

Andrea Polini

Formal Languages and Compilers MSc in Computer Science University of Camerino

(Formal Languages and Compilers)

2. Lexical Analysis

CS@UNICAM 1/43

• • • • • • • • • • • •

ToC

Lexical Analysis: What we wanna do?

2 Short Notes on Formal Languages

Lexical Analysis: How can we do it?
Regular Expressions

Finite State Automata

• • • • • • • • • • • • •

\tif (i==j)\n\t\tz=0;\n\telse\n\t\tz=1;

(Formal Languages and Compilers)

э

イロト イヨト イヨト イヨト

\tif (i==j)\n\t\tz=0;\n\telse\n\t\tz=1;

(Formal Languages and Compilers)

Token, Pattern Lexeme

Token

A token is a pair consisting of a token name and an optional attribute value. The token names are the input symbols that the parser processes.

Pattern

A pattern is a description of the form that the lexemes of a token may take. In the case of a keyword as a token, the pattern is just the sequence of characters that form the keyword.

Lexeme

A lexeme is a sequence of characters in the source program that matches the pattern for a token and is identified by the lexical analyzer as an instance of that token.

- Token Class (or Class)
 - In English: Noun, Verb, Adjective, Adverb, Article, ...
 - In a programming language: *Identifier, Keywords, "(", ")", Numbers,*

< ロ > < 同 > < 回 > < 回 >

• Token classes corresponds to sets of strings

- Identifier
 - strings of letter or digits starting with a letter
- Integer
 - a non-empty string of digits
- Keyword
 - "else", "if", "while", ...
- Whitespace
 - a non-empty sequence of blanks, newlines, and tabs

Token classes corresponds to sets of strings

- Identifier
 - strings of letter or digits starting with a letter
- Integer
 - a non-empty string of digits
- Keyword
 - "else", "if", "while", ...
- Whitespace
 - a non-empty sequence of blanks, newlines, and tabs

Token classes corresponds to sets of strings

- Identifier
 - strings of letter or digits starting with a letter
- Integer
 - a non-empty string of digits
- Keyword
 - "else", "if", "while", ...
- Whitespace
 - a non-empty sequence of blanks, newlines, and tabs

Token classes corresponds to sets of strings

- Identifier
 - strings of letter or digits starting with a letter
- Integer
 - a non-empty string of digits
- Keyword
 - "else", "if", "while", ...
- Whitespace
 - a non-empty sequence of blanks, newlines, and tabs

Token classes corresponds to sets of strings

- Identifier
 - strings of letter or digits starting with a letter
- Integer
 - a non-empty string of digits
- Keyword
 - "else", "if", "while", ...
- Whitespace
 - a non-empty sequence of blanks, newlines, and tabs

Therefore the role of the lexical analyzer (Lexer) is:

- Classify program substring according to role (token class)
- communicate tokens to parser

Therefore the role of the lexical analyzer (Lexer) is:

- Classify program substring according to role (token class)
- communicate tokens to parser

(4) (5) (4) (5)

Let's analyze these lines of code:

$x=0; \n\twhile (x<10) {\n\tx++; \n}$

Token Classes: Identifier, Integer, Keyword, Whitespace

< ロ > < 同 > < 回 > < 回 >

Therefore an implementation of a lexical analyzer must do two things:

- Recognize substrings corresponding to tokens
 - the lexemes
- Identify the token class for each lexemes

• FORTRAN rule: whitespace is insignificant

- i.e. VA R1 is the same as VAR1
- DO 5 I = 1, 25
- DO 5 I = 1.25

In FORTRAN the "5" refers to a label you will find in the following of the program code

< 口 > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

- The goal is to partition the string. This is implemented by reading left-to-right, recognizing one token at a time
- Cookahead" may be required to decide where one token ends and the next token begins

< 口 > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

PL/1 keywords are not reserved

IF ELSE THEN THEN = ELSE; ELSE ELSE = THEN

DECLARE (ARG1, ..., ARGN) Is DECLARE a keyword or an array reference?

Need for an unbounded lookahead

3 > 4 3

4 6 1 1 4

PL/1 keywords are not reserved

IF ELSE THEN THEN = ELSE; ELSE ELSE = THEN

DECLARE (ARG1, ..., ARGN) Is DECLARE a keyword or an array reference?

Need for an unbounded lookahead

(Formal Languages and Compilers)

2. Lexical Analysis

CS@UNICAM 12/43

4 A N

• PL/1 keywords are not reserved

IF ELSE THEN THEN = ELSE; ELSE ELSE = THEN

DECLARE (ARG1, ..., ARGN) Is DECLARE a keyword or an array reference?

Need for an unbounded lookahead

• C++ template syntax:

Foo<Bar>

• C++ stream syntax:

cin >> var;

Foo<Bar<Barr>>

(Formal Languages and Compilers)

2. Lexical Analysis

CS@UNICAM 13/43

3

• C++ template syntax:

Foo<Bar>

• C++ stream syntax:

cin >> var;

Foo<Bar<Barr>>

Formal	Languag	nes and	Compi	lers)
		,		

< ロ > < 同 > < 回 > < 回 >

ToC

Short Notes on Formal Languages

Lexical Analysis: How can we do it?

