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Lexical Analysis: What we wanna do?

Lexical Analysis

\tif (i==73)\n\t\tz=0;\n\telse\n\t\tz=1;
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Lexical Analysis: What we wanna do?

Token, Pattern Lexeme

Token

A token is a pair consisting of a token name and an optional attribute
value. The token names are the input symbols that the parser
processes.

l A\

A pattern is a description of the form that the lexemes of a token may
take. In the case of a keyword as a token, the pattern is just the
sequence of characters that form the keyword.

Lexeme

A lexeme is a sequence of characters in the source program that
matches the pattern for a token and is identified by the lexical analyzer
as an instance of that token.

| A\

A\
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Lexical Analysis: What we wanna do?

Lexical Analysis

@ Token Class (or Class)
- In English: Noun, Verb, Adjective, Adverb, Article, . ..

- In a programming language: Identifier, Keywords, “(*, “)”, Numbers,
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Lexical Analysis: What we wanna do?

Lexical Analysis

@ Token classes corresponds to sets of strings
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Lexical Analysis

@ Token classes corresponds to sets of strings

@ Identifier
- strings of letter or digits starting with a letter
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Lexical Analysis: What we wanna do?

Lexical Analysis

@ Token classes corresponds to sets of strings

@ Identifier

- strings of letter or digits starting with a letter
@ Integer

- a non-empty string of digits
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Lexical Analysis: What we wanna do?

Lexical Analysis

@ Token classes corresponds to sets of strings

@ Identifier

- strings of letter or digits starting with a letter
@ Integer

- a non-empty string of digits
@ Keyword

- “else”, “if”, “while”, ...
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Lexical Analysis: What we wanna do?

Lexical Analysis

@ Token classes corresponds to sets of strings

@ Identifier
- strings of letter or digits starting with a letter
@ Integer
- a non-empty string of digits
@ Keyword
- “else”, “if”, “while”, ...
@ Whitespace
- a non-empty sequence of blanks, newlines, and tabs
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Lexical Analysis: What we wanna do?

Lexical Analysis

Therefore the role of the lexical analyzer (Lexer) is:
@ Classify program substring according to role (token class)
@ communicate tokens to parser

Characters flow Lexical <class, string>
- Parser ---
Analyzer
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Lexical Analysis: What we wanna do?

Lexical Analysis

Therefore the role of the lexical analyzer (Lexer) is:
@ Classify program substring according to role (token class)
@ communicate tokens to parser

Characters flow H <class, string>
i Lexical P L
inti=10; Analyzer

(Formal Langu and Compilers) 2. Lexical Analysis CS@UNICAM

7150



Lexical Analysis: What we wanna do?

Lexical Analysis

Therefore the role of the lexical analyzer (Lexer) is:
@ Classify program substring according to role (token class)
@ communicate tokens to parser

Characters flow H <class, string>
i Lexical P L
inti=10; Analyzer

Why is not wise to merge the two components?
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Lexical Analysis: What we wanna do?

Lexical Analysis

Let’s analyze these lines of code:

\tif (i==73)\n\t\tz=0;\n\telse\n\t\tz=1;

x=0; \n\twhile (x<10) {\n\tx++;\n}

Token Classes: Identifier, Integer, Keyword, Whitespace
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Lexical Analysis: What we wanna do?

Lexical Analysis

Therefore an implementation of a lexical analyzer must do two things:
@ Recognize substrings corresponding to tokens
o the lexemes

@ Identify the token class for each lexemes
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Lexical Analysis: What we wanna do?

Lexical Analysis - Tricky problems

@ FORTRAN rule: whitespace is insignificant
o i.e. VA R1 is the same as VAR

DO 5 I

1,25

DO 5 I = 1.25

In FORTRAN the “5” refers to a label you will find in the following of the program code

(Formal

2. Lexical Analysis CS@UNICAM 10/50



Lexical Analysis: What we wanna do?

