
4. Semantic Analysis I
Syntax Directed Definitions – Syntax Directed Translation Schemes

Andrea Polini

Formal Languages and Compilers
Master in Computer Science

University of Camerino

(Formal Languages and Compilers) 4. Semantic Analysis I CS@UNICAM 1 / 25

Semantic Analysis: the problem

ToC

1 Semantic Analysis: the problem

2 Syntax Directed Definitions

3 Syntax Directed Translation Schemes

(Formal Languages and Compilers) 4. Semantic Analysis I CS@UNICAM 2 / 25

Semantic Analysis: the problem

Where we are?

So far we were able to check:
the program includes correct “words”
“words” are combined in correct “sentences”

What’s next?
I We would like to perform additional checks to increase guarantees

of correctness
I We would like to transform the program from the source language

into the target one, and according to precisely defined semantic
rules

(Formal Languages and Compilers) 4. Semantic Analysis I CS@UNICAM 3 / 25

Semantic Analysis: the problem

Where we are?

So far we were able to check:
the program includes correct “words”
“words” are combined in correct “sentences”

What’s next?
I We would like to perform additional checks to increase guarantees

of correctness
I We would like to transform the program from the source language

into the target one, and according to precisely defined semantic
rules

(Formal Languages and Compilers) 4. Semantic Analysis I CS@UNICAM 3 / 25

Semantic Analysis: the problem

Where we are?

So far we were able to check:
the program includes correct “words”
“words” are combined in correct “sentences”

What’s next?
I We would like to perform additional checks to increase guarantees

of correctness
I We would like to transform the program from the source language

into the target one, and according to precisely defined semantic
rules

(Formal Languages and Compilers) 4. Semantic Analysis I CS@UNICAM 3 / 25

Semantic Analysis: the problem

Additional checks

Additional Checks
There are many additional checks that can be performed to increase
correctness of code:

I Coherent usage of variables
definition-usage
type

I Existence of unreacheable code blocks
I . . .

Semantic Analysis
In semantic analysis context sensitive analysis are performed without
resurrecting to Context Sensitive grammar definitions. Here we focus
on mechanisms for type checking and generation of intermediate code

(Formal Languages and Compilers) 4. Semantic Analysis I CS@UNICAM 4 / 25

Semantic Analysis: the problem

Semantic analysis

(Formal Languages and Compilers) 4. Semantic Analysis I CS@UNICAM 5 / 25

Syntax Directed Definitions

ToC

1 Semantic Analysis: the problem

2 Syntax Directed Definitions

3 Syntax Directed Translation Schemes

(Formal Languages and Compilers) 4. Semantic Analysis I CS@UNICAM 6 / 25

Syntax Directed Definitions

Syntax Directed Definitions

Attributes
Attributes are used to associate characteristics and store values to
grammar symbols.
A syntax directed definition provides the semantic rules to permit the
definition of the values for the attributes

PRODUCTION SEMANTIC RULE

E → E1 + T E .code = E1.code||T .code||′+′

I attributes are associated to grammar symbols and can be of any
kind

I rules are associated to productions

(Formal Languages and Compilers) 4. Semantic Analysis I CS@UNICAM 7 / 25

Syntax Directed Definitions

Attributes

An SDD can be defined using two different kinds of attributes:
I Synthesized attributes: a synthesized attributes at node N is

defined only in terms of attribute values at the children of N and at
N itself

I Inherited attributes: an ihnerited attribute at node N is defined only
in terms of attribute values at N ’s parent, N itself, and N ’s siblings

Example
Consider the usual grammar and let’s define a set of “reasonable”
semantic rules:
L→ E E → E + T E → T T → T ∗ F T → F F → (E) F → id

(Formal Languages and Compilers) 4. Semantic Analysis I CS@UNICAM 8 / 25

Syntax Directed Definitions

SDD and parse trees

An SDD with only synthesized attributes is called S-attributed

It is generally useful to represent attributes within parse trees. A parse
tree showing the values of attributes is referred as an annotated parse
tree

Order of evaluation for attributes
The order of evaluation of attributes should reflect the defined parsing
strategy. In any case the semantic rules impose an order of evalution
that in not guaranteed to exist.

