
5. Semantic Analysis II
Type Checking – Intermediate Code Generation

Andrea Polini

Formal Languages and Compilers
Master in Computer Science

University of Camerino

(Formal Languages and Compilers) 5. Semantic Analysis II CS@UNICAM 1 / 27

Preliminaries

ToC

1 Preliminaries

2 Types

3 Control Flow

(Formal Languages and Compilers) 5. Semantic Analysis II CS@UNICAM 2 / 27

Preliminaries

Intermediate Code generation

Last block in the front end of a compilers. To delve into the topic
we need to consider:

intermediate representations – memory management is still
abstracted
static checking – type checking in particular
intermediate code generation – the C programming language is
often selected as an intermediate form because it is flexible, it
compiles into efficient machine code, and its compilers are widely
available.

(Formal Languages and Compilers) 5. Semantic Analysis II CS@UNICAM 3 / 27

Preliminaries

Three Address Code

The term “three-address code” comes from instructions of the general
form x = y op z with three addresses (two for the operands and one
for the result

In “three-address code” operations there is at most one operator on
the right side of each single instruction.
Consider the expression: x+y*z the codification will look like . . .

Building blocks
Three address code is built from two concepts: addresses,
instructions.

(Formal Languages and Compilers) 5. Semantic Analysis II CS@UNICAM 4 / 27

Preliminaries

Three Address Code

The term “three-address code” comes from instructions of the general
form x = y op z with three addresses (two for the operands and one
for the result

In “three-address code” operations there is at most one operator on
the right side of each single instruction.
Consider the expression: x+y*z the codification will look like . . .

Building blocks
Three address code is built from two concepts: addresses,
instructions.

(Formal Languages and Compilers) 5. Semantic Analysis II CS@UNICAM 4 / 27

Preliminaries

Founding concepts

Addresses

I name
I constant
I compiler generated temporary

Instructions

I assignment (with binary and unary operators) – e.g. x = y op z, x = op y
I copy instructions – e.g. x = y
I unconditional jump – e.g. goto L
I conditional jump with boolean – if x goto L, ifFalse x goto L
I conditional jump with relational operators – if x relop y goto L
I procedure calls and returns – e.g. param x, call p,n, and y = call p,n

I indexed copy instructions – e.g. x=y[i] and x[i]=y)
I Address and pointer assignment – e.g. x=&y, x=*y, *x=y)

(Formal Languages and Compilers) 5. Semantic Analysis II CS@UNICAM 5 / 27

Preliminaries

Three address code representation and storage

Let’s provide a translation for the following code fragment:

do
i=i+1;

while (a[i] < v);

Quadruples – includes results
Triples
Indirect triples
static single-assignment form

(Formal Languages and Compilers) 5. Semantic Analysis II CS@UNICAM 6 / 27

Preliminaries

Direct Acyclic Graph(DAG)

A Direct Acyclic Graph (DAG) can be considered a compacted form of
an AST where common terms are not repeated. The result is that
“leaves” will have more than one parent resulting in a graph rather than
a tree structure

Consider the case of the expression a + a ∗ (b − c) + (b − c) ∗ d

How to generate it
The derivation of a DAG is much similar to that of a AST. In particular it
is enough to revise the implementation of the Node method to avoid
the replications of nodes

(Formal Languages and Compilers) 5. Semantic Analysis II CS@UNICAM 7 / 27

Preliminaries

Direct Acyclic Graph(DAG)

A Direct Acyclic Graph (DAG) can be considered a compacted form of
an AST where common terms are not repeated. The result is that
“leaves” will have more than one parent resulting in a graph rather than
a tree structure

Consider the case of the expression a + a ∗ (b − c) + (b − c) ∗ d

How to generate it
The derivation of a DAG is much similar to that of a AST. In particular it
is enough to revise the implementation of the Node method to avoid
the replications of nodes

(Formal Languages and Compilers) 5. Semantic Analysis II CS@UNICAM 7 / 27

Preliminaries

Three address code and DAG

Three address code are linearized representation of a syntax tree or DAG. For
instance the DAG for a + a× (b − c) + (b − c)× d can be represented by the
following three address code snippet:

t1 = b − c
t2 = a ∗ t1
t3 = a ∗ t2
t4 = t1 ∗ d
t5 = t3 + t4

(Formal Languages and Compilers) 5. Semantic Analysis II CS@UNICAM 8 / 27

Types

ToC

1 Preliminaries

2 Types

3 Control Flow

(Formal Languages and Compilers) 5. Semantic Analysis II CS@UNICAM 9 / 27

Types

Types and Declarations

Types establish sets in which program elements can get their values.
Two main activities related to compiling:

I Type Checking uses logical rules to reason about the behavior of
program at run time

I Translation Applications in which type related information are
useful to determine the memory space needed for names at
run-time, to compute address denoted by array reference, to apply
conversions, to determine the operators to apply . . .