Lexical Analysis - Tricky problems

@ The goal is to partition the string. This is implemented by reading
left-to-right, recognizing one token at a time

@ “Lookahead” may be required to decide where one token ends
and the next token begins

if (i==7)
z=0;
else

z=1;
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Lexical Analysis: What we wanna do?

Lexical Analysis - Tricky problems

@ PL/1 keywords are not reserved

IF ELSE THEN THEN = ELSE; ELSE ELSE = THEN
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Lexical Analysis: What we wanna do?

Lexical Analysis - Tricky problems

@ PL/1 keywords are not reserved

IF ELSE THEN THEN = ELSE; ELSE ELSE = THEN

DECLARE (ARG1, ..., ARGN)
Is DECLARE a keyword or an array reference?

(Formal Langu and pilers 2. Lexical Analysis CS@UNICAM

12/50



Lexical Analysis: What we wanna do?

Lexical Analysis - Tricky problems

@ PL/1 keywords are not reserved

IF ELSE THEN THEN = ELSE; ELSE ELSE = THEN

DECLARE (ARG1, ..., ARGN)
Is DECLARE a keyword or an array reference?

Need for an unbounded lookahead
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Lexical Analysis: What we wanna do?

Lexical Analysis - Tricky problems

o C++ template syntax:

Foo<Bar>

@ C++ stream syntax:

cin >> var;
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Lexical Analysis: What we wanna do?

Lexical Analysis - Tricky problems

o C++ template syntax:

Foo<Bar>

@ C++ stream syntax:

cin >> var;

Foo<Bar<Barr>>
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Short Notes on Formal Languages

Languages

Language
Let X be a set of characters generally referred as the alphabet. A
language over X is a set of strings of characters drawn from ¥

Alphabet = English character — Language = English sentences
Alphabet = ASCIl — Language = C programs

Given ¥ = {a, b} examples of simple languages are:
@ L1 ={a, ab,aa}
@ L, ={b, ab, aabb}
@ L3 = {s|s has an equal number of a and b}
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Short Notes on Formal Languages

Grammar Definition

A Grammar is given by a tuple G = (V7, Vn, S, P) where:
» V7 finite and non empty set of terminal symbols (alphabet)
» V) finite set of non terminal symbols s.t. Vi NVy = o
» S: start symbol of the grammar s.t. S € Vy

» P:is the set of productions s.t. P C (V* - Vy - V*) x V* where
V¥ =VrUVy
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Short Notes on Formal Languages

Derivations

Derivations

Given a grammar G = (V1, Vy, S, P) a derivation is a sequence of
strings o1, ¢», ..., ¢n S.1.

Vie[l,.,n.¢o; e V"AVie[l,...n—1].3p € P.¢; =P ¢j1.

We generally write ¢4 —* ¢, to indicate that from ¢4 it is possible to
derive ¢, repeatedly applying productions in P
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Short Notes on Formal Languages

Derivations

Derivations

Given a grammar G = (V1, Vy, S, P) a derivation is a sequence of
strings o1, ¢», ..., ¢n S.1.

Vie[l,.,n.¢o; e V"AVie[l,...n—1].3p € P.¢; =P ¢j1.

We generally write ¢4 —* ¢, to indicate that from ¢4 it is possible to
derive ¢, repeatedly applying productions in P

Generated Language

The language generated by a grammar G = (Vr, Var, S, P)
corresponds to: £(G) = {x[x e V} AS =" x}

| A\

\
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Short Notes on Formal Languages

Chomsky Hierarchy

A hierarchy of grammars can be defined imposing constraints on the
structure of the productions in set P («, 8,7 € V*,;a€ V1, A, B € Vp):
TO. Unrestricted Grammars:

e Production Schema: no constraints
@ Recognizing Automaton: Turing Machines

T1. Context Sensitive Grammars:

e Production Schema: aAS8 — ayf
e Recognizing Automaton: Linear Bound Automaton (LBA)

T2. Context-Free Grammars:

@ Production Schema: A — ~
e Recognizing Automaton: Non-deterministic Push-down Automaton

T3. Regular Grammars:

e Production Schema: A— aor A— aB
e Recognizing Automaton: Finite State Automaton
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Short Notes on Formal Languages

Meaning function .

