2. Lexical Analysis

Andrea Polini

Formal Languages and Compilers
MSc in Computer Science
University of Camerino

ToC

(1) Lexical Analysis: What we wanna do?
(2) Short Notes on Formal Languages
(3) Lexical Analysis: How can we do it?

- Regular Expressions
- Finite State Automata

Lexical Analysis

$$
\begin{gathered}
\text { if } \quad(i==j) \\
z=0 ; \\
\text { else } \\
z=1 ;
\end{gathered}
$$

Lexical Analysis

$$
\begin{aligned}
& \text { if } \quad(i==j) \\
& z=0 ; \\
& \text { else } \\
& z=1 ;
\end{aligned}
$$

\tif (i==j) \n\t\tz=0; $\backslash n \backslash t e l s e \backslash n \backslash t \backslash t z=1 ;$

Token, Pattern Lexeme

Token

A token is a pair consisting of a token name and an optional attribute value. The token names are the input symbols that the parser processes.

Pattern

A pattern is a description of the form that the lexemes of a token may take. In the case of a keyword as a token, the pattern is just the sequence of characters that form the keyword.

Lexeme

A lexeme is a sequence of characters in the source program that matches the pattern for a token and is identified by the lexical analyzer as an instance of that token.

Lexical Analysis

- Token Class (or Class)
- In English: Noun, Verb, Adjective, Adverb, Article, ...
- In a programming language: Identifier, Keywords, "(", ")", Numbers,

Lexical Analysis

- Token classes corresponds to sets of strings

strings of letter or digits starting with a letter

a non-empty string of digits

Lexical Analysis

- Token classes corresponds to sets of strings
- Identifier
- strings of letter or digits starting with a letter
a non-empty string of digits

Lexical Analysis

- Token classes corresponds to sets of strings
- Identifier
- strings of letter or digits starting with a letter
- Integer
- a non-empty string of digits
a non-empty sequence of blanks, newlines, and tabs

Lexical Analysis

- Token classes corresponds to sets of strings
- Identifier
- strings of letter or digits starting with a letter
- Integer
- a non-empty string of digits
- Keyword
- "else", "if", "while", ...
a non-empty sequence of blanks, newlines, and tabs

Lexical Analysis

- Token classes corresponds to sets of strings
- Identifier
- strings of letter or digits starting with a letter
- Integer
- a non-empty string of digits
- Keyword
- "else", "if", "while", ...
- Whitespace
- a non-empty sequence of blanks, newlines, and tabs

Lexical Analysis

Therefore the role of the lexical analyzer (Lexer) is:

- Classify program substring according to role (token class)
- communicate tokens to parser

Lexical Analysis

Therefore the role of the lexical analyzer (Lexer) is:

- Classify program substring according to role (token class)
- communicate tokens to parser

Lexical Analysis

Let's analyze these lines of code:

$$
\begin{aligned}
& \backslash t i f \quad(i==j) \backslash n \backslash t \backslash t z=0 ; \backslash n \backslash t e l s e \backslash n \backslash t \backslash t z=1 ; \\
& x=0 ; \backslash n \backslash \text { twhile }(x<10) \quad\{\backslash n \backslash t x++; \backslash n\}
\end{aligned}
$$

Token Classes: Identifier, Integer, Keyword, Whitespace

Lexical Analysis

Therefore an implementation of a lexical analyzer must do two things:

- Recognize substrings corresponding to tokens
- the lexemes
- Identify the token class for each lexemes

Lexical Analysis - Tricky problems

- FORTRAN rule: whitespace is insignificant
- i.e. VA R1 is the same as VAR1

DO $5 \mathrm{I}=1,25$

DO $5 \mathrm{I}=1.25$

In FORTRAN the " 5 " refers to a label you will find in the following of the program code

Lexical Analysis - Tricky problems

(1) The goal is to partition the string. This is implemented by reading left-to-right, recognizing one token at a time
(2) "Lookahead" may be required to decide where one token ends and the next token begins

$$
\begin{aligned}
& \text { if } \quad(i==j) \\
& z=0 ; \\
& \text { else } \\
& \quad z=1 ;
\end{aligned}
$$

Lexical Analysis - Tricky problems

- PL/1 keywords are not reserved

```
IF ELSE THEN THEN = ELSE; ELSE ELSE = THEN
```


Lexical Analysis - Tricky problems

- PL/1 keywords are not reserved

```
IF ELSE THEN THEN = ELSE; ELSE ELSE = THEN
```

DECLARE (ARG1, . . . , ARGN)
Is DECLARE a keyword or an array reference?