- Regular Expressions
- Finite State Automata

Languages

Language

Let Σ be a set of characters generally referred as the *alphabet*. A language over Σ is a set of strings of characters drawn from Σ

Alphabet = English character \implies Language = English sentences Alphabet = ASCII \implies Language = C programs

Given $\Sigma = \{a, b\}$ examples of simple languages are:

- $\mathcal{L}_1 = \{a, ab, aa\}$
- $\mathcal{L}_2 = \{b, ab, aabb\}$
- $\mathcal{L}_3 = \{s | s \text{ has an equal number of } a \text{ and } b\}$

Ο...

Grammar Definition

Grammar

A Grammar is given by a tuple $\mathcal{G} = \langle \mathcal{V}_{\mathcal{T}}, \mathcal{V}_{\mathcal{N}}, \mathcal{S}, \mathcal{P} \rangle$ where:

- ▶ V_T: finite and non empty set of terminal symbols (alphabet)
- $\mathcal{V}_{\mathcal{N}}$: finite set of non terminal symbols s.t. $\mathcal{V}_{\mathcal{N}} \cap \mathcal{V}_{\mathcal{T}} = \emptyset$
- S: start symbol of the grammar s.t. $S \in \mathcal{V}_{\mathcal{N}}$
- ▶ \mathcal{P} : is the set of productions s.t. $\mathcal{P} \subseteq (\mathcal{V}^* \cdot \mathcal{V}_{\mathcal{N}} \cdot \mathcal{V}^*) \times \mathcal{V}^*$ where $\mathcal{V}^* = \mathcal{V}_{\mathcal{T}} \cup \mathcal{V}_{\mathcal{N}}$

Derivations

Derivations

Given a grammar $\mathcal{G} = \langle \mathcal{V}_{\mathcal{T}}, \mathcal{V}_{\mathcal{N}}, \mathcal{S}, \mathcal{P} \rangle$ a derivation is a sequence of strings $\phi_1, \phi_2, ..., \phi_n$ s.t. $\forall i \in [1, ..., n]. \phi_i \in \mathcal{V}^* \land \forall i \in [1, ..., n-1]. \exists p \in \mathcal{P}. \phi_i \rightarrow^p \phi_{i+1}.$ We generally write $\phi_1 \rightarrow^* \phi_n$ to indicate that from ϕ_1 it is possible to derive ϕ_n repeatedly applying productions in \mathcal{P}

Generated Language

The language generated by a grammar $\mathcal{G} = \langle \mathcal{V}_{\mathcal{T}}, \mathcal{V}_{\mathcal{N}}, \mathcal{S}, \mathcal{P} \rangle$ corresponds to: $\mathcal{L}(\mathcal{G}) = \{x | x \in \mathcal{V}_{\mathcal{T}}^* \land \mathcal{S} \rightarrow^* x\}$

イロン イロン イヨン 「ヨ

Derivations

Derivations

Given a grammar $\mathcal{G} = \langle \mathcal{V}_{\mathcal{T}}, \mathcal{V}_{\mathcal{N}}, \mathcal{S}, \mathcal{P} \rangle$ a derivation is a sequence of strings $\phi_1, \phi_2, ..., \phi_n$ s.t. $\forall i \in [1, ..., n]. \phi_i \in \mathcal{V}^* \land \forall i \in [1, ..., n-1]. \exists p \in \mathcal{P}. \phi_i \rightarrow^p \phi_{i+1}.$ We generally write $\phi_1 \rightarrow^* \phi_n$ to indicate that from ϕ_1 it is possible to derive ϕ_n repeatedly applying productions in \mathcal{P}

Generated Language

The language generated by a grammar $\mathcal{G} = \langle \mathcal{V}_{\mathcal{T}}, \mathcal{V}_{\mathcal{N}}, \mathcal{S}, \mathcal{P} \rangle$ corresponds to: $\mathcal{L}(\mathcal{G}) = \{x | x \in \mathcal{V}_{\mathcal{T}}^* \land \mathcal{S} \rightarrow^* x\}$

・ロト ・ 四ト ・ ヨト ・ ヨト … ヨ

Chomsky Hierarchy

A hierarchy of grammars can be defined imposing constraints on the structure of the productions in set \mathcal{P} ($\alpha, \beta, \gamma \in \mathcal{V}^*, a \in \mathcal{V}_T, A, B \in \mathcal{V}_N$):

T0. Unrestricted Grammars:

- Production Schema: no constraints
- Recognizing Automaton: Turing Machines
- T1. Context Sensitive Grammars:
 - Production Schema: $\alpha A \beta \rightarrow \alpha \gamma \beta$
 - Recognizing Automaton: Linear Bound Automaton (LBA)
- T2. Context-Free Grammars:
 - Production Schema: $\mathbf{A} \rightarrow \gamma$
 - Recognizing Automaton: Non-deterministic Push-down Automaton

T3. Regular Grammars:

- Production Schema: $A \rightarrow a$ or $A \rightarrow aB$
- Recognizing Automaton: Finite State Automaton

Meaning function ${\mathscr L}$

Meaning Function

Once you defined a way to describe the strings in a language it is important to define a meaning function *L* that maps syntax to semantics

• Why using a meaning function?