(Formal Languages and Compilers) 5. Semantic Analysis II CS@UNICAM 10 / 27

Types

Type Expression

Type Expressions

A type expression is either a basic type of is formed by applying an operator, called
type constructor, to a type expression. E.g. int[2][3]

inductive constructions of types expressions

I A basic type is a type expression (generally languages include basic types such
as – boolean, char, integer, float, void, double, . . .)

I A type name is a type expression
I The array operator can be applied to a type expression to form a new type

expression
I A record form a type expression from a list of type expressions
I The function operator (→) can be used to define a function from a type s to type t
I The Cartesian product for two type expressions results in a new type expression

(Formal Languages and Compilers) 5. Semantic Analysis II CS@UNICAM 11 / 27

Types

Declarations

Let’s consider a simplified grammar for declarations:

D → T id;D | ε T → BC | record ′{′ D ′}′

B → int | float C → ε | [num]C

(Formal Languages and Compilers) 5. Semantic Analysis II CS@UNICAM 12 / 27

Types

Types and storage allocation

Worth to be mentioned:
Relative addresses can be assigned at compile time
Addressing constraints of the target machine influence
assignment of addresses

(Formal Languages and Compilers) 5. Semantic Analysis II CS@UNICAM 13 / 27

Types

Types and storage allocation for sequence of
declarations

P → { offset=0}
D

D → T id; { top.put(id.lexeme,T.type,offset);
offset = offset + T.width; }

D1

| ε
T → B { t=B.type; w=B.width; }

C { T.type = C.type; T.width = C.width; }
| record ′{′ { Env.push(top); top = new Env();

Stack.push(offset); offset=0; }
D ′}′ { T.type=record(top); T.width=offset;

top=Env.pop(); offset=Stack.pop(); }
B → int { B.type=integer; B.width=4; }

| float { B.type=float; B.width=8; }
C → [num]C { array(num.value,C1.type);

C.width=num.value × C1.width; }
| ε { C.type = t; C.width = w; }

(Formal Languages and Compilers) 5. Semantic Analysis II CS@UNICAM 14 / 27

Types

Type equivalence

Types Structural Equivalence
When type expression are represented by graphs, two types are
structurally equivalent if and only if one of the following conditions is
true:

I They are the same basic type
I They are formed by applying the same constructor to structurally

equivalent types
I One is a type name that denotes the other

(Formal Languages and Compilers) 5. Semantic Analysis II CS@UNICAM 15 / 27

Types

Translation of Expressions

In the translation of an expression we need to represent the code for
the expression and the address in which the computed value will be
stored. Therefore let’s consider an excerpt for the usual expression
grammar:

S → id = E E → E1 + E2| − E1|(E1)|id

(Formal Languages and Compilers) 5. Semantic Analysis II CS@UNICAM 16 / 27

Types

SDD for three address code translation

S → id = E S.code=E.code ||
gen(top.get(id.lexeme) ’=’ E.addr)

E → E1 + E2 E.addr=new Temp()
E.code = E1.code || E2.code || gen(E.addr ’=’ E1.addr ’+’ E2.addr)

| −E1 E.addr=new Temp()
E.code = E1.code || gen(E.addr ’=’ ’minus’ E1.addr)

| (E1) E.addr= E1.addr, Ecode =E1.code

| id E.addr =top.get(id.lexeme), E.code= ’ ’

Consider the expression “a=b+-c” and derive the three address code translation
applying the semantic rules defined

(Formal Languages and Compilers) 5. Semantic Analysis II CS@UNICAM 17 / 27

Types

Type Checking

To do type checking is necessary to assign a type expression to each
component of the source program. Then a set of logical rules (type
system) are defined to check if any non conformity is spotted.
Type checking can take two forms:

I type synthesis
I type inference

(Formal Languages and Compilers) 5. Semantic Analysis II CS@UNICAM 18 / 27

Types

Type Synthesis

In type synthesis the type of an expression is derived from those of its
sub-expressions. Names need to be declared before usage.
A typical rule will look like the following one:

if f has type s → t and x has type s,
then expression f (x) has type t

e.g. consider the case of E1 + E2

(Formal Languages and Compilers) 5. Semantic Analysis II CS@UNICAM 19 / 27

Types

Type inference

With type inference the type of a construct is determined from the way
it is used.
A typical rule for the type inference has the form:

if f (x) is an expression,
then for some α and β, f has type α→ β and x has type α

(Formal Languages and Compilers) 5. Semantic Analysis II CS@UNICAM 20 / 27

Types

Type conversion

Consider the expression a = b + c
where the variable do not necessarily
have the same type....managed via
type conversion
All languages have their specific rules
defined for conversion:

I narrowing
I widening

Conversion can be implicit or explicit.
Implicit conversions, also called
coercions, are generally limited to
widening. Explicit conversions are
consequence of statements included
by the programmer (cast).