Lexical Analysis - Tricky problems

- PL/1 keywords are not reserved

```
IF ELSE THEN THEN = ELSE; ELSE ELSE = THEN
```


DECLARE (ARG1, . . . , ARGN)

 Is DECLARE a keyword or an array reference?Need for an unbounded lookahead

Lexical Analysis - Tricky problems

- C++ template syntax:
Foo<Bar>
- C++ stream syntax:

$$
\text { cin } \gg \text { var; }
$$

Lexical Analysis - Tricky problems

- C++ template syntax:
Foo<Bar>
- C++ stream syntax:

$$
\text { cin } \gg \text { var; }
$$

Foo<Bar<Barr>>

ToC

(1) Lexical Analysis: What we wanna do?

(2) Short Notes on Formal Languages

3 Lexical Analysis: How can we do it?

- Regular Expressions
- Finite State Automata

Languages

Language

Let Σ be a set of characters generally referred as the alphabet. A language over Σ is a set of strings of characters drawn from Σ

Alphabet $=$ English character \Longrightarrow Language $=$ English sentences Alphabet $=$ ASCII \Longrightarrow Language $=$ C programs

Given $\Sigma=\{a, b\}$ examples of simple languages are:

- $\mathcal{L}_{1}=\{a, a b, a a\}$
- $\mathcal{L}_{2}=\{b, a b, a a b b\}$
- $\mathcal{L}_{3}=\{s \mid$ has an equal number of a and $b\}$

O . . .

Grammar Definition

Grammar

A Grammar is given by a tuple $\mathcal{G}=\left\langle\mathcal{V}_{\mathcal{T}}, \mathcal{V}_{\mathcal{N}}, \mathcal{S}, \mathcal{P}\right\rangle$ where:

- $\mathcal{V}_{\mathcal{T}}$: finite and non empty set of terminal symbols (alphabet)
- $\mathcal{V}_{\mathcal{N}}$: finite set of non terminal symbols s.t. $\mathcal{V}_{\mathcal{N}} \cap \mathcal{V}_{\mathcal{T}}=\varnothing$
- \mathcal{S} : start symbol of the grammar s.t. $\mathcal{S} \in \mathcal{V}_{\mathcal{N}}$
- \mathcal{P} : is the set of productions s.t. $\mathcal{P} \subseteq\left(\mathcal{V}^{*} \cdot \mathcal{V}_{\mathcal{N}} \cdot \mathcal{V}^{*}\right) \times \mathcal{V}^{*}$ where $\mathcal{V}^{*}=\mathcal{V}_{\mathcal{T}} \cup \mathcal{V}_{\mathcal{N}}$

Derivations

Derivations

Given a grammar $\mathcal{G}=\left\langle\mathcal{V}_{\mathcal{T}}, \mathcal{V}_{\mathcal{N}}, \mathcal{S}, \mathcal{P}\right\rangle$ a derivation is a sequence of strings $\phi_{1}, \phi_{2}, \ldots, \phi_{n}$ s.t.
$\forall i \in[1, . ., n] . \phi_{i} \in \mathcal{V}^{*} \wedge \forall i \in[1, \ldots, n-1] . \exists p \in \mathcal{P} . \phi_{i} \rightarrow^{p} \phi_{i+1}$.
We generally write $\phi_{1} \rightarrow^{*} \phi_{n}$ to indicate that from ϕ_{1} it is possible to derive ϕ_{n} repeatedly applying productions in \mathcal{P}

Derivations

Derivations

Given a grammar $\mathcal{G}=\left\langle\mathcal{V}_{\mathcal{T}}, \mathcal{V}_{\mathcal{N}}, \mathcal{S}, \mathcal{P}\right\rangle$ a derivation is a sequence of strings $\phi_{1}, \phi_{2}, \ldots, \phi_{n}$ s.t.
$\forall i \in[1, . ., n] . \phi_{i} \in \mathcal{V}^{*} \wedge \forall i \in[1, \ldots, n-1] . \exists p \in \mathcal{P} . \phi_{i} \rightarrow^{p} \phi_{i+1}$.
We generally write $\phi_{1} \rightarrow^{*} \phi_{n}$ to indicate that from ϕ_{1} it is possible to derive ϕ_{n} repeatedly applying productions in \mathcal{P}

Generated Language

The language generated by a grammar $\mathcal{G}=\left\langle\mathcal{V}_{\mathcal{T}}, \mathcal{V}_{\mathcal{N}}, \mathcal{S}, \mathcal{P}\right\rangle$ corresponds to: $\mathcal{L}(\mathcal{G})=\left\{\mathrm{x} \mid \mathrm{x} \in \mathcal{V}_{T}^{*} \wedge \mathcal{S} \rightarrow^{*} \mathrm{x}\right\}$

Chomsky Hierarchy

A hierarchy of grammars can be defined imposing constraints on the structure of the productions in set $\mathcal{P}\left(\alpha, \beta, \gamma \in \mathcal{V}^{*}, \boldsymbol{a} \in \mathcal{V}_{T}, A, B \in \mathcal{V}_{N}\right)$: T0. Unrestricted Grammars:

- Production Schema: no constraints
- Recognizing Automaton: Turing Machines

T1. Context Sensitive Grammars:

- Production Schema: $\alpha \boldsymbol{A} \beta \rightarrow \alpha \gamma \beta$
- Recognizing Automaton: Linear Bound Automaton (LBA)

T2. Context-Free Grammars:

- Production Schema: $A \rightarrow \gamma$
- Recognizing Automaton: Non-deterministic Push-down Automaton

T3. Regular Grammars:

- Production Schema: $A \rightarrow a$ or $A \rightarrow a B$
- Recognizing Automaton: Finite State Automaton

Meaning function \mathscr{L}

Meaning Function

Once you defined a way to describe the strings in a language it is important to define a meaning function L that maps syntax to semantics

Meaning function \mathscr{L}

Meaning Function

Once you defined a way to describe the strings in a language it is important to define a meaning function L that maps syntax to semantics

- Why using a meaning function?
- Makes clear what is syntax, what is semantics
- Allows us to consider notation as a separate issue
- Because expressions and meanings are not 1 to 1
- consider the case of arabic number and roman numbers

Meaning function \mathscr{L}

Meaning Function

Once you defined a way to describe the strings in a language it is important to define a meaning function L that maps syntax to semantics

- Why using a meaning function?
- Makes clear what is syntax, what is semantics
- Allows us to consider notation as a separate issue
- Because expressions and meanings are not 1 to 1
- consider the case of arabic number and roman numbers

Warning

It should never happen that the same syntactical structure has more meanings

ToC

(1) Lexical Analysis: What we wanna do?
(2) Short Notes on Formal Languages
(3) Lexical Analysis: How can we do it?

- Regular Expressions
- Finite State Automata

Languages

We need to define which is the set of strings in any token class. Therefore we need to choose the right mechanisms to describe such sets:

- Reducing at minimum the complexity needed to recognize lexemes
- Identifying effective and simple ways to describe the patterns
- Regular languages seem to be enough powerful to define all the lexemes in any token class
- Regular expressions are a suitable way to syntactically identify strings belonging to a regular language

Regular expressions

- Single character: 'c' $=\{" c$ " $\}$
- Epsilon: $\epsilon=\{"$ " $\}$
- Union: $A+B=\{a \mid a \in A\} \cup\{b \mid b \in B\}$
- Concatenation: $\mathrm{AB}=\{a b \mid a \in A \wedge b \in B\}$
- Iteration: $\mathrm{A}^{*}=\cup_{i \geq 0} A^{i}$
\square character 'c' in Σ and that is closed with respect to union, concatenation and iteration. - Algebraic laws for RE - + is commutative and as sociative - concatenation is associative - concatenation distributes over +
\square
- ϵ is guaranteed in a closure

Regular expressions

- Single character: 'c' $=\{" c$ " $\}$
- Epsilon: $\epsilon=\{"$ " $\}$
- Union: $A+B=\{a \mid a \in A\} \cup\{b \mid b \in B\}$
- Concatenation: $\mathrm{AB}=\{a b \mid a \in A \wedge b \in B\}$
- Iteration: $\mathrm{A}^{*}=\cup_{i \geq 0} A^{i}$

The regular expressions over Σ are the smallest set including ϵ, all the character 'c' in Σ and that is closed with respect to union, concatenation and iteration.

Regular expressions

- Single character: 'c' = \{"c"\}
- Epsilon: $\epsilon=\{"$ " $\}$
- Union: $A+B=\{a \mid a \in A\} \cup\{b \mid b \in B\}$
- Concatenation: $\mathrm{AB}=\{a b \mid a \in A \wedge b \in B\}$
- Iteration: $\mathrm{A}^{*}=\cup_{i \geq 0} A^{i}$

The regular expressions over Σ are the smallest set including ϵ, all the character 'c' in Σ and that is closed with respect to union, concatenation and iteration.

- Algebraic laws for RE:
- + is commutative and associative
- concatenation is associative
- concatenation distributes over +
- ϵ is the identity for concatenation
- ϵ is guaranteed in a closure
- the Kleene star is idempotent

Exercise

Consider $\Sigma=\{0,1\}$. What are the sets defined by the following REs?

- 1^{*}
- $(1+0) 1$
- $0^{*}+1^{*}$
- $(0+1)^{*}$

Given the regular language identified by $(0+1)^{* * 1}(0+1)^{*}$ which are the regular expressions identifying the same language among the following one:

Exercise

Consider $\Sigma=\{0,1\}$. What are the sets defined by the following REs?