Meaning Function

Once you defined a way to describe the strings in a language it is
important to define a meaning function L that maps syntax to
semantics

» e.g. the case for numbers
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Short Notes on Formal Languages

Meaning function .

Meaning Function

Once you defined a way to describe the strings in a language it is
important to define a meaning function L that maps syntax to
semantics

» e.g. the case for numbers

@ Why using a meaning function?
o Makes clear what is syntax, what is semantics
@ Allows us to consider notation as a separate issue
o Because expressions and meanings are not 1 to 1
@ consider the case of arabic number and roman numbers

(Formal Lan nd Compilers) 2. Lexical Analysis CS@UNICAM

19/50



Short Notes on Formal Languages

Meaning function .

Meaning Function

Once you defined a way to describe the strings in a language it is
important to define a meaning function L that maps syntax to
semantics

» e.g. the case for numbers

@ Why using a meaning function?
o Makes clear what is syntax, what is semantics
@ Allows us to consider notation as a separate issue
o Because expressions and meanings are not 1 to 1
@ consider the case of arabic number and roman numbers

It should never happen that the same
syntactical structure has more meanings
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Lexical Analysis: How can we do it?

Languages

We need to define which is the set of strings in any token class.

Therefore we need to choose the right mechanisms to describe such
sets:

- Reducing at minimum the complexity needed to recognize
lexemes

- ldentifying effective and simple ways to describe the patterns

v

- Regular languages seem to be enough powerful to define all the
lexemes in any token class

- Regular expressions are a suitable way to syntactically identify
strings belonging to a regular language
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Strings

Parts of a string

Terms related to stings:

>

prefix of a string s is string obtained removing one or more
characters from the end of a string s

suffix of a string s is string obtained removing one or more
characters from the beginning of a string s

substring of a string s is obtained deleting any prefix and any
suffix from s

proper prefixes, suffixes, and substrings of a string s are those,
prefixes, suffixes, and substrings, respectively, of s that are not ¢
or not equal to s itself

subsequence is any string formed by deleting zero or more not
necessarily consecutive positions of s

v
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Lexical Analysis: How can we do it? Regular Expressions

Regular expressions

@ Single character: 'c’ is a regexp foreach c € ©

@ Epsilon: ¢ is a regexp

@ Union: a+b is a regexp if a and b are regexp (also a|b)

@ Concatenation: a - b is a regexp if a and b are regexp (also ab)
@ lteration: a* is a regexp if a is a regexp
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Lexical Analysis: How can we do it? Regular Expressions

Regular expressions

@ Single character: 'c’ is a regexp foreach c € ©

@ Epsilon: ¢ is a regexp

@ Union: a+b is a regexp if a and b are regexp (also a|b)

@ Concatenation: a - b is a regexp if a and b are regexp (also ab)
@ lteration: a* is a regexp if a is a regexp

@ Algebraic laws for RE:

@ + is commutative and associative

@ concatenation is associative

@ concatenation distributes over +
@ ¢ is the identity for concatenation
@ ¢ is guaranteed in a closure
@ the Kleene star is idempotent
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Lexical Analysis: How can we do it? Regular Expressions

Meaning function .

@ The meaning function . maps syntax to semantics
Z(e) = .# where eis a RE and .# is a set of strings

Therefore given an alphabet ¥ and regular expressions A and B over
>

o Z(e)={""}

o Z(c)={"}wherece X

e Z(A+B)=2(A)uZ(B)

o Y(AB)={ablac Z(A)Abec Z(B)}

o Z(A") = {Ui=0-L(A)}
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Lexical Analysis: How can we do it? Regular Expressions

RegExp characterization

The regular expressions over ¥ are the smallest set including ¢, all the
character °’c’ in £ and that is closed with respect to union,
concatenation and iteration.
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Lexical Analysis: How can we do it? Regular Expressions

RegExp characterization

(0
The regular expressions over ¥ are the smallest set including ¢, all the
character °’c’ in £ and that is closed with respect to union,
concatenation and iteration.

