal Languages

Grammar Definition

Grammar
A Grammar is given by a tuple G = 〈VT ,VN ,S,P〉 where:

I VT : finite and non empty set of terminal symbols (alphabet)
I VN : finite set of non terminal symbols s.t. VN ∩ VT = ∅
I S: start symbol of the grammar s.t. S ∈ VN
I P: is the set of productions s.t. P ⊆ (V∗ · VN · V∗)× V∗ where
V∗ = VT ∪ VN
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Short Notes on Formal Languages

Derivations

Derivations
Given a grammar G = 〈VT ,VN ,S,P〉 a derivation is a sequence of
strings φ1, φ2, ..., φn s.t.
∀i ∈ [1, ..,n].φi ∈ V∗ ∧ ∀i ∈ [1, ...,n − 1].∃p ∈ P.φi →p φi+1.
We generally write φ1 →∗ φn to indicate that from φ1 it is possible to
derive φn repeatedly applying productions in P

Generated Language
The language generated by a grammar G = 〈VT ,VN ,S,P〉
corresponds to: L(G) = {x|x ∈ V∗T ∧ S →∗ x}
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Short Notes on Formal Languages

Chomsky Hierarchy

A hierarchy of grammars can be defined imposing constraints on the
structure of the productions in set P (α, β, γ ∈ V∗,a ∈ VT ,A,B ∈ VN ):
T0. Unrestricted Grammars:

Production Schema: no constraints
Recognizing Automaton: Turing Machines

T1. Context Sensitive Grammars:
Production Schema: αAβ → αγβ
Recognizing Automaton: Linear Bound Automaton (LBA)

T2. Context-Free Grammars:
Production Schema: A→ γ
Recognizing Automaton: Non-deterministic Push-down Automaton

T3. Regular Grammars:
Production Schema: A→ a or A→ aB
Recognizing Automaton: Finite State Automaton
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Short Notes on Formal Languages

Meaning function L

Meaning Function
Once you defined a way to describe the strings in a language it is
important to define a meaning function L that maps syntax to
semantics

Why using a meaning function?
Makes clear what is syntax, what is semantics
Allows us to consider notation as a separate issue
Because expressions and meanings are not 1 to 1

consider the case of arabic number and roman numbers

Warning
It should never happen that the same

syntactical structure has more meanings
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Lexical Analysis: How can we do it?
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Lexical Analysis: How can we do it?

Languages

We need to define which is the set of strings in any token class.
Therefore we need to choose the right mechanisms to describe such
sets:

- Reducing at minimum the complexity needed to recognize
lexemes

- Identifying effective and simple ways to describe the patterns

- Regular languages seem to be enough powerful to define all the
lexemes in any token class

- Regular expressions are a suitable way to syntactically identify
strings belonging to a regular language
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Lexical Analysis: How can we do it? Regular Expressions

Regular expressions

Single character: ’c’ = {“c”}
Epsilon: ε = {“ ”}
Union: A+B = {a|a ∈ A} ∪ {b|b ∈ B}
Concatenation: AB = {ab|a ∈ A ∧ b ∈ B}
Iteration: A∗ = ∪i≥0Ai

The regular expressions over Σ are the smallest set including ε, all the
character ’c’ in Σ and that is closed with respect to union,
concatenation and iteration.

Algebraic laws for RE:
+ is commutative and associative
concatenation is associative
concatenation distributes over +
ε is the identity for concatenation
ε is guaranteed in a closure
the Kleene star is idempotent
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Lexical Analysis: How can we do it? Regular Expressions

Exercise
Consider Σ = {0, 1}. What are the sets defined by the following REs?

I 1∗

I (1 + 0)1
I 0∗ + 1∗

I (0 + 1)∗

Exercise
Given the regular language identified by (0 + 1)∗1(0 + 1)∗ which are the regular
expressions identifying the same language among the following one:

I (01 + 11)∗(0 + 1)∗

I (0 + 1)∗(10 + 11 + 1)(0 + 1)∗

I (1 + 0)∗1(1 + 0)∗

I (0 + 1)∗(0 + 1)(0 + 1)∗
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Lexical Analysis: How can we do it? Regular Expressions

Exercise
Choose the regular languages that are correct specifications of the
following English-language description:
Twelve-hour times of the form “04:13PM”. Minutes should always be a two digit
number, but hours may be a single digit

I (0 + 1)?[0− 9] : [0− 5][0− 9](AM + PM)

I ((0 + ε)[0− 9] + 1[0− 2]) : [0− 5][0− 9](AM + PM)

I (0∗[0− 9] + 1[0− 2]) : [0− 5][0− 9](AM + PM)

I (0?[0− 9] + 1(0 + 1 + 2) : [0− 5][0− 9](a + P)M

Regular expressions (syntax)
specify regular languages (semantics)
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Lexical Analysis: How can we do it? Regular Expressions

Meaning function L

The meaning function L maps syntax to semantics

L (e) = M where e is a RE and M is a set of strings

Therefore:
L (ε) = {“ ”}
L (′c′) = {“c”}
L (A + B) = L (A) ∪L (B)