- 1^{*}
- $(1+0) 1$
- $0^{*}+1^{*}$
- $(0+1)^{*}$

Exercise

Given the regular language identified by $(0+1)^{*} 1(0+1)^{*}$ which are the regular expressions identifying the same language among the following one:

- $(01+11)^{*}(0+1)^{*}$
- $(0+1)^{*}(10+11+1)(0+1)^{*}$
- $(1+0)^{*} 1(1+0)^{*}$
- $(0+1)^{*}(0+1)(0+1)^{*}$

Exercise

Choose the regular languages that are correct specifications of the following English-language description:
Twelve-hour times of the form "04:13PM". Minutes should always be a two digit number, but hours may be a single digit

- $(0+1) ?[0-9]:[0-5][0-9](A M+P M)$
- $((0+\epsilon)[0-9]+1[0-2]):[0-5][0-9](A M+P M)$
- $(0 *[0-9]+1[0-2]):[0-5][0-9](A M+P M)$
- $(0 ?[0-9]+1(0+1+2):[0-5][0-9](a+P) M$

Exercise

Choose the regular languages that are correct specifications of the following English-language description:
Twelve-hour times of the form "04:13PM". Minutes should always be a two digit number, but hours may be a single digit

- $(0+1) ?[0-9]:[0-5][0-9](A M+P M)$
- $((0+\epsilon)[0-9]+1[0-2]):[0-5][0-9](A M+P M)$
- $(0 *[0-9]+1[0-2]):[0-5][0-9](A M+P M)$
- $(0 ?[0-9]+1(0+1+2):[0-5][0-9](a+P) M$

Regular expressions (syntax) specify regular languages (semantics)

Meaning function \mathscr{L}

- The meaning function L maps syntax to semantics

$$
\mathscr{L}(e)=\mathscr{M} \text { where } e \text { is a RE and } \mathscr{M} \text { is a set of strings }
$$

Therefore:

- $\mathscr{L}(\epsilon)=\{" "\}$
- $\mathscr{L}\left({ }^{\prime} c^{\prime}\right)=\left\{"{ }^{\prime \prime}{ }^{\prime \prime}\right\}$
- $\mathscr{L}(A+B)=\mathscr{L}(A) \cup \mathscr{L}(B)$
- $\mathscr{L}(A B)=\{a b \mid a \in \mathscr{L}(A) \wedge b \in \mathscr{L}(B)\}$
- $\mathscr{L}\left(\boldsymbol{A}^{*}\right)=\left\{\cup_{i \geq 0} \mathscr{L}\left(A^{i}\right)\right\}$

Regular definitions

For notational convention we give names to certain regular expressions. A regular definition, on the alphabet Σ is sequence of definition of the form:

- $d_{1} \rightarrow r_{1}$
- $d_{2} \rightarrow r_{2}$
- $d_{n} \rightarrow r_{n}$

So token of a language can be defined as:

- letter $\rightarrow a|b| \ldots|z| A|B| \ldots \mid Z$
- compact syntax: $[a-z A-B]$
- digit $\rightarrow 0|1|$... 9
- compact syntax: [0-9]
- Identifier \rightarrow letter(letter|digit)*
- ExpNot \rightarrow digit(.digit ${ }^{+} E(+\mid-)$ digit $\left.^{+}\right)$? (Exponential Notation)

Lexical Specification

- At least one: $A^{+} \equiv A A^{*}$
- Union: $A \mid B \equiv A+B$
- Option: A ? $\equiv A+\epsilon$
- Range: ' $a^{\prime}+{ }^{\prime} b^{\prime}+\ldots+^{\prime} z^{\prime} \equiv[a-z]$
- Excluded range: complement of $[a-z] \equiv[\wedge a-z]$

Lexical Specification

We want to derive a regular expression for all tokens of a language:
$s \in \mathscr{L}(R)$ - where R is the RegExp resulting from the sum of the RegExp for all the different kinds ot token

Lexical Specification

We want to derive a regular expression for all tokens of a language:
$s \in \mathscr{L}(R)$ - where R is the RegExp resulting from the sum of the RegExp for all the different kinds ot token

How can we define it?

Lexical Specification

We want to derive a regular expression for all tokens of a language:
$s \in \mathscr{L}(R)$ - where R is the RegExp resulting from the sum of the RegExp for all the different kinds ot token

How can we define it?
(1) write a regexp for the lexemes of each token class (number, keyword, identifier,...)
(2) Constructs R matching all lexemes for all tokens

Lexical Specification

We want to derive a regular expression for all tokens of a language:
$s \in \mathscr{L}(R)$ - where R is the RegExp resulting from the sum of the RegExp for all the different kinds ot token

How can we define it?
(1) write a regexp for the lexemes of each token class (number, keyword, identifier,...)
(2) Constructs R matching all lexemes for all tokens

Lexical Specification

We want to derive a regular expression for all tokens of a language:
$s \in \mathscr{L}(R)$ - where R is the RegExp resulting from the sum of the RegExp for all the different kinds ot token

How can we define it?
(1) write a regexp for the lexemes of each token class (number, keyword, identifier,...)
(2) Constructs R matching all lexemes for all tokens
(3) Let input be $x_{1} \ldots x_{n}$

For $1 \leq i \leq n$ check if $x_{1} \ldots x_{i} \in \mathscr{L}\left(R_{j}\right)$ for some j