- Makes clear what is syntax, what is semantics
- Allows us to consider notation as a separate issue
- Because expressions and meanings are not 1 to 1
 - consider the case of arabic number and roman numbers

Warning

It should never happen that the same syntactical structure has more meanings

(Formal Languages and Compilers)

2. Lexical Analysis

CS@UNICAM 19/43

Meaning function ${\mathscr L}$

Meaning Function

Once you defined a way to describe the strings in a language it is important to define a meaning function *L* that maps syntax to semantics

• Why using a meaning function?

- Makes clear what is syntax, what is semantics
- Allows us to consider notation as a separate issue
- Because expressions and meanings are not 1 to 1
 - consider the case of arabic number and roman numbers

Warning

It should never happen that the same syntactical structure has more meanings

(Formal Languages and Compilers)

Meaning function ${\mathscr L}$

Meaning Function

Once you defined a way to describe the strings in a language it is important to define a meaning function *L* that maps syntax to semantics

• Why using a meaning function?

- Makes clear what is syntax, what is semantics
- Allows us to consider notation as a separate issue
- Because expressions and meanings are not 1 to 1
 - consider the case of arabic number and roman numbers

Warning

It should never happen that the same syntactical structure has more meanings

(Formal Languages and Compilers)

2. Lexical Analysis

CS@UNICAM 19/43

ToC

Short Notes on Formal Languages

Lexical Analysis: How can we do it?

- Regular Expressions
- Finite State Automata

Languages

We need to define which is the set of strings in any token class. Therefore we need to choose the right mechanisms to describe such sets:

- Reducing at minimum the complexity needed to recognize lexemes
- Identifying effective and simple ways to describe the patterns
- Regular languages seem to be enough powerful to define all the lexemes in any token class
- Regular expressions are a suitable way to syntactically identify strings belonging to a regular language

Regular expressions

- Single character: 'c' = {"c"}
- Epsilon: ε = {" "}
- Union: $A+B = \{a | a \in A\} \cup \{b | b \in B\}$
- Concatenation: $AB = \{ab | a \in A \land b \in B\}$
- Iteration: $A^* = \bigcup_{i \ge 0} A^i$

The regular expressions over Σ are the smallest set including ϵ , all the character 'c' in Σ and that is closed with respect to union, concatenation and iteration.

- Algebraic laws for RE:
 - + is commutative and associative
 - concatenation is associative
 - concatenation distributes over +
 - ϵ is the identity for concatenation
 - ϵ is guaranteed in a closure
 - the Kleene star is idempotent

Regular expressions

- Single character: 'c' = {"c"}
- Epsilon: ε = {" "}
- Union: $A+B = \{a | a \in A\} \cup \{b | b \in B\}$
- Concatenation: $AB = \{ab | a \in A \land b \in B\}$
- Iteration: $A^* = \bigcup_{i>0} A^i$

The regular expressions over Σ are the smallest set including ϵ , all the character 'c' in Σ and that is closed with respect to union, concatenation and iteration.

- Algebraic laws for RE:
 - + is commutative and associative
 - concatenation is associative
 - concatenation distributes over +
 - ϵ is the identity for concatenation
 - ϵ is guaranteed in a closure
 - the Kleene star is idempotent

Regular expressions

- Single character: 'c' = {"c"}
- Epsilon: ε = {" "}
- Union: $A+B = \{a | a \in A\} \cup \{b | b \in B\}$
- Concatenation: $AB = \{ab | a \in A \land b \in B\}$
- Iteration: $A^* = \bigcup_{i \ge 0} A^i$

The regular expressions over Σ are the smallest set including ϵ , all the character 'c' in Σ and that is closed with respect to union, concatenation and iteration.

- Algebraic laws for RE:
 - + is commutative and associative
 - concatenation is associative
 - concatenation distributes over +
 - ϵ is the identity for concatenation
 - ϵ is guaranteed in a closure
 - the Kleene star is idempotent

∃ ► < ∃ ►</p>
Consider $\Sigma = \{0, 1\}$. What are the sets defined by the following REs?

- ▶ 1*
- ► (1+0)1
- ► 0* + 1*
- ▶ (0+1)*

Exercise

Given the regular language identified by $(0 + 1)^* 1(0 + 1)^*$ which are the regular expressions identifying the same language among the following one:

- ▶ $(01+11)^*(0+1)^*$
- $(0+1)^*(10+11+1)(0+1)^*$
- $(1+0)^*1(1+0)$
- $(0+1)^*(0+1)(0+1)^*$

3

イロト 不得 トイヨト イヨト

Consider $\Sigma = \{0, 1\}$. What are the sets defined by the following REs?