(0
Regular expressions (syntax)
specify regular languages (semantics)

(Formal Langusz nd Compilers) 2. Lexical Analysis CS@UNICAM 25/50



Regular Expressions

Consider © = {0, 1}. What are the sets defined by the following REs?
> 1*
> (1+0)1
> 0" 41"
> (0+ 1)
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Consider © = {0, 1}. What are the sets defined by the following REs?
> 1*
> (1+0)1
> 0" 41"
> (0+ 1)

(Exercise .
Given the regular language identified by (0 + 1)*1(0 + 1)* which are the regular
expressions identifying the same language among the following one:

> (01 +11)*(0+1)*

O+1)"(10+11+1)(0+1)"

(14+0)*1(1 +0)*

O+1)(0+1)(0+1)"

v v Yy
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Regular Expressions

Choose the regular languages that are correct specifications of the
following English-language description:

Twelve-hour times of the form “04:13PM”. Minutes should always be a two digit
number, but hours may be a single digit

> (04 1)?[0 — 9] : [0 — 5][0 — 9](AM + PM)
> (04 €)[0—9]+ 1[0 —2]) : [0 — 5][0 — 9](AM + PM)
> (0°[0 — 9] + 1[0 — 2]) : [0 — 5][0 — 9](AM + PM)

> (07[0— 9] +1(0+1+2):[0—5][0—9)(a+ P)M

" (Formal Languages and Compilers) | 2. Lexical Analysis CS@UNICAM  27/50



Describe the languages denoted by the following RegExp:
» a(alb)a
» a‘ba*ba*ba*

> ((|2)b")"

~ (Formal Languages and Compilers) | 2. Lexical Analysis CS@UNICAM  28/50



Lexical Analysis: How can we do it? Regular Expressions

Regular definitions

For notational convention we give names to certain regular
expressions. A regular definition, on the alphabet ¥ is sequence of
definition of the form:

@ di —»n

e db—n

...

@ dy—ny
where:

@ Each d; is a new symbol, not in ¥ and not the same as any other
of the d’s

@ Each r; is a regular expression over the alphabet
YU{d,0b,...,di_1}

>s and Compilers) 2. Lexical Analysis CS@UNICAM 29/50



Lexical Analysis: How can we do it? Regular Expressions

Using regular definitions

So token of a language can be defined as:

@ letter — alb|...|z|A|B|...|Z
@ letter_ — letter|_
@ compact syntax: [a — zA — B]
@ digit — 0[1]...|9
@ compact syntax: [0 — 9]
@ Integers — (—|e)digit - digit*
@ Identifier — letter_(letter_|digit)x
@ ExpNot — digit(.digit* E(+|—)digit™)? (Exponential Notation)
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Regular Expressions

Lexical Specification

@ Atleast one: AT = AA*

@ Union: AB=A+B

@ Option: A?7=A+¢

@ Range:'d +'b' +..+' 2 =[a—Z]

@ Excluded range: complement of [a— z] = ["a — Z]

Properties of Regular Languages

Regular languages are closed with respect to union, intersection,
complement
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Regular Expressions

Write regulare definitions for the following languages:

» All strings of lowercase letters that contains the five wovels in
order

» All strings of lowercase letters in which the letters are in
ascending lexicographic order

» All strings of digits with no repeated digits

» All strings with an even number of a’s and and an odd number of
b’s

" (Formal Languages and Compilers) | 2. Lexical Analysis CS@UNICAM  32/50



Lexical Analysis: How can we do it? Regular Expressions

Lexical Specification

We want to derive a regular expression for all tokens of a language:

s € Z(R)—where R is the RegExp resulting from the sum of the
RegExp for all the different kinds ot token
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Lexical Analysis: How can we do it? Regular Expressions

