
6. Exercises

Andrea Polini

Formal Languages and Compilers
Master in Computer Science

University of Camerino

(Formal Languages and Compilers) 6. Exercises CS@UNICAM 1 / 15

Regular Languages and Lexical Analysis

ToC

1 Regular Languages and Lexical Analysis

2 Context-free languages and syntax analysis

3 Semantic Analysis

(Formal Languages and Compilers) 6. Exercises CS@UNICAM 2 / 15

Regular Languages and Lexical Analysis

Lexical Analysis

All strings of lowercase letters that contain the five vowels in order
All strings of lowercase letters in which the letters are in
ascending lexicographic order
All strings of lowercase letters that begin and end in ′a′

All strings of digits that contain no leading zeroes
All strings of a’s and b’s that contain no three consecutive b’s
All strings of a’s and b’s that do not contain the substring ′abb′

All strings of a’s and b’s with an even number of a’s and an odd
number of b’s

Interesting exercises are those related to the demonstration of closure
properties for regular languages (i.e. given the two regular languages
L1 and L2 demonstrate that L1 ∪ L2 is a regular language)

(Formal Languages and Compilers) 6. Exercises CS@UNICAM 3 / 15

Context-free languages and syntax analysis

ToC

1 Regular Languages and Lexical Analysis

2 Context-free languages and syntax analysis

3 Semantic Analysis

(Formal Languages and Compilers) 6. Exercises CS@UNICAM 4 / 15

Context-free languages and syntax analysis

Let’s consider the following language L = {anwan| n ≥ 1 ∧ w ∈
{a,b, c}∗ ∧ w = w} ∪ {bnwbn| n ≥ 0 ∧ w ∈ {a,b, c}∗ ∧ w = w}

Establish to which class it belongs to according to the Chomsky’s
hierarchy
Define a grammar able to generate the language

(Formal Languages and Compilers) 6. Exercises CS@UNICAM 5 / 15

Context-free languages and syntax analysis

Let’s consider the following language L = {a3nb2ncm|m ≥ 1,n ≥ 0}
1 Establish to which class it belongs to according to the Chomsky’s

hierarchy
2 Define the various components of an automaton able to accept

the language
3 Define a grammar with no ε-productions, such that L(G) = L

(Formal Languages and Compilers) 6. Exercises CS@UNICAM 6 / 15

Context-free languages and syntax analysis

Let’s consider the following grammar G:

S −→ A | C A −→ ccAa | a C −→ cC | c

1 without generating the FIRST and FOLLOW sets decides if the
grammar is LL(1)

2 derive FIRST, FOLLOW and nullable sets
3 build the LR(0) automaton and the corresponding LR(0) and SLR

tables establishing if each parsing strategy can be applied
4 use one of the applicable strategy to show the steps of the parser

in the acceptance of the string “ccccaaa”

(Formal Languages and Compilers) 6. Exercises CS@UNICAM 7 / 15

Context-free languages and syntax analysis

Let’s consider again the grammar from the previous slide. Derive a
new grammar G′ removing the problems making LL(1) parsing not
applicable. Discuss the possibility that it exists a k ≥ 1 such that LL(k)
parsing is applicable.

Suggestion: it can be useful to consider that the language generated by the
grammar can be described by the following union of sets:

L(G′) = {cn | n ≥ 1} ∪ {c2mam+1 | m ≥ 0}

(Formal Languages and Compilers) 6. Exercises CS@UNICAM 8 / 15

Context-free languages and syntax analysis

Syntax analysis
LL Parsing

Let’s consider the following language:

L = {anbck |n ≥ 0, k > 0} ∪ {bnack |n > 0, k ≥ 0}

define a grammar that generates (all and only) the words of the
language
decide if the grammar is LL
in case it is, derive the parsing table and apply it to the recognition
of the word ’bba’, otherwise try to modify the grammar so to derive
an LL parsable grammar.

(Formal Languages and Compilers) 6. Exercises CS@UNICAM 9 / 15

Context-free languages and syntax analysis

Syntax Analysis
Noteworthy languages

Consider the following languages and define grammars in order to
parse them with LL and LR parsers:

L1 = {anbn|n ∈ N}
L2 = {anbm|n ∈ N ∧ n ≥ m}
L3 = {w ∈ {a,b}∗|w = w}

Consider the following grammars and define grammars parsable with
LL or LR parsing strategies:

L = {anana|n ∈ N}

(Formal Languages and Compilers) 6. Exercises CS@UNICAM 10 / 15

Context-free languages and syntax analysis

Syntax Analysis
Noteworthy languages

Consider the following languages and define grammars in order to
parse them with LL and LR parsers:

L1 = {anbn|n ∈ N}
L2 = {anbm|n ∈ N ∧ n ≥ m}
L3 = {w ∈ {a,b}∗|w = w}

Consider the following grammars and define grammars parsable with
LL or LR parsing strategies:

L = {anana|n ∈ N}

(Formal Languages and Compilers) 6. Exercises CS@UNICAM 10 / 15

Context-free languages and syntax analysis

Syntax Analysis
LR Parsing

Consider the grammar:

Z → S S → AA A→ aA A→ b

Build the table for the LR(1) parser
decide if the LALR parser can be applied
apply one of the two parser to the acceptance of string abaab

(Formal Languages and Compilers) 6. Exercises CS@UNICAM 11 / 15

Semantic Analysis

ToC

1 Regular Languages and Lexical Analysis

2 Context-free languages and syntax analysis

3 Semantic Analysis

(Formal Languages and Compilers) 6. Exercises CS@UNICAM 12 / 15

Semantic Analysis

Answer to the following requests:
1 define a grammar for generating any string on the alphabet

Σ = {a,b}
2 define attributes and corresponding semantic rules for an SSD

that is able to count the number of ’a’s and ’b’s in the a string.
Derive an SDT so that an LL(1) parser will be able to compute the
value during parsing.

(Formal Languages and Compilers) 6. Exercises CS@UNICAM 13 / 15

Semantic Analysis

Let’s G the grammar defined by the following productions, and that permits to
represent nested lists of numbers:

S −→ Y Y −→ Y ;Z | Z Z −→ (Y) | digit

The following are samples of correct sentences generated by the grammar:
((10;13);17), ((3);(7;8);15)
Answer to the following requests:

1 define attributes and semantic rules (SDD) for the grammar, in order to permit:

the calculation of the sum of all numbers appearing in a sentence
the calculation of the total number of parenthesis opened in the
sentence
the printing of the position in the list for each number in the
sentence (consider that to implement this feature you could need
accessory attributes).

2 show the evaluation tree for the sentence ((5);(8))

3 modify the grammar in order to be parsable by an LL(1) parser modifying
productions and rules to obtain a suitable L-attributed translation scheme.

(Formal Languages and Compilers) 6. Exercises CS@UNICAM 14 / 15

Semantic Analysis

Consider the following excerpt from a grammar for a complex programming language:

S → repeat S1 until (B)

Provide an L-attributed SDD for the command that permits to translate the
command in a three-address code program behaving as expected

Convert the SDD into an SDT parsable with an LL parser

Show the parse tree and derive the three address code program for the following
code snippet, considering the translation for expressions into three address code
which has been introduced during the course. In particular consider the
productions and their translation schemes:

S → S1;S2 S → id = E E → E1 + E2 E → id B → E1 rel E2

i = 0;
repeat
i = i+1;

until (i>=10);

(Formal Languages and Compilers) 6. Exercises CS@UNICAM 15 / 15

	Regular Languages and Lexical Analysis
	Context-free languages and syntax analysis
	Semantic Analysis

