
3. Syntax Analysis

Andrea Polini

Formal Languages and Compilers
Master in Computer Science

University of Camerino

(Formal Languages and Compilers) 3. Syntax Analysis CS@UNICAM 1 / 70

Syntax Analysis: the problem

ToC

1 Syntax Analysis: the problem

2 Theoretical Background

3 Syntax Analysis: solutions
Top-Down parsing
Bottom-Up Parsing

(Formal Languages and Compilers) 3. Syntax Analysis CS@UNICAM 2 / 70

Syntax Analysis: the problem

Syntax analysis

Parsing
Parsing is the activity of taking a string of terminals and figuring out how to derive it
from the start symbol of the grammar, and if it cannot be derived from the start symbol
of the grammar, then reporting syntax errors within the string.

The Parser
The parser obtains a sequence of tokens and verifies that the sequence can be
correctly generated by the grammar for the source language. For well-formed
programs the parser will generate a parse tree that will be passed to the next compiler
stage.

(Formal Languages and Compilers) 3. Syntax Analysis CS@UNICAM 3 / 70

Syntax Analysis: the problem

Parse Tree

Parse tree
A parse tree show how the start symbol of a grammar derives the
string in the language. If A→ XYZ is a production applied in a
derivation the parse tree will have an interior node labeled A with three
children labeled X,Y,Z from left to right:

I root is always labeled with the start symbols
I leaves are labeled with terminals or ε
I interior nodes are labeled with non terminal symbols
I parent-children relations among node are dependent from the rule

defined by the grammar

(Formal Languages and Compilers) 3. Syntax Analysis CS@UNICAM 4 / 70

Syntax Analysis: the problem

Parsing Example

Expressions grammar I
E → E + E | E − E | E ∗ E | E/E | (E) | id
Find the sequence or productions for the string “id + id ∗ id” and derive
the corresponding parse tree

Expressions grammar II
E → E + T | E − T | T
T → T ∗ F | T/F | F
F → (E) | id

(Formal Languages and Compilers) 3. Syntax Analysis CS@UNICAM 5 / 70

Syntax Analysis: the problem

Parsing Example

Expressions grammar I
E → E + E | E − E | E ∗ E | E/E | (E) | id
Find the sequence or productions for the string “id + id ∗ id” and derive
the corresponding parse tree

Expressions grammar II
E → E + T | E − T | T
T → T ∗ F | T/F | F
F → (E) | id

(Formal Languages and Compilers) 3. Syntax Analysis CS@UNICAM 5 / 70

Syntax Analysis: the problem

Type of parsers

Three general type of parsers:
I universal (any kind of grammar)
I top-down
I bottom-up

(Formal Languages and Compilers) 3. Syntax Analysis CS@UNICAM 6 / 70

Theoretical Background

ToC

1 Syntax Analysis: the problem

2 Theoretical Background

3 Syntax Analysis: solutions
Top-Down parsing
Bottom-Up Parsing

(Formal Languages and Compilers) 3. Syntax Analysis CS@UNICAM 7 / 70

Theoretical Background

Chomsky Hierarchy

A hierarchy of grammars can be defined imposing constraints on the
structure of the productions in set P (α, β, γ ∈ V∗,a ∈ VT ,A,B ∈ VN):
T0. Unrestricted Grammars:

Production Schema: no constraints
Recognizing Automaton: Turing Machines

T1. Context Sensitive Grammars:
Production Schema: αAβ → αγβ
Recognizing Automaton: Linear Bound Automaton (LBA)

T2. Context-Free Grammars:
Production Schema: A→ γ
Recognizing Automaton: Non-deterministic Push-down Automaton

T3. Regular Grammars:
Production Schema: A→ a or A→ aB
Recognizing Automaton: Finite State Automaton

(Formal Languages and Compilers) 3. Syntax Analysis CS@UNICAM 8 / 70

Theoretical Background

Grammar Definition

Context Free Grammar
A Context Free Grammar is given by a tuple G = 〈VT ,VN ,S,P〉 where:

I VT : finite and non empty set of terminal symbols (alphabet)
I VN : finite set of non terminal symbols s.t. VN ∩ VT = ∅
I S: start symbol of the grammar s.t. S ∈ VN
I P: is the set of productions s.t. P ⊆ VN × V∗ where V∗ = VT ∪ VN