Let’s consider the expression “(3+4)*(5+6)” and let’s derive its
annotated parse tree from the semantic rules defined before

(Formal Languages and Compilers) 4. Semantic Analysis I CS@UNICAM 9 / 25

Syntax Directed Definitions

Inherited attributes example

Let’s consider the non left recursive and factored grammar for
expressions:
E → TE ′ E ′ → +TE ′|ε T → FT ′ T ′ → ∗FT ′|ε F → (E)|id
define an SDD using as reference the parse tree for the sentence
“3 + 5 ∗ 6”

(Formal Languages and Compilers) 4. Semantic Analysis I CS@UNICAM 10 / 25

Syntax Directed Definitions

Evaluation Orders for SDD’s

Dependency Graphs
A dependency graph represents the flow of information among the
attribute instances in a particular parse tree.

I each attribute for a grammar symbol constitute a node in the graph
I syntesized attributes
I inherited attributes

Let’s identify the dependency graph for the parse tree defined before,
and let’s compute the value of the various attributes

(Formal Languages and Compilers) 4. Semantic Analysis I CS@UNICAM 11 / 25

Syntax Directed Definitions

SDD with acyclic topological sort

S-attributed
If every attribute is synthesized the SDD is said S-attributed, in such a
case an LR parser could even avoid the explicit derivation of the parse
tree

L-attributed
Each attribute in the SDD satisfies one of the following conditions:

I it is synthesized
I it is inherited but it depends only from attributes on siblings on the

left or inherited attributes associated to the parent symbol
I it is inherited or synthesized from attributes from the same symbol

in a way that cycle are not generated

(Formal Languages and Compilers) 4. Semantic Analysis I CS@UNICAM 12 / 25

Syntax Directed Definitions

Semantic rules with controlled side effects

Side effects
A side effect consists of program fragment contained with semantic
rules. It is necessary to control side effects is SDD in two possible
ways:

I Permit incidental side effects
I Constraint admissible evaluation orders so to have the same

translation with any admissible order.

Why to use them?
I to associate actions to carry on with specific steps of the compiler
I to print messages for the user useful during compilation
I to check correctness related aspects (e.g. types)

(Formal Languages and Compilers) 4. Semantic Analysis I CS@UNICAM 13 / 25

Syntax Directed Definitions

Semantic rules with controlled side effects

Side effects
A side effect consists of program fragment contained with semantic
rules. It is necessary to control side effects is SDD in two possible
ways:

I Permit incidental side effects
I Constraint admissible evaluation orders so to have the same

translation with any admissible order.

Why to use them?
I to associate actions to carry on with specific steps of the compiler
I to print messages for the user useful during compilation
I to check correctness related aspects (e.g. types)

(Formal Languages and Compilers) 4. Semantic Analysis I CS@UNICAM 13 / 25

Syntax Directed Definitions

Semantic Rules with side effects

Example
Let’s consider the following grammar:
D → TL; T → int|float L→ L1, id|id
Let’s add sematic rules to successively permit type checking

Exercise
Let’s consider the following grammar that generates binary numbers
with a decimal point:
S → L.L|L L→ LB|B B → 0|1
Design an S-attributed SDD to make the translation in decimal
numbers

(Formal Languages and Compilers) 4. Semantic Analysis I CS@UNICAM 14 / 25

Syntax Directed Definitions

Semantic Rules with side effects

Example
Let’s consider the following grammar:
D → TL; T → int|float L→ L1, id|id
Let’s add sematic rules to successively permit type checking

Exercise
Let’s consider the following grammar that generates binary numbers
with a decimal point:
S → L.L|L L→ LB|B B → 0|1
Design an S-attributed SDD to make the translation in decimal
numbers

(Formal Languages and Compilers) 4. Semantic Analysis I CS@UNICAM 14 / 25

Syntax Directed Definitions

Construction of syntax trees using SDT

Syntax Tree
A syntax tree represents the hierarchical syntactic structure of the
source program. Internal nodes are labeled with operator of the
language while leaves are labeled with atomic element in the
language. Syntax trees are useful for translation purpose making the
phase much easier.