Lexical Specification

We want to derive a regular expression for all tokens of a language:

s € Z(R)—where R is the RegExp resulting from the sum of the
RegExp for all the different kinds ot token

How can we define it?
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Lexical Analysis: How can we do it? Regular Expressions

Lexical Specification

We want to derive a regular expression for all tokens of a language:

s € Z(R)—where R is the RegExp resulting from the sum of the
RegExp for all the different kinds ot token

How can we define it?

@ write a regexp for the lexemes of each token class (number,
keyword, identifier,. . .)
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Lexical Analysis: How can we do it? Regular Expressions

Lexical Specification

We want to derive a regular expression for all tokens of a language:

s € Z(R)—where R is the RegExp resulting from the sum of the
RegExp for all the different kinds ot token

How can we define it?

@ write a regexp for the lexemes of each token class (number,
keyword, identifier,. . .)

@ Constructs R matching all lexemes for all tokens
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Lexical Analysis: How can we do it? Regular Expressions

Lexical Specification

We want to derive a regular expression for all tokens of a language:

s € Z(R)—where R is the RegExp resulting from the sum of the
RegExp for all the different kinds ot token

How can we define it?

@ write a regexp for the lexemes of each token class (number,
keyword, identifier,. . .)

@ Constructs R matching all lexemes for all tokens

© Letinput be x;...x,
For 1 </ < ncheckif xy...x; € Z(R;) for some j
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Lexical Analysis: How can we do it? Regular Expressions

Lexical Specification

We want to derive a regular expression for all tokens of a language:

s € Z(R)—where R is the RegExp resulting from the sum of the
RegExp for all the different kinds ot token

How can we define it?

@ write a regexp for the lexemes of each token class (number,
keyword, identifier,. . .)

@ Constructs R matching all lexemes for all tokens

© Letinput be x;...x,
For 1 </ < ncheckif xy...x; € Z(R;) for some j

@ if success then we know that x;...x; € Z(R;) for some j
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Lexical Analysis: How can we do it? Regular Expressions

Lexical Specification

We want to derive a regular expression for all tokens of a language:

s € Z(R)—where R is the RegExp resulting from the sum of the
RegExp for all the different kinds ot token

How can we define it?

@ write a regexp for the lexemes of each token class (number,
keyword, identifier,. . .)

@ Constructs R matching all lexemes for all tokens

© Letinput be x;...x,
For 1 </ < ncheckif xy...x; € Z(R;) for some j

@ if success then we know that x;...x; € Z(R;) for some j
@ remove x;...x; from input and go to (3)
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Lexical Analysis: How can we do it? Regular Expressions

LA matching rules

Suppose that at the same time for / < J:
@ xi...X, € Z(R)
@ xi...Xi.. ;e Z(R)orxy...x;...x; € Z(R')
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Lexical Analysis: How can we do it? Regular Expressions

LA matching rules

Suppose that at the same time for / < J:

@ x1...xi € Z(R)

@ xi...Xi.. ;e Z(R)orxy...x;...x; € Z(R')
Which is the match to consider?
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Lexical Analysis: How can we do it? Regular Expressions

LA matching rules

Suppose that at the same time for / < J:

@ x1...xi € Z(R)

@ xi...Xi.. ;e Z(R)orxy...x;...x; € Z(R')
Which is the match to consider?

longest match rule
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Lexical Analysis: How can we do it? Regular Expressions

LA matching rules

Suppose that at the same time for / < J:

@ xi...X, € Z(R)

@ xi...Xi.. ;e Z(R)orxy...x;...x; € Z(R')
Which is the match to consider?