(Formal Languages and Compilers) 3. Syntax Analysis CS@UNICAM 9 / 70

Theoretical Background

Push-down Automata

Definition
A Push-down Automaton is a tuple 〈Σ, Γ,Z0,S, s0,F , δ〉 where:

I Σ defines the input alphabet
I Γ defines the alphabet for the stack
I Z0 ∈ Γ is the symbol used to represent the empty stack
I S represents the set of states
I s0 ∈ S is the initial state of the automaton
I F ⊆ S is the set of final states
I δ : S × (Σ ∪ {ε})× Γ→ . . . represents the transition function

Deterministic vs. Non-Deterministic
Push-down automata can be defined according to a deterministic strategy or a
non-deterministic one. In the first case the transition function returns elements in the
set S × Γ∗, in the second case the returned element belongs to the set P(S × Γ∗)

(Formal Languages and Compilers) 3. Syntax Analysis CS@UNICAM 10 / 70

Theoretical Background

Push-down Automata - How do they proceed?

Intuition
I The automaton starts with an empty stack and a string to read
I On the base of its status (state, symbol at the top of the stack), and of the

character at the begining of the input string it changes its status consuming the
character from the input string.

I The status change consists in the insertion of one or more symbol in the stack
after having removed the one at the top, and in the transition to another internal
state

I the string is accepted when all the symbols in the input stream have been
considered and the automaton reach a status in which the state is final or the
stack is empty

(Formal Languages and Compilers) 3. Syntax Analysis CS@UNICAM 11 / 70

Theoretical Background

Push-down Automata

Configuration
Given a Push-dow Automaton A = 〈Σ, Γ,Z0,S, s0,F , δ〉 a configuration is given by the
tuple 〈s, x , γ〉 where:

I s ∈ S, x ∈ Σ∗, γ ∈ Γ∗

The configuration of an automaton represent its global state and contains the
information to know its future states.

Transition
Given A = 〈Σ, Γ,Z0,S, s0,F , δ〉 and two configurations χ = 〈s, x , γ〉 and
χ′ = 〈s′, x ′, γ′〉 it can happen that the automaton passes from the first configuration to
the second (χ `A χ

′) iff:
I ∃a ∈ Σ.x = ax ′

I ∃Z ∈ Γ, η, σ ∈ Γ∗.γ = Zη ∧ γ′ = ση

I δ(s, a,Z) = (s′, σ)

(Formal Languages and Compilers) 3. Syntax Analysis CS@UNICAM 12 / 70

Theoretical Background

Push-down Automata

Acceptance by empty stack
Given A = 〈Σ, Γ,Z0,S, s0,F , δ〉 a configuration χ = 〈s, x , γ〉 accepts a
string iff x = γ = ε

Acceptance by final state
Given A = 〈Σ, Γ,Z0,S, s0,F , δ〉 a configuration χ = 〈s, x , γ〉 accepts a
string iff x = ε and s ∈ F

(Formal Languages and Compilers) 3. Syntax Analysis CS@UNICAM 13 / 70

Theoretical Background

Push-down Automata - Exercise

I Define a push-down automaton that accept the language L = {anbn|n ∈ N+}
I Define a push-down automaton that accept the language L = {ww |w ∈ {a, b}+}
I Define a push-down automaton that accept the language
L = {anbmc2n|n ∈ N+ ∧m ∈ N}

(Formal Languages and Compilers) 3. Syntax Analysis CS@UNICAM 14 / 70

Theoretical Background

Push-down Automata - Exercise

I Define a push-down automaton that accept the language L = {anbn|n ∈ N+}
I Define a push-down automaton that accept the language L = {ww |w ∈ {a, b}+}
I Define a push-down automaton that accept the language
L = {anbmc2n|n ∈ N+ ∧m ∈ N}

(Formal Languages and Compilers) 3. Syntax Analysis CS@UNICAM 14 / 70

Theoretical Background

Push-down Automata - Exercise

I Define a push-down automaton that accept the language L = {anbn|n ∈ N+}
I Define a push-down automaton that accept the language L = {ww |w ∈ {a, b}+}
I Define a push-down automaton that accept the language
L = {anbmc2n|n ∈ N+ ∧m ∈ N}

(Formal Languages and Compilers) 3. Syntax Analysis CS@UNICAM 14 / 70

Theoretical Background

Derivations

Derivation
The construction of a parse tree can be made precise by taking a
derivational view, in which production are considered as rewriting rules.