To build a syntax tree two different kind of nodes need to be created, the leaves
(Leaf (op, val)) and the internal nodes (Node(op, c1, . . . , cn)). In the following consider
the sentence a− 4 + c.

1 Let’s built an SDD with actions permitting to derive the syntax tree for
expressions grammar in the form suitable for LR parsing.
E → E1 + T , E → E1 − T , E → T , T → (E), T → id, T → num

2 Let’s repeat the exercise for an expression grammar parsable by LL parsers.
E → TE ′, E ′ → +TE ′

1, E ′ → −TE ′
1, E ′ → ε, T → (E), T → id, T → num

(Formal Languages and Compilers) 4. Semantic Analysis I CS@UNICAM 15 / 25

Syntax Directed Translation Schemes

ToC

1 Semantic Analysis: the problem

2 Syntax Directed Definitions

3 Syntax Directed Translation Schemes

(Formal Languages and Compilers) 4. Semantic Analysis I CS@UNICAM 16 / 25

Syntax Directed Translation Schemes

Syntax Directed Translation

Syntax Directed Translation
A Syntax Directed Translation scheme permits to embed program
fragments, called semantic actions, within production bodies. An SDT
is a context-free grammar with program fragments embedded within
production bodies.

Construction
Any SDT can be implemented by first building a parse tree and then
performing the actions in a left-to-right depth-first order. SDT are
typically implemented during parsing without the need to build a parse
tree.
Particularly interseting are the cases:

I grammar LR-parsable and SDD S-attributed
I grammar LL-parsable and SDD L-attributed

(Formal Languages and Compilers) 4. Semantic Analysis I CS@UNICAM 17 / 25

Syntax Directed Translation Schemes

Postfix translation schemes

Simplest situation: bottom-up parsing with S-attributed SSD. In that
case all the actions in the SDT will follow the production bodies.
(postfix SDT)

implementation
postfix SDT are easy to implement with additional attributes for the
stack cell. In particular it is useful to associate to the non-terminal the
values assumed by corresponding attributes.

(Formal Languages and Compilers) 4. Semantic Analysis I CS@UNICAM 18 / 25

Syntax Directed Translation Schemes

SDT with actions inside productions

Consider the production B → X{a}Y . When do we perform the action
inside the production?

if the parse is bottom-up then we perform the action ’a’ as soon as
this occurrence of X appers on top of the parsing stack
if the parse is top-down we perform ’a’ just before we attempt to
expand the occurrence of Y (non terminal) or check for Y on input
(terminal)

(Formal Languages and Compilers) 4. Semantic Analysis I CS@UNICAM 19 / 25

Syntax Directed Translation Schemes

SDT and Top-Down parsing

Note: Including semantic actions in grammars conceived for being
parsable by top-down strategies is cumbersome

Question: Would it be possible to define sematic actions and then
transform the grammar?

Eliminating Left Recursion (simple case)
I In case included actions just need to be performed in the same

order then it is enough to treat them as terminal symbols (e.g.
E → E + T{print(′+′); } E → T)

(Formal Languages and Compilers) 4. Semantic Analysis I CS@UNICAM 20 / 25

Syntax Directed Translation Schemes

Eliminating Left Recursion (general case)

It is always possible to transform a recursive grammar with actions if it
is S-attributed.
In particular given the grammar with actions:

A→ A1Y {A.a = g(A1.a,Y .y)}
A→ X {A.a = f (X .x)}

It is possible to rewrite it in an equivalent one according to the following
schema:

A→ X {R.i = f (X .x)} R {A.a = R.s}
R → Y {R1.i = g(R.i ,Y .y)} R1 {R.s = R1.s}
R → ε {R.s = R.i}