longest match rule

Suppose that at the same time for / # j € [1..n] and R = R{|Rz|...|Rx:
@ xi..xXx € Z(R))
@ Xi..xk € Z(R))
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Lexical Analysis: How can we do it? Regular Expressions

LA matching rules

Suppose that at the same time for / < J:

@ x1...xi € Z(R)

@ xi...Xi.. ;e Z(R)orxy...x;...x; € Z(R')
Which is the match to consider?

longest match rule

Suppose that at the same time for / # j € [1..n] and R = R{|Rz|...|Rx:
@ xi..xXx € Z(R))
@ Xi..xk € Z(R))

Which is the match to consider?
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Lexical Analysis: How can we do it? Regular Expressions

LA matching rules

Suppose that at the same time for / < J:

@ x1...xi € Z(R)

@ xi...Xi.. ;e Z(R)orxy...x;...x; € Z(R')
Which is the match to consider?

longest match rule

Suppose that at the same time for / # j € [1..n] and R = R{|Rz|...|Rx:
@ xi..xXx € Z(R))
@ Xi..xk € Z(R))

Which is the match to consider?

first one listed rule
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Lexical Analysis: How can we do it? Regular Expressions

LA matching rules

Suppose that at the same time for / < J:

@ x1...xi € Z(R)

@ xi...Xi.. ;e Z(R)orxy...x;...x; € Z(R')
Which is the match to consider?

longest match rule

Suppose that at the same time for / # j € [1..n] and R = R{|Rz|...|Rx:
@ xi..xXx € Z(R))
@ Xi..xk € Z(R))

Which is the match to consider?

first one listed rule

Errors: to manage errors put as last match in the list a rexp for all
lexemes not in the language
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Lexical Analysis: How can we do it? Finite State Automata

Finite Automata

@ Regular Expressions = specification of tokens
@ Finite Automata = recognition of tokens

pilers) 2. Lexical Analysis
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Lexical Analysis: How can we do it? Finite State Automata

Finite Automata

@ Regular Expressions = specification of tokens
@ Finite Automata = recognition of tokens

Finite Automaton
A Finite Automaton A is a tuple (S, ¥, 4, sp, F) where:
» S represents the set of states
» Y represents a set of symbols (alphabet)
» 0 represents the transition function (§: S x ¥ — ...)
» Sy represents the start state (sg € S)
» F represents the set of accepting states (F C S)

In two flawors: Deterministic Finite Automata (DFA) and
Non-Deterministic Finite Automata (NDFA)
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Lexical Analysis: How can we do it? Finite State Automata

Acceptance of Strings for Finite Automaton

Derivations

A DFA goes from state s; to state s;,y consuming from the input the character a if
Sit+1 = (si, a). A DFA can go from state s; to s; consuming the string a = aia...a, if
there is a sequence of states s, 1, ..., Siyn—1 and s; = Siyp S.t.

Vk € [1..n].Sisk = 0(Sitk—1, @), then we write s; —2 s;

Equivalently the extended transition function 6 : S x £* — S is defined, i.e.
0(6(...0(si,a1).., @n—1),an) = 0(si,a) =
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Acceptance of Strings for Finite Automaton

Derivations

A DFA goes from state s; to state s;,y consuming from the input the character a if
Sit+1 = (si, a). A DFA can go from state s; to s; consuming the string a = aia...a, if
there is a sequence of states s, 1, ..., Siyn—1 and s; = Siyp S.t.
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Equivalently the extended transition function 6 : S x £* — S is defined, i.e.
0(6(...0(si,a1).., @n—1),an) = 0(si,a) =

Acceptance of Strings

A DFA accepts a strings a in the alphabet X if there is a derivation from s, to a state s;
consuming the string a (i.e. s —? s;)) and s; € F
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Acceptance of Strings for Finite Automaton

Derivations

A DFA goes from state s; to state s;,y consuming from the input the character a if
Sit+1 = (si, a). A DFA can go from state s; to s; consuming the string a = aia...a, if
there is a sequence of states s, 1, ..., Siyn—1 and s; = Siyp S.t.