A sentence belongs to a language if there is a derivation from the initial
symbol to the sentence.
e.g. E → E + E |E ∗ E | − E |(E)|id

Kind of derivations
Each sentence can be generated according to two different strategies
leftmost and rightmost. Parsers generally return one of this two
derivations.

(Formal Languages and Compilers) 3. Syntax Analysis CS@UNICAM 15 / 70

Theoretical Background

Derivations

Derivation
The construction of a parse tree can be made precise by taking a
derivational view, in which production are considered as rewriting rules.

A sentence belongs to a language if there is a derivation from the initial
symbol to the sentence.
e.g. E → E + E |E ∗ E | − E |(E)|id

Kind of derivations
Each sentence can be generated according to two different strategies
leftmost and rightmost. Parsers generally return one of this two
derivations.

(Formal Languages and Compilers) 3. Syntax Analysis CS@UNICAM 15 / 70

Theoretical Background

Ambiguity

A grammar that produces more than one parse tree for some sentence is said to be
ambiguos. An ambiguous grammar has more then one left-most derivation or more
than one rightmost derivation for the same sentence.

Ambiguity and Precedence of Operators

Using the simplest grammar for expressions let’s derive again the parse tree for:

id + id ∗ id

Now consider the following grammar:
E → E + T |E − T |T
T → T ∗ F |T/F |F
F → (E)|id

Use of ambiguos grammar

In some case it can be convenient to use ambiguous grammar, but then it is
necessary to define precise disambiguating rules

(Formal Languages and Compilers) 3. Syntax Analysis CS@UNICAM 16 / 70

Theoretical Background

Ambiguity

A grammar that produces more than one parse tree for some sentence is said to be
ambiguos. An ambiguous grammar has more then one left-most derivation or more
than one rightmost derivation for the same sentence.

Ambiguity and Precedence of Operators

Using the simplest grammar for expressions let’s derive again the parse tree for:

id + id ∗ id

Now consider the following grammar:
E → E + T |E − T |T
T → T ∗ F |T/F |F
F → (E)|id

Use of ambiguos grammar

In some case it can be convenient to use ambiguous grammar, but then it is
necessary to define precise disambiguating rules

(Formal Languages and Compilers) 3. Syntax Analysis CS@UNICAM 16 / 70

Theoretical Background

Ambiguity

A grammar that produces more than one parse tree for some sentence is said to be
ambiguos. An ambiguous grammar has more then one left-most derivation or more
than one rightmost derivation for the same sentence.

Ambiguity and Precedence of Operators

Using the simplest grammar for expressions let’s derive again the parse tree for:

id + id ∗ id

Now consider the following grammar:
E → E + T |E − T |T
T → T ∗ F |T/F |F
F → (E)|id

Use of ambiguos grammar

In some case it can be convenient to use ambiguous grammar, but then it is
necessary to define precise disambiguating rules

(Formal Languages and Compilers) 3. Syntax Analysis CS@UNICAM 16 / 70

Theoretical Background

Ambiguity

Conditional statements
Consider the following grammar:
stmt → if expr then stmt

| if expr then stmt else stmt
| other

decide if the following sentence belongs to the generated language:

if E1 then if E2 then S1 else S2

(Formal Languages and Compilers) 3. Syntax Analysis CS@UNICAM 17 / 70

Theoretical Background

Exercises

Consider the grammar:

S → SS + |SS ∗ |a

and the string aa + a∗
I Give the leftmost derivation for the string
I Give the rightmost derivation for the string
I Give a parse tree for the string
I Is the grammar ambiguous or unambiguous?
I Describe the language generated by this grammar?

Define grammars for the following languages:
I L = {w ∈ {0, 1}∗|w is palindrom}
I L = {w ∈ {0, 1}∗|w contains the same occurrences of 0 and 1}
I L = {w ∈ {0, 1}∗|w does not contain the substring 011}

(Formal Languages and Compilers) 3. Syntax Analysis CS@UNICAM 18 / 70

Theoretical Background

Exercises

Consider the grammar:

S → SS + |SS ∗ |a

and the string aa + a∗
I Give the leftmost derivation for the string
I Give the rightmost derivation for the string
I Give a parse tree for the string
I Is the grammar ambiguous or unambiguous?
I Describe the language generated by this grammar?