(Formal Languages and Compilers) 5. Semantic Analysis II CS@UNICAM 21 / 27

Types

Type conversion

Consider the expression a = b + c
where the variable do not necessarily
have the same type....managed via
type conversion
All languages have their specific rules
defined for conversion:

I narrowing
I widening

Conversion can be implicit or explicit.
Implicit conversions, also called
coercions, are generally limited to
widening. Explicit conversions are
consequence of statements included
by the programmer (cast).

(Formal Languages and Compilers) 5. Semantic Analysis II CS@UNICAM 21 / 27

Types

Type conversion

To define semantic actions for type checking two auxiliary functions are
defined:

max(t1, t2): takes two types and return the maximum
widen(a, t ,w) – where a is an address, while t and w are types:
generate type conversion if needed to widen an address a of type
t into a value of type w .

E → E1 + E2 { E.type = max(E1.type,E2.type);
a1 = widen (E1.addr,E1.type,E.type)
a1 = widen (E2.addr,E2.type,E.type)
E.addr = new Temp();
gen(E.addr ’=’ a1 ’+’ a2); }

(Formal Languages and Compilers) 5. Semantic Analysis II CS@UNICAM 22 / 27

Types

Type conversion

To define semantic actions for type checking two auxiliary functions are
defined:

max(t1, t2): takes two types and return the maximum
widen(a, t ,w) – where a is an address, while t and w are types:
generate type conversion if needed to widen an address a of type
t into a value of type w .

E → E1 + E2 { E.type = max(E1.type,E2.type);
a1 = widen (E1.addr,E1.type,E.type)
a1 = widen (E2.addr,E2.type,E.type)
E.addr = new Temp();
gen(E.addr ’=’ a1 ’+’ a2); }

(Formal Languages and Compilers) 5. Semantic Analysis II CS@UNICAM 22 / 27

Control Flow

ToC

1 Preliminaries

2 Types

3 Control Flow

(Formal Languages and Compilers) 5. Semantic Analysis II CS@UNICAM 23 / 27

Control Flow

Control Flow

Boolean expression are the building block for influencing the flow of a program. The
are manipulated to:

I Alter the flow of control – like in if (E)S
I Compute logical values

Two different approaches to evaluation:
I Eager
I Lazy

(Formal Languages and Compilers) 5. Semantic Analysis II CS@UNICAM 24 / 27

Control Flow

Control Flow – Boolean expressions

B → B1||B2 B1.true=B.true
B1.false=newlabel()
B2.true = B.true
B2.false=B.false
B.code = B1.code || label(B1.false)|| B2.code

B → B1&&B2 B1.true=newlabel()
B1.false=B.false
B2.true = B.true
B2.false=B.false
B.code = B1.code || label(B1.true)|| B2.code

B → E1relE2 B.code = E1.code||E2.code
|| gen(’if’ E1.addr rel.op E2.addr ’goto’ B.true)
|| gen(’goto’ B.false)

B → true B.code=gen(’goto’ B.true)
B → false B.code=gen(’goto’ B.false)

(Formal Languages and Compilers) 5. Semantic Analysis II CS@UNICAM 25 / 27

Control Flow

Control Flow – commands

P → S S.next=newlabel(), P.code = S.code || label(S.next)
S → assign S.code=assign.code
S → if (B) S1 B.true=newlabel(), B.false=S1.next=S.next

S.code=B.code||label(B.true)||S1.code
S → if (B) S1 else S2 B.true=newlabel(), B.false=newlabel()

S1.next=S2.next=S.next
S.code=B.code||label(B.true)||S1.code

||gen(’goto’ S.next)|| label(B.false)|| S2.code
S → while (B) S1 begin=newlabel(), B.true=newlabel()

B.false=S.next, S1.next=begin
S.code=label(begin)||B.code||label(B.true)||S1.code

||gen(’goto’ begin)
S → S1 S2 S1.next=newlabel(), S2.next=S.next

S.code = S1.code||label(S1.next)||S2.code

(Formal Languages and Compilers) 5. Semantic Analysis II CS@UNICAM 26 / 27

Control Flow

Control Flow – commands

Let’s translate the following program:

if (x != y && x == z) x = y + z;

(Formal Languages and Compilers) 5. Semantic Analysis II CS@UNICAM 27 / 27

	Preliminaries
	Types
	Control Flow