Vk € [1..n].Sisk = 0(Sitk—1, @), then we write s; —2 s;

Equivalently the extended transition function 6 : S x £* — S is defined, i.e.
0(6(...0(si,a1).., @n—1),an) = 0(si,a) =

Acceptance of Strings

A DFA accepts a strings a in the alphabet X if there is a derivation from s, to a state s;
consuming the string a (i.e. s —? s;)) and s; € F

| A

Accepted Language

The language accepted by a FSA is constituted by all the strings for which there is a
derivation ending in a state in F.

v
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Finite Automata

Depending on the definition of § we distinguish between:
» Deterministic Finite Automata (DFA)-6: S x X — S
» Nondeterministic Finite Automata (NFA) 6 : S x ¥ — Z2(S)
The transition relation ¢ can be represented in a table (transition table)
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Finite Automata

Depending on the definition of § we distinguish between:
» Deterministic Finite Automata (DFA)-6: S x X — S
» Nondeterministic Finite Automata (NFA) 6 : S x ¥ — Z2(S)
The transition relation ¢ can be represented in a table (transition table)

Overview of the graphical notation circle and edges (arrows)
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Define the following automata:
» DFA for a single 1
» DFA for accepting any number of 1’s followed by a single 0

» DFA for any sequence of a or b (possibly empty) followed by 'abb’

Which regular expression corresponds to the automaton?
@ 1)
@ (1710)(110)
© 1°1(01)*/(001)*(000*1)*

@ (0[1)*00
~ (Formal Languages and Compilers) | 2. Lexical Analysis CS@UNICAM  38/50
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€-Moves

DFA, NFA and e-moves

e DFA

@ one transition per input per state
@ NOo e-moves

o NFA

e can have multiple transitions for one input in a given state
@ can have e-moves
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€-Moves

DFA, NFA and e-moves

e DFA

@ one transition per input per state
@ NOo e-moves
o faster

o NFA
e can have multiple transitions for one input in a given state

e can have e-moves
e smaller (exponentially)

nd Compilers) 2. Lexical Analysis CS@UNICAM
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From regexp to NFA

Equivalent NFA for a regexp

The Thompson’s algorithm permits to automatically derive a NFA from
the specification of a regexp. It defines basic NFA for the basic regexp
and rules to compose them:

Q@ fore
Q for’a’
© for AB
Q for AB
Q for A* )

Now consider the regexp for (1|0)*1
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NFA to DFA

Given a NFA accepting a language . there exists a DFA accepting the same
language

The derivation of a DFA from an NFA is based on the concept of
e — closure. The algorithm to make the transformation is based on:

@ ¢ — closure(s) with s € .7
@ ¢ — closure(7) with 7 C . i.e. = {Use ¢ — closure(s)}
@ move(7,a)with 7 C Y andaec ¥

(Formal Langusa nd Compilers)

2. Lexical Analysis CS@UNICAM 41/50
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NFA to DFA

@ build the ¢ — closure(. . .) for different states/sets
@ build move(7, a) for different sets and elements

nd Compilers) 2. Lexical Analysis CS@UNICAM 42/50



Lexical Analysis: How can we do it? Finite State Automata

NFA 2 DFA

Subset Construction Algorithm

The Subset constuction algorithm permits to derive a DFA (., ¥, 6p, So, %p) from a
NFA (A, X, 6n, Mo, Fn)

Qo < e —closure({no});
2 + Qo;
Worklist < {qo};
while (Worklist # @) do
take and remove g from Worklist;
forall (c € ¥) do
t «+ e — closure(move(q, ¢));
Tlg.cl+ ¢t
if (t ¢ 2) then
2+ 2U{t};
Worklist < Worklist U{t};
end if

end for
end while
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Simulating DFA and NFA

S = So,
¢ = nextChar();
while (c # eof) do
s = move(s, ¢);
¢ = nextChar();
end while
if (s € #) then return “yes”;
else return “no”;
end if