Lexical Specification

We want to derive a regular expression for all tokens of a language:
$s \in \mathscr{L}(R)$ - where R is the RegExp resulting from the sum of the RegExp for all the different kinds ot token

How can we define it?
(1) write a regexp for the lexemes of each token class (number, keyword, identifier,...)
(2) Constructs R matching all lexemes for all tokens
(3) Let input be $x_{1} \ldots x_{n}$

For $1 \leq i \leq n$ check if $x_{1} \ldots x_{i} \in \mathscr{L}\left(R_{j}\right)$ for some j
(4) if success then we know that $x_{1} \ldots x_{i} \in \mathscr{L}\left(R_{j}\right)$ for some j

Lexical Specification

We want to derive a regular expression for all tokens of a language:
$s \in \mathscr{L}(R)$ - where R is the RegExp resulting from the sum of the RegExp for all the different kinds ot token

How can we define it?
(1) write a regexp for the lexemes of each token class (number, keyword, identifier,...)
(2) Constructs R matching all lexemes for all tokens
(3) Let input be $x_{1} \ldots x_{n}$

For $1 \leq i \leq n$ check if $x_{1} \ldots x_{i} \in \mathscr{L}\left(R_{j}\right)$ for some j
(4) if success then we know that $x_{1} \ldots x_{i} \in \mathscr{L}\left(R_{j}\right)$ for some j
(5) remove $x_{1} \ldots x_{i}$ from input and go to (3)

LA matching rules

Suppose that at the same time for $i \neq j$:

- $x_{1} \ldots x_{i} \in \mathscr{L}(R)$
- $x_{1} \ldots x_{j} \in \mathscr{L}(R)$

LA matching rules

Suppose that at the same time for $i \neq j$:

- $x_{1} \ldots x_{i} \in \mathscr{L}(R)$
- $x_{1} \ldots x_{j} \in \mathscr{L}(R)$

Which is the match to consider?

LA matching rules

Suppose that at the same time for $i \neq j$:

- $x_{1} \ldots x_{i} \in \mathscr{L}(R)$
- $x_{1} \ldots x_{j} \in \mathscr{L}(R)$

Which is the match to consider?

longest match rule

Which is the match to consider?

LA matching rules

Suppose that at the same time for $i \neq j$:

- $x_{1} \ldots x_{i} \in \mathscr{L}(R)$
- $x_{1} \ldots x_{j} \in \mathscr{L}(R)$

Which is the match to consider?

longest match rule

Suppose that at the same time for $i \neq j \in[1 \ldots n]$ and $R=R_{1}\left|R_{2}\right| \ldots \mid R_{n}$:

- $x_{1} \ldots x_{k} \in \mathscr{L}\left(R_{i}\right)$
- $x_{1} \ldots x_{k} \in \mathscr{L}\left(R_{j}\right)$

LA matching rules

Suppose that at the same time for $i \neq j$:

- $x_{1} \ldots x_{i} \in \mathscr{L}(R)$
- $x_{1} \ldots x_{j} \in \mathscr{L}(R)$

Which is the match to consider?

longest match rule

Suppose that at the same time for $i \neq j \in[1 \ldots n]$ and $R=R_{1}\left|R_{2}\right| \ldots \mid R_{n}$:

- $x_{1} \ldots x_{k} \in \mathscr{L}\left(R_{i}\right)$
- $x_{1} \ldots x_{k} \in \mathscr{L}\left(R_{j}\right)$

Which is the match to consider?

LA matching rules

Suppose that at the same time for $i \neq j$:

- $x_{1} \ldots x_{i} \in \mathscr{L}(R)$
- $x_{1} \ldots x_{j} \in \mathscr{L}(R)$

Which is the match to consider?

longest match rule

Suppose that at the same time for $i \neq j \in[1 \ldots n]$ and $R=R_{1}\left|R_{2}\right| \ldots \mid R_{n}$:

- $x_{1} \ldots x_{k} \in \mathscr{L}\left(R_{i}\right)$
- $x_{1} \ldots x_{k} \in \mathscr{L}\left(R_{j}\right)$

Which is the match to consider?

first one listed rule

LA matching rules

Suppose that at the same time for $i \neq j$:

- $x_{1} \ldots x_{i} \in \mathscr{L}(R)$
- $x_{1} \ldots x_{j} \in \mathscr{L}(R)$

Which is the match to consider?

longest match rule

Suppose that at the same time for $i \neq j \in[1 . . n]$ and $R=R_{1}\left|R_{2}\right| \ldots \mid R_{n}$:

- $x_{1} \ldots x_{k} \in \mathscr{L}\left(R_{i}\right)$
- $x_{1} \ldots x_{k} \in \mathscr{L}\left(R_{j}\right)$

Which is the match to consider?

first one listed rule

Errors: to manage errors put as last match in the list a rexp for all lexemes not in the language

Finite Automata

- Regular Expressions = specification
- Finite Automata = implementation

Non-Deterministic Finite Automata (NDFA)