L (AB) = {ab|a ∈ L (A) ∧ b ∈ L (B)}
L (A∗) = {∪i≥0L (Ai)}
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Lexical Analysis: How can we do it? Regular Expressions

Regular definitions

For notational convention we give names to certain regular
expressions. A regular definition, on the alphabet Σ is sequence of
definition of the form:

d1 → r1

d2 → r2

. . .
dn → rn

So token of a language can be defined as:

letter → a|b|...|z|A|B|...|Z
compact syntax: [a− zA− B]

digit → 0|1|...|9
compact syntax: [0− 9]

Identifier → letter(letter |digit)∗
ExpNot → digit(.digit+E(+|−)digit+)? (Exponential Notation)
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Lexical Analysis: How can we do it? Regular Expressions

Lexical Specification

At least one: A+ ≡ AA∗

Union: A|B ≡ A + B
Option: A? ≡ A + ε

Range: ′a′ +′ b′ + ...+′ z ′ ≡ [a− z]

Excluded range: complement of [a− z] ≡ [∧a− z]
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Lexical Analysis: How can we do it? Regular Expressions

Lexical Specification

We want to derive a regular expression for all tokens of a language:

s ∈ L (R) – where R is the RegExp resulting from the sum of the
RegExp for all the different kinds ot token

How can we define it?
1 write a regexp for the lexemes of each token class (number,

keyword, identifier,. . . )
2 Constructs R matching all lexemes for all tokens
3 Let input be x1...xn

For 1 ≤ i ≤ n check if x1...xi ∈ L (Rj) for some j
4 if success then we know that x1...xi ∈ L (Rj) for some j
5 remove x1...xi from input and go to (3)
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Lexical Analysis: How can we do it? Regular Expressions

LA matching rules

Suppose that at the same time for i 6= j :
x1...xi ∈ L (R)

x1...xj ∈ L (R)

Which is the match to consider?

longest match rule

Suppose that at the same time for i 6= j ∈ [1..n] and R = R1|R2|...|Rn:
x1...xk ∈ L (Ri)

x1...xk ∈ L (Rj)

Which is the match to consider?

first one listed rule

Errors: to manage errors put as last match in the list a rexp for all
lexemes not in the language
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Lexical Analysis: How can we do it? Finite State Automata

Finite Automata

Regular Expressions = specification
Finite Automata = implementation

Finite Automaton
A Finite Automaton A is a tuple 〈S,Σ, δ, s0,F〉 where:

I S represents the set of states
I Σ represents a set of symbols (alphabet)
I δ represents the transition function (δ : S × Σ→ . . .)
I s0 represents the start state (s0 ∈ S)
I F represents the set of accepting states (F ⊆ S)

In two flawors: Deterministic Finite Automata (DFA) and
Non-Deterministic Finite Automata (NDFA)
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Acceptance of Strings for Finite Automaton

Derivations
A DFA goes from state si to state si+1 consuming from the input the character a if
si+1 = δ(si , a). A DFA can go from state si to sj consuming the string a = a1a2...an if
there is a sequence of states si+1, ..., si+n−1 and sj = si+n s.t.
∀k ∈ [1..n].si+k = δ(si+k−1, ak ), then we write si →a sj

Equivalently the extended transition function δ : S × Σ∗ → S is defined, i.e.
δ(δ(...δ(si , a1).., an−1), an) = δ(si , a) = sj

Acceptance of Strings
A DFA accepts a strings a in the alphabet Σ if there is a derivation from s0 to a state si

consuming the string a (i.e. s0 →a si ) and si ∈ F

Accepted Language
The language accepted by a FSA is constituted by all the strings for which there is a
derivation ending in a state in F .
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Lexical Analysis: How can we do it? Finite State Automata

Finite Automata

DFA vs. NFA
Depending on the definition of δ we distinguish between:

I Deterministic Finite Automata (DFA) - δ : S × Σ→ S
I Nondeterministic Finite Automata (NFA) δ : S × Σ→P(S)

The transition relation δ can be represented in a table (transition table)

Overview of the graphical notation circle and edges (arrows)
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Exercise
Define the following automata:

I DFA for a single 1
I DFA for accepting any number of 1’s followed by a single 0
I DFA for any sequence of a or b (possibly empty) followed by ’abb’

Exercise

Which regular expression corresponds to the automaton?
1 (0|1)*
2 (1*|0)(1|0)
3 1*|(01)*|(001)*|(000*1)*
4 (0|1)*00
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ε-moves

DFA, NFA and ε-moves
DFA

one transition per input per state
no ε-moves
faster

NFA
can have multiple transitions for one input in a given state
can have ε-moves
smaller (exponentially)
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From regexp to NFA

Equivalent NFA for a regexp

The Thompson’s algorithm permits to automatically derive a NFA from
the specification of a regexp. It defines basic NFA for the basic regexp
and rules to compose them:

1 for ε
2 for ’a’
3 for AB
4 for A|B
5 for A*

Now consider the regexp for (1|0)*1

(Formal Languages and Compilers) 2. Lexical Analysis CS@UNICAM 35 / 43



Lexical Analysis: How can we do it? Finite State Automata

NFA to DFA

NFA 2 DFA
Given a NFA accepting a language L there exists a DFA accepting the same
language