- ▶ 1*
- ► (1+0)1
- ▶ 0* + 1*
- ▶ (0+1)*

Exercise

Given the regular language identified by $(0+1)^*1(0+1)^*$ which are the regular expressions identifying the same language among the following one:

- $(01+11)^*(0+1)^*$
- $(0+1)^*(10+11+1)(0+1)^*$
- $(1+0)^*1(1+0)^*$
- $(0+1)^*(0+1)(0+1)^*$

Choose the regular languages that are correct specifications of the following English-language description:

Twelve-hour times of the form "04:13PM". Minutes should always be a two digit number, but hours may be a single digit

- (0+1)?[0-9]: [0-5][0-9](AM+PM)
- ► $((0 + \epsilon)[0 9] + 1[0 2]) : [0 5][0 9](AM + PM)$
- $(0^*[0-9] + 1[0-2]) : [0-5][0-9](AM + PM)$
- (0?[0-9]+1(0+1+2):[0-5][0-9](a+P)M

Regular expressions (syntax) specify regular languages (semantics)

Formal Languages and Compilers)

Choose the regular languages that are correct specifications of the following English-language description:

Twelve-hour times of the form "04:13PM". Minutes should always be a two digit number, but hours may be a single digit

•
$$(0+1)?[0-9]: [0-5][0-9](AM+PM)$$

- ► $((0 + \epsilon)[0 9] + 1[0 2]) : [0 5][0 9](AM + PM)$
- $(0^*[0-9] + 1[0-2]) : [0-5][0-9](AM + PM)$
- (0?[0-9] + 1(0+1+2) : [0-5][0-9](a+P)M

Regular expressions (syntax) specify regular languages (semantics)

(Formal Languages and Compilers)

Meaning function ${\mathscr L}$

The meaning function L maps syntax to semantics

 $\mathscr{L}(e) = \mathscr{M}$ where e is a RE and \mathscr{M} is a set of strings

Therefore:

• $\mathscr{L}(\epsilon) = \{""\}$ • $\mathscr{L}('c') = \{"c"\}$ • $\mathscr{L}(A + B) = \mathscr{L}(A) \cup \mathscr{L}(B)$ • $\mathscr{L}(AB) = \{ab|a \in \mathscr{L}(A) \land b \in \mathscr{L}(B)\}$ • $\mathscr{L}(A^*) = \{\cup_{i \ge 0} \mathscr{L}(A^i)\}$

3

Regular Expressions

Regular definitions

For notational convention we give names to certain regular expressions. A regular definition, on the alphabet Σ is sequence of definition of the form:

- $d_1 \rightarrow r_1$
- $d_2 \rightarrow r_2$
- ...
- $d_n \rightarrow r_n$

So token of a language can be defined as:

letter → a|b|...|z|A|B|...|Z

compact syntax: [a - zA - B]

digit → 0|1|...|9

compact syntax: [0 - 9]

Identifier → letter(letter|digit)*
ExpNot → digit(.digit⁺E(+|-)digit⁺)? (Exponential Notation)

- At least one: $A^+ \equiv AA^*$
- Union: $A|B \equiv A + B$
- Option: $A? \equiv A + \epsilon$
- Range: $a' + b' + ... + z' \equiv [a z]$
- Excluded range: complement of $[a z] \equiv [^{\land}a z]$

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

We want to derive a regular expression for all tokens of a language:

$s \in \mathscr{L}(R)$ – where R is the RegExp resulting from the sum of the RegExp for all the different kinds ot token

How can we define it?

- write a regexp for the lexemes of each token class (number, keyword, identifier,...)
- Constructs R matching all lexemes for all tokens.
- A Let input be X1....Xn
 - For $1 \leq i \leq n$ check if $x_1 ... x_l \in \mathscr{L}(R_l)$ for some j

We want to derive a regular expression for all tokens of a language:

 $s \in \mathscr{L}(R)$ – where R is the RegExp resulting from the sum of the RegExp for all the different kinds ot token

How can we define it?

- write a regexp for the lexemes of each token class (number, keyword, identifier,...)
- Onstructs R matching all lexemes for all tokens
- Let input be $x_1...x_n$ For $1 \le i \le n$ check if $x_1...x_i \in \mathcal{L}(R_i)$ for some j
- If success then we know that $x_1...x_i \in \mathscr{L}(R_i)$ for some j
- **o** remove $x_1...x_i$ from input and go to (3)

We want to derive a regular expression for all tokens of a language:

 $s \in \mathscr{L}(R)$ – where R is the RegExp resulting from the sum of the RegExp for all the different kinds ot token

How can we define it?

- write a regexp for the lexemes of each token class (number, keyword, identifier,...)
- Constructs R matching all lexemes for all tokens
- 3 Let input be $x_1...x_n$ For $1 \le i \le n$ check if $x_1...x_i \in \mathcal{L}(R_j)$ for some j
- If success then we know that $x_1...x_i \in \mathscr{L}(R_i)$ for some j
- **(a)** remove $x_1...x_i$ from input and go to (3)

< 日 > < 同 > < 回 > < 回 > < □ > <

We want to derive a regular expression for all tokens of a language:

 $s \in \mathscr{L}(R)$ – where R is the RegExp resulting from the sum of the RegExp for all the different kinds ot token

How can we define it?