Finite Automata

- Regular Expressions = specification
- Finite Automata = implementation

Finite Automaton

A Finite Automaton \mathcal{A} is a tuple $\left\langle\mathcal{S}, \Sigma, \delta, s_{0}, \mathcal{F}\right\rangle$ where:

- \mathcal{S} represents the set of states
- Σ represents a set of symbols (alphabet)
- δ represents the transition function $(\delta: \mathcal{S} \times \Sigma \rightarrow \ldots$)
- s_{0} represents the start state $\left(s_{0} \in \mathcal{S}\right)$
- \mathcal{F} represents the set of accepting states $(\mathcal{F} \subseteq \mathcal{S})$

In two flawors: Deterministic Finite Automata (DFA) and Non-Deterministic Finite Automata (NDFA)

Acceptance of Strings for Finite Automaton

Derivations

A DFA goes from state s_{i} to state s_{i+1} consuming from the input the character a if $s_{i+1}=\delta\left(s_{i}, a\right)$. A DFA can go from state s_{i} to s_{j} consuming the string $a=a_{1} a_{2} \ldots a_{n}$ if there is a sequence of states $s_{i+1}, \ldots, s_{i+n-1}$ and $s_{j}=s_{i+n}$ s.t. $\forall k \in[1 . . n] \cdot s_{i+k}=\delta\left(s_{i+k-1}, a_{k}\right)$, then we write $s_{i} \rightarrow^{a} s_{j}$
Equivalently the extended transition function $\bar{\delta}: \mathcal{S} \times \Sigma^{*} \rightarrow \mathcal{S}$ is defined, i.e. $\delta\left(\delta\left(\ldots \delta\left(s_{i}, a_{1}\right) . ., a_{n-1}\right), a_{n}\right)=\bar{\delta}\left(s_{i}, a\right)=s_{j}$

Acceptance of Strings for Finite Automaton

Derivations

A DFA goes from state s_{i} to state s_{i+1} consuming from the input the character a if $s_{i+1}=\delta\left(s_{i}, a\right)$. A DFA can go from state s_{i} to s_{j} consuming the string $a=a_{1} a_{2} \ldots a_{n}$ if there is a sequence of states $s_{i+1}, \ldots, s_{i+n-1}$ and $s_{j}=s_{i+n}$ s.t.
$\forall k \in[1 . . n] \cdot s_{i+k}=\delta\left(s_{i+k-1}, a_{k}\right)$, then we write $s_{i} \rightarrow^{a} s_{j}$
Equivalently the extended transition function $\bar{\delta}: \mathcal{S} \times \Sigma^{*} \rightarrow \mathcal{S}$ is defined, i.e.

$$
\delta\left(\delta\left(\ldots \delta\left(s_{i}, a_{1}\right) . ., a_{n-1}\right), a_{n}\right)=\bar{\delta}\left(s_{i}, a\right)=s_{j}
$$

Acceptance of Strings

A DFA accepts a strings a in the alphabet Σ if there is a derivation from s_{0} to a state s_{i} consuming the string a (i.e. $s_{0} \rightarrow{ }^{a} s_{i}$) and $s_{i} \in \mathcal{F}$
\qquad The language accepted by a FSA is constituted by all the strings for which there is a derivation onding in a state in \mathcal{I}.

Acceptance of Strings for Finite Automaton

Derivations

A DFA goes from state s_{i} to state s_{i+1} consuming from the input the character a if $s_{i+1}=\delta\left(s_{i}, a\right)$. A DFA can go from state s_{i} to s_{j} consuming the string $a=a_{1} a_{2} \ldots a_{n}$ if there is a sequence of states $s_{i+1}, \ldots, s_{i+n-1}$ and $s_{j}=s_{i+n}$ s.t.
$\forall k \in[1 . . n] . s_{i+k}=\delta\left(s_{i+k-1}, a_{k}\right)$, then we write $s_{i} \rightarrow^{a} s_{j}$
Equivalently the extended transition function $\bar{\delta}: \mathcal{S} \times \Sigma^{*} \rightarrow \mathcal{S}$ is defined, i.e.

$$
\delta\left(\delta\left(\ldots \delta\left(s_{i}, a_{1}\right) . ., a_{n-1}\right), a_{n}\right)=\bar{\delta}\left(s_{i}, a\right)=s_{j}
$$

Acceptance of Strings

A DFA accepts a strings a in the alphabet Σ if there is a derivation from s_{0} to a state s_{i} consuming the string a (i.e. $s_{0} \rightarrow^{a} s_{i}$) and $s_{i} \in \mathcal{F}$

Accepted Language

The language accepted by a FSA is constituted by all the strings for which there is a derivation ending in a state in \mathcal{F}.