Define grammars for the following languages:
I L = {w ∈ {0, 1}∗|w is palindrom}
I L = {w ∈ {0, 1}∗|w contains the same occurrences of 0 and 1}
I L = {w ∈ {0, 1}∗|w does not contain the substring 011}

(Formal Languages and Compilers) 3. Syntax Analysis CS@UNICAM 18 / 70

Theoretical Background

CF grammars are capable to describe most, but not all, of the syntax
of programming languages. For instance, the requirement that
identifiers must be dclared before their usage cannot be expressed in
CF grammar.

So what we can do?

Ambiguity
I Many languages admit both ambiguous and unambiguous

grammars, while some languages admit only ambiguous
grammars

I A language that only admits ambiguous grammars is called an
inherently ambiguous language

I A Turing machine cannot decide whether a context-free language
is ambiguous or not

(Formal Languages and Compilers) 3. Syntax Analysis CS@UNICAM 19 / 70

Theoretical Background

CF grammars are capable to describe most, but not all, of the syntax
of programming languages. For instance, the requirement that
identifiers must be dclared before their usage cannot be expressed in
CF grammar.

So what we can do?

Ambiguity
I Many languages admit both ambiguous and unambiguous

grammars, while some languages admit only ambiguous
grammars

I A language that only admits ambiguous grammars is called an
inherently ambiguous language

I A Turing machine cannot decide whether a context-free language
is ambiguous or not

(Formal Languages and Compilers) 3. Syntax Analysis CS@UNICAM 19 / 70

Theoretical Background

CF grammars are capable to describe most, but not all, of the syntax
of programming languages. For instance, the requirement that
identifiers must be dclared before their usage cannot be expressed in
CF grammar.

So what we can do?

Ambiguity
I Many languages admit both ambiguous and unambiguous

grammars, while some languages admit only ambiguous
grammars

I A language that only admits ambiguous grammars is called an
inherently ambiguous language

I A Turing machine cannot decide whether a context-free language
is ambiguous or not

(Formal Languages and Compilers) 3. Syntax Analysis CS@UNICAM 19 / 70

Theoretical Background

CF grammars are capable to describe most, but not all, of the syntax
of programming languages. For instance, the requirement that
identifiers must be dclared before their usage cannot be expressed in
CF grammar.

So what we can do?

Ambiguity
I Many languages admit both ambiguous and unambiguous

grammars, while some languages admit only ambiguous
grammars

I A language that only admits ambiguous grammars is called an
inherently ambiguous language

I A Turing machine cannot decide whether a context-free language
is ambiguous or not

(Formal Languages and Compilers) 3. Syntax Analysis CS@UNICAM 19 / 70

Theoretical Background

CF grammars are capable to describe most, but not all, of the syntax
of programming languages. For instance, the requirement that
identifiers must be dclared before their usage cannot be expressed in
CF grammar.

So what we can do?

Ambiguity
I Many languages admit both ambiguous and unambiguous

grammars, while some languages admit only ambiguous
grammars

I A language that only admits ambiguous grammars is called an
inherently ambiguous language

I A Turing machine cannot decide whether a context-free language
is ambiguous or not

(Formal Languages and Compilers) 3. Syntax Analysis CS@UNICAM 19 / 70

Syntax Analysis: solutions

ToC

1 Syntax Analysis: the problem

2 Theoretical Background

3 Syntax Analysis: solutions
Top-Down parsing
Bottom-Up Parsing

(Formal Languages and Compilers) 3. Syntax Analysis CS@UNICAM 20 / 70

Syntax Analysis: solutions Top-Down parsing

ToC

1 Syntax Analysis: the problem

2 Theoretical Background

3 Syntax Analysis: solutions
Top-Down parsing
Bottom-Up Parsing

(Formal Languages and Compilers) 3. Syntax Analysis CS@UNICAM 21 / 70

Syntax Analysis: solutions Top-Down parsing

Left Recursion

Left recursive grammars

A grammar G is left recursive if it has a non terminal A such that there is a derivation
A ∗−→ Aα for some sting α. Top-down parsing strategies cannot handle left-recursive
grammars