- write a regexp for the lexemes of each token class (number, keyword, identifier,...)
- Onstructs R matching all lexemes for all tokens
- 3 Let input be $x_1...x_n$ For $1 \le i \le n$ check if $x_1...x_i \in \mathcal{L}(R_j)$ for some j
- (1) if success then we know that $x_1...x_i \in \mathscr{L}(R_i)$ for some j
- remove x₁...x_i from input and go to (3)

3

< 日 > < 同 > < 回 > < 回 > < □ > <

We want to derive a regular expression for all tokens of a language:

 $s \in \mathscr{L}(R)$ – where R is the RegExp resulting from the sum of the RegExp for all the different kinds ot token

How can we define it?

- write a regexp for the lexemes of each token class (number, keyword, identifier,...)
- Constructs R matching all lexemes for all tokens
- Solution Let input be $x_1...x_n$ For $1 \le i \le n$ check if $x_1 = x_1$

For $1 \le i \le n$ check if $x_1...x_i \in \mathscr{L}(R_j)$ for some j

- ④ if success then we know that $x_1...x_i \in \mathscr{L}(R_j)$ for some j
- remove x₁...x_i from input and go to (3)

3

イロト 不得 トイヨト イヨト

We want to derive a regular expression for all tokens of a language:

 $s \in \mathscr{L}(R)$ – where R is the RegExp resulting from the sum of the RegExp for all the different kinds ot token

How can we define it?

- write a regexp for the lexemes of each token class (number, keyword, identifier,...)
- Constructs R matching all lexemes for all tokens
- Solution Let input be $x_1...x_n$ For $1 \le i \le n$ check if $x_1...x_i \in \mathcal{L}(R_j)$ for some *j*
- if success then we know that $x_1...x_i \in \mathcal{L}(R_j)$ for some *j*

remove x₁...x_i from input and go to (3)

We want to derive a regular expression for all tokens of a language:

 $s \in \mathscr{L}(R)$ – where R is the RegExp resulting from the sum of the RegExp for all the different kinds ot token

How can we define it?

- write a regexp for the lexemes of each token class (number, keyword, identifier,...)
- Constructs R matching all lexemes for all tokens
- Solution Let input be $x_1...x_n$ For $1 \le i \le n$ check if $x_1...x_i \in \mathcal{L}(R_j)$ for some *j*
- if success then we know that $x_1...x_i \in \mathcal{L}(R_j)$ for some *j*
- remove $x_1...x_i$ from input and go to (3)

Suppose that at the same time for $i \neq j$:

- $x_1...x_i \in \mathscr{L}(R)$
- $x_1...x_j \in \mathcal{L}(R)$

Which is the match to consider?

longest match rule

Suppose that at the same time for $i \neq j \in [1..n]$ and $R = R_1 | R_2 | ... | R_n$: • $x_1 ... x_k \in \mathcal{L}(R_i)$

• $x_1...x_k \in \mathscr{L}(R_i)$

Which is the match to consider?

first one listed rule

Errors: to manage errors put as last match in the list a rexp for all lexemes not in the language

(Formal Languages and Compilers)

Suppose that at the same time for $i \neq j$:

- $x_1...x_i \in \mathscr{L}(R)$
- $x_1...x_j \in \mathscr{L}(R)$

Which is the match to consider?

longest match rule

Suppose that at the same time for $i \neq j \in [1..n]$ and $R = R_1 |R_2|...|R_n$: • $x_1...x_k \in \mathcal{L}(R_i)$

• $x_1...x_k \in \mathscr{L}(R_j)$

Which is the match to consider?

first one listed rule

Errors: to manage errors put as last match in the list a rexp for all lexemes not in the language

(Formal Languages and Compilers)

2. Lexical Analysis

Suppose that at the same time for $i \neq j$:

- $x_1...x_i \in \mathscr{L}(R)$
- $x_1...x_j \in \mathscr{L}(R)$

Which is the match to consider?

longest match rule

Suppose that at the same time for $i \neq j \in [1..n]$ and $R = R_1 | R_2 | ... | R_n$: • $x_1 ... x_k \in \mathcal{L}(R_i)$

• $X_1...X_k \in \mathscr{L}(R_j)$

Which is the match to consider?

first one listed rule

Errors: to manage errors put as last match in the list a rexp for all lexemes not in the language

(Formal Languages and Compilers)

2. Lexical Analysis

Suppose that at the same time for $i \neq j$:

- $x_1...x_i \in \mathscr{L}(R)$
- $x_1...x_j \in \mathscr{L}(R)$

Which is the match to consider?

longest match rule

Suppose that at the same time for $i \neq j \in [1..n]$ and $R = R_1 | R_2 | ... | R_n$:

- $x_1...x_k \in \mathscr{L}(R_i)$
- $x_1...x_k \in \mathscr{L}(R_j)$

Which is the match to consider?

first one listed rule

Errors: to manage errors put as last match in the list a rexp for all lexemes not in the language

(Formal Languages and Compilers)

2. Lexical Analysis

Suppose that at the same time for $i \neq j$:

- $x_1...x_i \in \mathscr{L}(R)$
- $x_1...x_j \in \mathscr{L}(R)$

Which is the match to consider?

longest match rule

Suppose that at the same time for $i \neq j \in [1..n]$ and $R = R_1 | R_2 | ... | R_n$:

- $x_1...x_k \in \mathscr{L}(R_i)$
- $x_1...x_k \in \mathscr{L}(R_j)$

Which is the match to consider?