Finite Automata

DFA vs. NFA

Depending on the definition of δ we distinguish between:

- Deterministic Finite Automata (DFA) - $\delta: \mathcal{S} \times \Sigma \rightarrow \mathcal{S}$
- Nondeterministic Finite Automata (NFA) $\delta: \mathcal{S} \times \Sigma \rightarrow \mathscr{P}(\mathcal{S})$

The transition relation δ can be represented in a table (transition table)

Finite Automata

DFA vs. NFA

Depending on the definition of δ we distinguish between:

- Deterministic Finite Automata (DFA) - $\delta: \mathcal{S} \times \Sigma \rightarrow \mathcal{S}$
- Nondeterministic Finite Automata (NFA) $\delta: \mathcal{S} \times \Sigma \rightarrow \mathscr{P}(\mathcal{S})$

The transition relation δ can be represented in a table (transition table)
Overview of the graphical notation circle and edges (arrows)

Exercise

Define the following automata:

- DFA for a single 1
- DFA for accepting any number of 1 's followed by a single 0
- DFA for any sequence of a or b (possibly empty) followed by 'abb'

Exercise

Which regular expression corresponds to the automaton?
(1) $(0 \mid 1)^{*}$
(2) $\left(1^{*} \mid 0\right)(1 \mid 0)$
(3) $1^{*}\left|(01)^{*}\right|(001)^{*} \mid\left(000^{*} 1\right)^{*}$
(4) $(0 \mid 1)^{*} 00$

ϵ-moves

DFA, NFA and ϵ-moves

- DFA
- one transition per input per state
- no ϵ-moves
- NFA
- can have multiple transitions for one input in a given state
- can have ϵ-moves

ϵ-moves

DFA, NFA and ϵ-moves

- DFA
- one transition per input per state
- no ϵ-moves
- faster
- NFA
- can have multiple transitions for one input in a given state
- can have ϵ-moves
- smaller (exponentially)

From regexp to NFA

Equivalent NFA for a regexp
The Thompson's algorithm permits to automatically derive a NFA from the specification of a regexp. It defines basic NFA for the basic regexp and rules to compose them:
(1) for ϵ
(2) for 'a'
(3) for AB
(4) for $\mathrm{A} \mid \mathrm{B}$
(5) for A^{*}

Now consider the regexp for $(1 \mid 0)^{*} 1$

NFA to DFA

NFA 2 DFA

Given a NFA accepting a language \mathscr{L} there exists a DFA accepting the same language

The derivation of a DFA from an NFA is based on the concept of $\epsilon-$ closure. The algorithm to make the transformation is based on:

- ϵ - closure(s) with $s \in \mathscr{S}$
- $\epsilon-\operatorname{closure}(\mathscr{T})$ with $\mathscr{T} \subseteq \mathscr{S}$ i.e. $=\left\{\cup_{s \in \mathscr{T} \epsilon}-\operatorname{closure}(s)\right\}$
- move($\mathscr{T}, a)$ with $\mathscr{T} \subseteq \mathscr{S}$ and $a \in \mathscr{L}$

(1) $(a \mid b)^{*} a b b$

NFA 2 DFA

Subset Construction Algorithm

The Subset constuction algorithm permits to derive a DFA $\left\langle\mathscr{S}, \Sigma, \delta_{D}, s_{0}, \mathscr{F}_{D}\right\rangle$ from a NFA $\left\langle\mathscr{N}, \Sigma, \delta_{N}, n_{0}, \mathscr{F}_{N}\right\rangle$

```
\(q_{0} \leftarrow \epsilon-\operatorname{closure}\left(\left\{n_{0}\right\}\right) ;\)
\(\mathscr{Q} \leftarrow q_{0}\);
Worklist \(\leftarrow\left\{q_{0}\right\}\);
while (Worklist \(\neq \varnothing\) ) do
    take and remove \(q\) from Worklist;
    for all \((c \in \Sigma)\) do
    \(t \leftarrow \epsilon-\operatorname{closure}(\operatorname{move}(q, c))\);
    \(\mathrm{T}[q, c] \leftarrow t\);
    if \((t \notin \mathscr{Q})\) then
        \(\mathscr{Q} \leftarrow \mathscr{Q} \cup\{t\} ;\)
        Worklist \(\leftarrow\) Worklist \(\cup\{t\}\);
        end if
        end for
end while
```


DFA 2 Minimal DFA

Note

Reducing the size of the Automaton does not reduce the moves to recognize a string nevertheless it reduces the size of the transition table that could more easily fit the size of a cache

Equivalent states

Two states of a DFA are equivalent if they produce the same "behaviour" on any input string. Formally two states s_{i} and s_{j} of a DFA $\mathcal{D}=\left\langle\mathcal{S}, \Sigma, \delta, q_{0}, \mathcal{F}\right\rangle$ are considered equivalent ($s_{i} \equiv s_{j}$) iff $\forall x \in \Sigma^{*} .\left(s_{i} \rightarrow{ }^{x} s_{i}^{\prime} \wedge s_{i}^{\prime} \in \mathcal{F}\right) \Longleftrightarrow\left(s_{j} \rightarrow^{x} s_{j}^{\prime} \wedge s_{j}^{\prime} \in \mathcal{F}\right)$