(Formal Languages and Compilers) 4. Semantic Analysis I CS@UNICAM 21 / 25

Syntax Directed Translation Schemes

Eliminating Left Recursion (general case)

It is always possible to transform a recursive grammar with actions if it
is S-attributed.
In particular given the grammar with actions:

A→ A1Y {A.a = g(A1.a,Y .y)}
A→ X {A.a = f (X .x)}

It is possible to rewrite it in an equivalent one according to the following
schema:

A→ X {R.i = f (X .x)} R {A.a = R.s}
R → Y {R1.i = g(R.i ,Y .y)} R1 {R.s = R1.s}
R → ε {R.s = R.i}

(Formal Languages and Compilers) 4. Semantic Analysis I CS@UNICAM 21 / 25

Syntax Directed Translation Schemes

SDT for L-attributed definitions

Assuming a pre-order traversal of the parse tree we can transform a
L-attributed SDD in a SDT as follows:

1 action computing inherited attributes must be computed before the
occurrence of the non terminal. In case of more inherited
attributes for the same non terminal order them as they are
needed

2 actions for computing synthesized attributes go at the end of the
production

(Formal Languages and Compilers) 4. Semantic Analysis I CS@UNICAM 22 / 25

Syntax Directed Translation Schemes

Example

Consider the production:

S → while (C) S1

assuming the “traditional” semantics for this
statement let’s generate the intermediate
code assuming a three-address code where
three control flow statements are generally
used:

I ifFalse x goto L

I ifTrue x goto L

I goto L

Intermediate Code Structure

(Formal Languages and Compilers) 4. Semantic Analysis I CS@UNICAM 23 / 25

Syntax Directed Translation Schemes

Example

Consider the production:

S → while (C) S1

assuming the “traditional” semantics for this
statement let’s generate the intermediate
code assuming a three-address code where
three control flow statements are generally
used:

I ifFalse x goto L

I ifTrue x goto L

I goto L

Intermediate Code Structure

(Formal Languages and Compilers) 4. Semantic Analysis I CS@UNICAM 23 / 25

Syntax Directed Translation Schemes

while statement - rationale

The following attributes can be used to derive the translation:
I S.next : labels the beginning of the code to be executed after S is

finished
I S.code: sequence of intermediate code steps that implements the

statement S and ends with S.next
I C.true: label for the code to be executed if C is evaluated to true
I C.false: label for the code to be executed if C is evaluated to false
I C.code: sequence of intermediate code steps that implements the

condition C and jumps to C.true of to C.false depending on the
evaluation

(Formal Languages and Compilers) 4. Semantic Analysis I CS@UNICAM 24 / 25

Syntax Directed Translation Schemes

while statement - SDD and SDT

SDD

S → while (C) S1 L1 = new();
L2 = new();
S1.next = L1;
C.false = S.next ;
C.true = L2
S.code = label||L1||C.code||label||L2||S1.code||goto S1.next

SDT

S → while ({L1 = new(); L2 = new(); C.false = S.next ;
C.true = L2; }

C) {S1.next = L1; }
S1 {S.code = label||L1||C.code||label||L2||S1.code||goto S1.next}

(Formal Languages and Compilers) 4. Semantic Analysis I CS@UNICAM 25 / 25

Syntax Directed Translation Schemes

while statement - SDD and SDT

SDD

S → while (C) S1 L1 = new();
L2 = new();
S1.next = L1;
C.false = S.next ;
C.true = L2
S.code = label||L1||C.code||label||L2||S1.code||goto S1.next

SDT

S → while ({L1 = new(); L2 = new(); C.false = S.next ;
C.true = L2; }

C) {S1.next = L1; }
S1 {S.code = label||L1||C.code||label||L2||S1.code||goto S1.next}

(Formal Languages and Compilers) 4. Semantic Analysis I CS@UNICAM 25 / 25

	Semantic Analysis: the problem
	Syntax Directed Definitions
	Syntax Directed Translation Schemes