first one listed rule

Errors: to manage errors put as last match in the list a rexp for all lexemes not in the language

(Formal Languages and Compilers)

2. Lexical Analysis

Suppose that at the same time for $i \neq j$:

- $x_1...x_i \in \mathscr{L}(R)$
- $x_1...x_j \in \mathscr{L}(R)$

Which is the match to consider?

longest match rule

Suppose that at the same time for $i \neq j \in [1..n]$ and $R = R_1 | R_2 | ... | R_n$:

- $x_1...x_k \in \mathscr{L}(R_i)$
- $x_1...x_k \in \mathscr{L}(R_j)$

Which is the match to consider?

first one listed rule

Errors: to manage errors put as last match in the list a rexp for all lexemes not in the language

(Formal Languages and Compilers)

2. Lexical Analysis

Suppose that at the same time for $i \neq j$:

- $x_1...x_i \in \mathscr{L}(R)$
- $x_1...x_j \in \mathscr{L}(R)$

Which is the match to consider?

longest match rule

Suppose that at the same time for $i \neq j \in [1..n]$ and $R = R_1 | R_2 | ... | R_n$:

- $x_1...x_k \in \mathscr{L}(R_i)$
- $x_1...x_k \in \mathscr{L}(R_j)$

Which is the match to consider?

first one listed rule

Errors: to manage errors put as last match in the list a rexp for all lexemes not in the language

(Formal Languages and Compilers)

2. Lexical Analysis

Finite Automata

- Regular Expressions = specification
- Finite Automata = implementation

Finite Automaton

A Finite Automaton \mathcal{A} is a tuple $\langle \mathcal{S}, \Sigma, \delta, s_0, \mathcal{F} \rangle$ where:

- S represents the set of states
- Σ represents a set of symbols (alphabet)
- δ represents the transition function ($\delta : S \times \Sigma \to \ldots$)
- s_0 represents the start state ($s_0 \in S$)
- \mathcal{F} represents the set of accepting states ($\mathcal{F} \subseteq \mathcal{S}$)

In two flawors: Deterministic Finite Automata (DFA) and Non-Deterministic Finite Automata (NDFA)

Finite Automata

- Regular Expressions = specification
- Finite Automata = implementation

Finite Automaton

A Finite Automaton \mathcal{A} is a tuple $\langle \mathcal{S}, \Sigma, \delta, s_0, \mathcal{F} \rangle$ where:

- S represents the set of states
- Σ represents a set of symbols (alphabet)
- δ represents the transition function ($\delta : S \times \Sigma \rightarrow ...$)
- s_0 represents the start state ($s_0 \in S$)
- \mathcal{F} represents the set of accepting states ($\mathcal{F} \subseteq \mathcal{S}$)

In two flawors: Deterministic Finite Automata (DFA) and Non-Deterministic Finite Automata (NDFA)

(Formal Languages and Compilers)

2. Lexical Analysis

Acceptance of Strings for Finite Automaton

Derivations

A DFA goes from state s_i to state s_{i+1} consuming from the input the character a if $s_{i+1} = \delta(s_i, a)$. A DFA can go from state s_i to s_j consuming the string $a = a_1 a_2 \dots a_n$ if there is a sequence of states $s_{i+1}, \dots, s_{i+n-1}$ and $s_j = s_{i+n}$ s.t. $\forall k \in [1..n].s_{i+k} = \delta(s_{i+k-1}, a_k)$, then we write $s_i \rightarrow^a s_j$ Equivalently the extended transition function $\overline{\delta} : S \times \Sigma^* \rightarrow S$ is defined, i.e. $\delta(\delta(\dots \delta(s_i, a_1) \dots, a_{n-1}), a_n) = \overline{\delta}(s_i, a) = s_j$

Acceptance of Strings

A DFA accepts a strings *a* in the alphabet Σ if there is a derivation from s_0 to a state s_i consuming the string *a* (i.e. $s_0 \rightarrow^a s_i$) and $s_i \in \mathcal{F}$

Accepted Language

The language accepted by a FSA is constituted by all the strings for which there is a derivation ending in a state in \mathcal{F} .

(Formal Languages and Compilers)

CS@UNICAM 31 / 43

・ロン ・四 と ・ 回 と ・ 回

Acceptance of Strings for Finite Automaton

Derivations

A DFA goes from state s_i to state s_{i+1} consuming from the input the character a if $s_{i+1} = \delta(s_i, a)$. A DFA can go from state s_i to s_j consuming the string $a = a_1 a_2 \dots a_n$ if there is a sequence of states $s_{i+1}, \dots, s_{i+n-1}$ and $s_j = s_{i+n}$ s.t. $\forall k \in [1..n].s_{i+k} = \delta(s_{i+k-1}, a_k)$, then we write $s_i \rightarrow^a s_j$ Equivalently the extended transition function $\overline{\delta} : S \times \Sigma^* \rightarrow S$ is defined, i.e. $\delta(\delta(\dots \delta(s_i, a_1) \dots, a_{n-1}), a_n) = \overline{\delta}(s_i, a) = s_j$

Acceptance of Strings

A DFA accepts a strings *a* in the alphabet Σ if there is a derivation from s_0 to a state s_i consuming the string *a* (i.e. $s_0 \rightarrow^a s_i$) and $s_i \in \mathcal{F}$

Accepted Language

The language accepted by a FSA is constituted by all the strings for which there is a derivation ending in a state in \mathcal{F} .