The derivation of a DFA from an NFA is based on the concept of
ε− closure. The algorithm to make the transformation is based on:

ε− closure(s) with s ∈ S

ε− closure(T ) with T ⊆ S i.e. = {∪s∈T ε− closure(s)}
move(T , a) with T ⊆ S and a ∈ L

1 (a|b)∗abb
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NFA 2 DFA

Subset Construction Algorithm
The Subset constuction algorithm permits to derive a DFA 〈S ,Σ, δD, s0,FD〉 from a
NFA 〈N ,Σ, δN , n0,FN〉

q0 ← ε – closure({n0});
Q ← q0;
Worklist← {q0};
while (Worklist 6= ∅) do

take and remove q from Worklist;
for all (c ∈ Σ) do

t ← ε – closure(move(q, c));
T[q, c]← t ;
if (t /∈ Q) then

Q ← Q ∪ {t};
Worklist←Worklist ∪{t};

end if
end for

end while
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DFA 2 Minimal DFA

Note
Reducing the size of the Automaton does not reduce the number of moves needed to
recognize a string, nevertheless it reduces the size of the transition table that could
more easily fit the size of a cache

Equivalent states
Two states of a DFA are equivalent if they produce the same “behaviour” on any input
string. Formally two states si and sj of a DFA D = 〈S,Σ, δ, q0,F〉 are considered
equivalent (si ≡ sj ) iff ∀x ∈ Σ∗.(si →x s′i ∧ s′i ∈ F) ⇐⇒ (sj →x s′j ∧ s′j ∈ F)
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DFA 2 Minimal DFA – Hopcroft’s Algorithm

Let T a matrix containing information about the equivalence of two states and
let L a matrix containing sets (initially empty) of pairs of states
for all sx ∈ S ∧ sy ∈ S do

T[sx , sy ]← 0; // All pairs of states are initially marked as equivalent
end for
for all sx ∈ F ∧ sy ∈ S/F do

T[sx , sy ]← 1; T[sy , sx ]← 1;
end for
for all 〈sx , sy 〉 s.t. T[sx , sy ] = 0 ∧ sx 6= sy do

if (∃c ∈ Σ.T[δ(sx , c), δ(sy , c)] = 1) then
T[sx , sy ]← 1; T[sy , sx ]← 1;
for all 〈sw , sz〉 ∈ L[sx , sy ] do

T[sw , sz ]← 1; T[sz , sw ]← 1;
end for

else
for all c ∈ Σ do

if (δ(sx , c) 6= δ(sy , c) ∧ (sx , sy ) 6= (δ(sx , c), δ(sy , c)) then
L[δ(sx , c), δ(sy , c)]← L[δ(sx , c), δ(sy , c)] ∪〈sx , sy 〉;
L[δ(sy , c), δ(sx , c)]← L[δ(sy , c), δ(sx , c)] ∪〈sx , sy 〉;

end if
end for

end if
end for

Uniqueness of the minimal DFA

∃! DFA that recognizes a regular language L and has minimal number of states
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Minimizing Transition Table

The easiest way to represent a DFA is to have a matrix with state and characters.
Alternative representations:

Lists of pairs for each state (character,states)

hardcoded table into case statements

Example

Consider the following DFA:

I Which is the accepted language?
I How can the table be represented as a list of pairs?
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Exercises

Regular Expressions

Write a regular expression for each of the following languages:
I Given an alphabet Σ = {0, 1}, L is the set of strings composed by pairs of 0 and

pairs of 1
I Given an alphabet Σ = {1, b, c, d}, L is the set of strings xyzwy , where x and w

are strings of one or more characters in Σ, y is any single character in Σ and z is
the character ’z’, taken from outside the alphabet

I Floating-point numbers

Finite Automata

Construct a FA accepting the following languages:
I {w ∈ {a, b}∗|w starts with ’a’ and contains the substing ’baba’}
I {w ∈ {a, b, c}∗| in w the number of ’a’s modulo 2 is equal to the number of ’b’s

modulo 3 }

(Formal Languages and Compilers) 2. Lexical Analysis CS@UNICAM 41 / 43



Lexical Analysis: How can we do it? Finite State Automata

Exercises

RegExp 2 DFA

I Consider the RegExp a(b|c)∗ and derive the accepting DFA.
I Define an automated strategy to decide if two regular expressions define the

same language combininig the algorithms defined so far

Regular Languages properties

I Show that the complement of a regular language, on alphabet Σ, is still a regular
language

I Show that the intersection of two regular languages, on alphabet Σ, is still a
regular language

Scanner issues

Describe the behaviour of a scanner when the two tokens described by the following
patterns are considered: ab and (ab)∗c. Why a simple scanner is particularly
inefficient on a string like ’abababababab’?
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Summary

Lexical Analysis

Relevant concepts we have encountered:

Tokens, Patterns, Lexemes

Chomsky hierarchy and regular languages

Regular expressions

Problems and solutions in matching strings

DFA and NFA

Transformations

RegExp→ NFA
NFA→ DFA
DFA→ Minimal DFA
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