Finite State Automata

S = e — closure(s);

¢ = nextChar();

while (c # eof) do
S = e — closure(move(S, c));
¢ = nextChar();

end while

if (SN .7 # o) then return “yes”;

else return “no”;

end if

(Formal Lan

nd Compilers)

2. Lexical Analysis

CS@UNICAM
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NFA 2 DFA

@ Derive a DFA for the regexp: (a|b)*abb
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NFA 2 DFA

@ Derive a DFA for the regexp: (a|b)*abb
@ NFA to DFA for the regexp: (a|b)*a(a|b)""

(Formal Lan nd Compilers) 2. Lexical Analysis

CS@UNICAM
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DFA 2 Minimal DFA

Reducing the size of the Automaton does not reduce the number of moves needed to
recognize a string, nevertheless it reduces the size of the transition table that could
more easily fit the size of a cache

v

Equivalent states

Two states of a DFA are equivalent if they produce the same “behaviour” on any input
string. Formally two states s; and s; of a DFA D = (S, X, 6, qo, F) are considered
equivalent (s; = ;) iff Vx € £*.(s) = s{ A s € F) < (52" S{ A S} € F)
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DFA 2 Minimal DFA — Hopcroft’s Algorithm
A

Let T a matrix containing information about the equivalence of two states and
let L a matrix containing sets (initially empty) of pairs of states
forallsy € SAsy, € Sdo
T[sx, sy] < 0; /I All pairs of states are initially marked as equivalent
end for
forallsy € F Asy € S/F do
Tsx, syl <= 15 Tlsy, sx] < 1;
end for
for all (sx, sy) s.it. T[sx, sy] = 0 A sx # sy do
if (3c € .T[o(sx, ¢), 6(sy, ¢)] = 1) then
Tlsx, Syl = 1; Tlsy, sx] <= 1;
forall (sy, sz) € L[sx, sy]do
Tlsw, sz] <= 1, Tsz, sw] < 1;
end for
else
forallc € ¥ do
if (5(sx, €) # 8(sy, €) A (Sx, 8) # (6(Sx, ©), 6(sy, C)) then
L[5(sx, ¢), 6(sy, )] <= L[8(sx, €), 8(sy, €)] U(sx, Sy);
L[5(sy, €), 8(sx, €)] <= LId(sy, ¢), 8(sx, €)] U(sx, Sy);
end if
end for
end if
end for

Uniqueness of the minimal DFA
3! DFA that recognizes a regular language . and has minimal number of states
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@ Minimize DFA for the regexp: (a|b)*abb
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Finite State Automata

Minimizing Transition Table

The easiest way to represent a DFA is to have a matrix with state and characters.

Alternative representations:
@ Lists of pairs for each state (character,states)

@ hardcoded table into case statements

Consider the following DFA:
Transition Table

«._characters

states ™,

» Which is the accepted language?
» How can the table be represented as a list of pairs?

v
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Exercises

RegExp 2 DFA

» Define an automated strategy to decide if two regular expressions define the
same language combininig the algorithms defined so far

» Write a regular expression for all strings of a’s and b’s which do not contain the
substring aab

| A\

Regular Languages properties
» Show that the complement of a regular language, on alphabet ¥, is still a regular
language

» Show that the intersection of two regular languages, on alphabet %, is still a
regular language

Scanner issues

Describe the behaviour of a scanner when the two tokens described by the following
patterns are considered: ab and (ab)*c. Why a simple scanner is particularly
inefficient on a string like "abababababab’?

| A\

v
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Summary

Lexical Analysis

Relevant concepts we have encountered:
@ Tokens, Patterns, Lexemes
@ Chomsky hierarchy and regular languages
@ Regular expressions
@ Problems and solutions in matching strings
@ DFA and NFA
@ Transformations

o RegExp — NFA
o NFA — DFA
o DFA — Minimal DFA
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