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

Acceptance of Strings for Finite Automaton

Derivations

A DFA goes from state s_i to state s_{i+1} consuming from the input the character a if $s_{i+1} = \delta(s_i, a)$. A DFA can go from state s_i to s_j consuming the string $a = a_1 a_2 \dots a_n$ if there is a sequence of states $s_{i+1}, \dots, s_{i+n-1}$ and $s_j = s_{i+n}$ s.t. $\forall k \in [1..n].s_{i+k} = \delta(s_{i+k-1}, a_k)$, then we write $s_i \rightarrow^a s_j$ Equivalently the extended transition function $\overline{\delta} : S \times \Sigma^* \rightarrow S$ is defined, i.e. $\delta(\delta(\dots \delta(s_i, a_1) \dots, a_{n-1}), a_n) = \overline{\delta}(s_i, a) = s_j$

Acceptance of Strings

A DFA accepts a strings *a* in the alphabet Σ if there is a derivation from s_0 to a state s_i consuming the string *a* (i.e. $s_0 \rightarrow^a s_i$) and $s_i \in \mathcal{F}$

Accepted Language

The language accepted by a FSA is constituted by all the strings for which there is a derivation ending in a state in \mathcal{F} .

(Formal Languages and Compilers)

CS@UNICAM 31 / 43

3

イロト イヨト イヨト イヨト

Finite Automata

DFA vs. NFA

Depending on the definition of δ we distinguish between:

- Deterministic Finite Automata (DFA) $\delta : S \times \Sigma \rightarrow S$
- ► Nondeterministic Finite Automata (NFA) $\delta : S \times \Sigma \rightarrow \mathscr{P}(S)$

The transition relation δ can be represented in a table (transition table)

Overview of the graphical notation circle and edges (arrows)

Finite Automata

DFA vs. NFA

Depending on the definition of δ we distinguish between:

- ► Deterministic Finite Automata (DFA) $\delta : S \times \Sigma \rightarrow S$
- ► Nondeterministic Finite Automata (NFA) $\delta : S \times \Sigma \rightarrow \mathscr{P}(S)$

The transition relation δ can be represented in a table (transition table)

Overview of the graphical notation circle and edges (arrows)

< 口 > < 同 > < 回 > < 回 > < 回 > <

Define the following automata:

- DFA for a single 1
- DFA for accepting any number of 1's followed by a single 0
- DFA for any sequence of a or b (possibly empty) followed by 'abb'

Exercise

Which regular expression corresponds to the automaton?

- (0|1)*
 (1*|0)(1|0)
 1*!(01)*!(001)
- 3 1*|(01)*|(001)*|(000*1)*
 4 (0|1)*00

ϵ -moves

DFA, NFA and $\epsilon\text{-moves}$

DFA

- one transition per input per state
- no ϵ -moves
- faster

NFA

- · can have multiple transitions for one input in a given state
- can have ϵ -moves
- smaller (exponentially)

< ロ > < 同 > < 回 > < 回 >

ϵ -moves

DFA, NFA and $\epsilon\text{-moves}$

• DFA

- one transition per input per state
- no ϵ -moves
- faster
- NFA
 - · can have multiple transitions for one input in a given state
 - can have ϵ -moves
 - smaller (exponentially)

From regexp to NFA

Equivalent NFA for a regexp

The Thompson's algorithm permits to automatically derive a NFA from the specification of a regexp. It defines basic NFA for the basic regexp and rules to compose them:

- **1** for ϵ
- Ifor 'a'
- for AB
- for A|B
- for A*

Now consider the regexp for $(1|0)^*1$

3 + 4 = +

4 A N

Finite State Automata

NFA to DFA

NFA 2 DFA

Given a NFA accepting a language $\mathscr L$ there exists a DFA accepting the same language

The derivation of a DFA from an NFA is based on the concept of ϵ – *closure*. The algorithm to make the transformation is based on:

- $\epsilon closure(s)$ with $s \in \mathscr{S}$
- $\epsilon closure(\mathscr{T})$ with $\mathscr{T} \subseteq \mathscr{S}$ i.e. = { $\cup_{s \in \mathscr{T}} \epsilon closure(s)$ }
- *move*(\mathscr{T} , *a*) with $\mathscr{T} \subseteq \mathscr{S}$ and $a \in \mathscr{L}$

NFA 2 DFA

Subset Construction Algorithm

The Subset constuction algorithm permits to derive a DFA $\langle \mathscr{S}, \Sigma, \delta_D, s_0, \mathscr{F}_D \rangle$ from a NFA $\langle \mathscr{N}, \Sigma, \delta_N, n_0, \mathscr{F}_N \rangle$

```
q_0 \leftarrow \epsilon - \text{closure}(\{n_0\});
\mathcal{Q} \leftarrow q_0;
Worklist \leftarrow \{q_0\};
while (Worklist \neq \emptyset) do
     take and remove q from Worklist;
     for all (c \in \Sigma) do
           t \leftarrow \epsilon - \text{closure}(\text{move}(q, c));
           T[a, c] \leftarrow t:
           if (t \notin \mathcal{Q}) then
                 \mathcal{Q} \leftarrow \mathcal{Q} \cup \{t\};
                 Worklist \leftarrow Worklist \cup{t}:
           end if
     end for
end while
```