DFA 2 Minimal DFA - Hopcroft's Algorithm

Let T a matrix containing information about the equivalence of two states and let L a matrix containing sets (initially empty) of pairs of states
for all $s_{x} \in \mathcal{S} \wedge s_{y} \in \mathcal{S}$ do
$\mathrm{T}\left[s_{x}, s_{y}\right] \leftarrow 0 ; \quad$ // All pairs of states are initially marked as equivalent
end for
for all $s_{x} \in \mathcal{F} \wedge s_{y} \in \mathcal{S} / \mathcal{F}$ do
$\mathrm{T}\left[s_{x}, s_{y}\right] \leftarrow 1 ; \mathrm{T}\left[s_{y}, s_{x}\right] \leftarrow 1 ;$
end for
for all $\left\langle s_{x}, s_{y}\right\rangle$ s.t. $\mathrm{T}\left[s_{x}, s_{y}\right]=0 \wedge s_{x} \neq s_{y}$ do
if $\left(\exists c \in \Sigma\right.$. $\left.\mathrm{T}\left[\delta\left(s_{x}, c\right), \delta\left(s_{y}, c\right)\right]=1\right)$ then $\mathrm{T}\left[s_{x}, s_{y}\right] \leftarrow 1 ; \mathrm{T}\left[s_{y}, s_{x}\right] \leftarrow 1 ;$
for all $\left\langle s_{w}, s_{z}\right\rangle \in L\left[s_{x}, s_{y}\right]$ do
$\mathrm{T}\left[s_{w}, s_{z}\right] \leftarrow 1 ; \mathrm{T}\left[s_{z}, s_{w}\right] \leftarrow 1 ;$
end for
else
for all $c \in \Sigma$ do
if $\left(\delta\left(s_{x}, c\right) \neq \delta\left(s_{y}, c\right) \wedge\left(s_{x}, s_{y}\right) \neq\left(\delta\left(s_{x}, c\right), \delta\left(s_{y}, c\right)\right)\right.$ then $\mathrm{L}\left[\delta\left(s_{x}, c\right), \delta\left(s_{y}, c\right)\right] \leftarrow \mathrm{L}\left[\delta\left(s_{x}, c\right), \delta\left(s_{y}, c\right)\right] \cup\left\langle s_{x}, s_{y}\right\rangle ;$ $\mathrm{L}\left[\delta\left(s_{y}, c\right), \delta\left(s_{x}, c\right)\right] \leftarrow \mathrm{L}\left[\delta\left(s_{y}, c\right), \delta\left(s_{x}, c\right)\right] \cup\left\langle s_{x}, s_{y}\right\rangle ;$
end if
end for
end if
end for

Uniqueness of the minimal DFA

ヨ! DFA that recognizes a regular language \mathscr{L} and has minimal number of states

Minimizing Transition Table

Transition Table

The easiest way is to have a matrix with state and characters. Alternative representations:

- Lists of pairs for each state (character,states)
- hardcoded table into case statements

Exercises

Regular Expressions

Write a regular expression for each of the following languages:

- Given an alphabet $\Sigma=\{0,1\}, L$ is the set of strings composed by pairs of 0 and pairs of 1
- Given an alphabet $\Sigma=\{1, b, c, d\}$, L is the set of strings $x y z w y$, where x and w are strings of one or more characters in Σ, y is any single character in Σ and z is the character 'z', taken from outside the alphabet
- Floating-point numbers

Finite Automata

Construct a FA accepting the following languages:

- $\left\{w \in\{a, b\}^{*} \mid w\right.$ starts with 'a' and contains the substing 'baba'\}
- $\left\{w \in\{a, b, c\}^{*} \mid\right.$ in w the number of 'a's modulo 2 is equal to the number of 'b's modulo 3 \}

Exercises

RegExp 2 DFA

- Consider the RegExp $a(b \mid c)^{*}$ and derive the accepting DFA.
- Define an automated strategy to decide if two regular expressions define the same language combininig the algorithms defined so far

Regular Languages properties

- Show that the complement of a regular language, on alphabet Σ, is still a regular language
- Show that the intersection of two regular languages, on alphabet Σ, is still a regular language

Scanner issues

Describe the behaviour of a scanner when the two tokens described by the following patterns are considered: $a b$ and $(a b)^{*} c$. Why a simple scanner is particularly inefficient on a string like 'abababababab'?

Summary

Lexical Analysis

Relevant concepts we have encountered:

- Tokens, Patterns, Lexemes
- Chomsky hierarchy and regular languages
- Regular expressions
- Problems and solutions in matching strings
- DFA and NFA
- Transformations
- RegExp \rightarrow NFA
- NFA \rightarrow DFA
- DFA \rightarrow Minimal DFA