(Formal Languages and Compilers)

< 口 > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

DFA 2 Minimal DFA

Note

Reducing the size of the Automaton does not reduce the number of moves needed to recognize a string, nevertheless it reduces the size of the transition table that could more easily fit the size of a cache

Equivalent states

Two states of a DFA are equivalent if they produce the same "behaviour" on any input string. Formally two states s_i and s_j of a DFA $\mathcal{D} = \langle S, \Sigma, \delta, q_0, \mathcal{F} \rangle$ are considered equivalent $(s_i \equiv s_j)$ iff $\forall x \in \Sigma^* . (s_i \to^x s'_i \land s'_i \in \mathcal{F}) \iff (s_j \to^x s'_j \land s'_j \in \mathcal{F})$

< 日 > < 同 > < 回 > < 回 > < □ > <

DFA 2 Minimal DFA – Hopcroft's Algorithm

```
Let T a matrix containing information about the equivalence of two states and
let L a matrix containing sets (initially empty) of pairs of states
for all s_X \in S \land s_V \in S do
                                            // All pairs of states are initially marked as equivalent
     T[s_x, s_y] \leftarrow 0;
end for
for all s_x \in \mathcal{F} \land s_y \in \mathcal{S}/\mathcal{F} do
     T[s_x, s_y] \leftarrow 1; T[s_y, s_y] \leftarrow 1;
end for
for all \langle s_X, s_V \rangle s.t. T[s_X, s_V] = 0 \land s_X \neq s_V do
     if (\exists c \in \Sigma, T[\delta(s_X, c), \delta(s_V, c)] = 1) then
          T[s_x, s_y] \leftarrow 1; T[s_y, s_x] \leftarrow 1;
          for all \langle s_w, s_z \rangle \in L[s_x, s_y] do
              T[s_W, s_Z] \leftarrow 1; T[s_Z, s_W] \leftarrow 1;
         end for
    else
          for all c \in \Sigma do
               if (\delta(s_x, c) \neq \delta(s_y, c) \land (s_x, s_y) \neq (\delta(s_x, c), \delta(s_y, c)) then
                    \mathsf{L}[\delta(s_x, c), \, \delta(s_y, c)] \leftarrow \mathsf{L}[\delta(s_x, c), \, \delta(s_y, c)] \cup \langle s_x, s_y \rangle;
                    L[\delta(s_V, c), \delta(s_Y, c)] \leftarrow L[\delta(s_V, c), \delta(s_Y, c)] \cup \langle s_Y, s_V \rangle;
              end if
         end for
     end if
end for
```

Uniqueness of the minimal DFA

 \exists ! DFA that recognizes a regular language \mathscr{L} and has minimal number of states
Minimizing Transition Table

The easiest way to represent a DFA is to have a matrix with state and characters. Alternative representations:

- Lists of pairs for each state (character, states)
- hardcoded table into case statements

Example

Consider the following DFA:

- Which is the accepted language?
- How can the table be represented as a list of pairs?

Exercises

Regular Expressions

Write a regular expression for each of the following languages:

- Given an alphabet $\Sigma = \{0, 1\}$, L is the set of strings composed by pairs of 0 and pairs of 1
- Given an alphabet Σ = {1, b, c, d}, L is the set of strings xyzwy, where x and w are strings of one or more characters in Σ, y is any single character in Σ and z is the character 'z', taken from outside the alphabet
- Floating-point numbers

Finite Automata

Construct a FA accepting the following languages:

- $\{w \in \{a, b\}^* | w \text{ starts with 'a' and contains the substing 'baba'} \}$
- ► { w ∈ {a, b, c}* | in w the number of 'a's modulo 2 is equal to the number of 'b's modulo 3 }

Exercises

RegExp 2 DFA

- Consider the RegExp $a(b|c)^*$ and derive the accepting DFA.
- Define an automated strategy to decide if two regular expressions define the same language combininig the algorithms defined so far

Regular Languages properties

- Show that the complement of a regular language, on alphabet Σ, is still a regular language
- Show that the intersection of two regular languages, on alphabet Σ, is still a regular language

Scanner issues

Describe the behaviour of a scanner when the two tokens described by the following patterns are considered: ab and $(ab)^*c$. Why a simple scanner is particularly inefficient on a string like 'ababababababa'?

Summary

Lexical Analysis

Relevant concepts we have encountered:

- Tokens, Patterns, Lexemes
- Chomsky hierarchy and regular languages
- Regular expressions
- Problems and solutions in matching strings
- DFA and NFA
- Transformations
 - $\bullet \ \text{RegExp} \to \text{NFA}$
 - NFA \rightarrow DFA
 - $\bullet \ \mathsf{DFA} \to \mathsf{Minimal} \ \mathsf{DFA}$

3 > < 3 >

< 6 b