Immediate left recursion

A grammar as an immediate left recursion if there is a production of the form A→ Aα.
It is possible to transform the grammar still generating the same language and
removing the left recursion. Consider the generale case A→ Aα|β an equivalent non
recursive grammar is:

A → βA′

A′ → αA′|ε

S → Aa | b
A → Ac|Sd |ε

(Formal Languages and Compilers) 3. Syntax Analysis CS@UNICAM 22 / 70

Syntax Analysis: solutions Top-Down parsing

Left Recursion

Left recursive grammars

A grammar G is left recursive if it has a non terminal A such that there is a derivation
A ∗−→ Aα for some sting α. Top-down parsing strategies cannot handle left-recursive
grammars

Immediate left recursion

A grammar as an immediate left recursion if there is a production of the form A→ Aα.
It is possible to transform the grammar still generating the same language and
removing the left recursion. Consider the generale case A→ Aα|β an equivalent non
recursive grammar is:

A → βA′

A′ → αA′|ε

S → Aa | b
A → Ac|Sd |ε

(Formal Languages and Compilers) 3. Syntax Analysis CS@UNICAM 22 / 70

Syntax Analysis: solutions Top-Down parsing

Left Recursion

Left recursive grammars

A grammar G is left recursive if it has a non terminal A such that there is a derivation
A ∗−→ Aα for some sting α. Top-down parsing strategies cannot handle left-recursive
grammars

Immediate left recursion

A grammar as an immediate left recursion if there is a production of the form A→ Aα.
It is possible to transform the grammar still generating the same language and
removing the left recursion. Consider the generale case A→ Aα|β an equivalent non
recursive grammar is:

A → βA′

A′ → αA′|ε

S → Aa | b
A → Ac|Sd |ε

(Formal Languages and Compilers) 3. Syntax Analysis CS@UNICAM 22 / 70

Syntax Analysis: solutions Top-Down parsing

Eliminating Left Recursion

The following is a general algorithm to eliminate left recursion at any level

Input: Grammar G with no cycles or ε− productions
Output: An equivalent grammar with no left recursion
Arrange the non terminals in some order A1,A2, ...,An

for all i ∈ [1...n] do
for all j ∈ [1...i − 1] do

replace each production of the form Ai → Ajγ by the
productions Ai → δ1γ|δ2γ| · · · |δkγ where Aj → δ1|δ2| · · · |δk are all current
Aj − productions

end for
eliminate the immediate left recursion among the Ai − productions

end for

(Formal Languages and Compilers) 3. Syntax Analysis CS@UNICAM 23 / 70

Syntax Analysis: solutions Top-Down parsing

Left Factoring

Left Factoring

Left Factoring is a grammar transformation that is useful for producing a grammar
suitable for predictive, or top-down, parsing. When the choice between two alternative
productions is not clear, we may be able to rewrite the productions to defer the
decision until enough of the input has been seen that we can make the right choice

Transformation rule

In general the grammar:

A → αβ1 | αβ2

can be rewritten in:

A → αA′

A′ → β1|β2

In general find the longest prefix and then iterate till no two alternatives for a
nonterminal have a common prefix

(Formal Languages and Compilers) 3. Syntax Analysis CS@UNICAM 24 / 70

Syntax Analysis: solutions Top-Down parsing

Left Factoring

Left Factoring

Left Factoring is a grammar transformation that is useful for producing a grammar
suitable for predictive, or top-down, parsing. When the choice between two alternative
productions is not clear, we may be able to rewrite the productions to defer the
decision until enough of the input has been seen that we can make the right choice

Transformation rule

In general the grammar:

A → αβ1 | αβ2

can be rewritten in:

A → αA′

A′ → β1|β2

In general find the longest prefix and then iterate till no two alternatives for a
nonterminal have a common prefix

(Formal Languages and Compilers) 3. Syntax Analysis CS@UNICAM 24 / 70

Syntax Analysis: solutions Top-Down parsing

Top-down parsing

Top-down parsing

Top-down parsing can be viewed as the problem of constructing a parse tree for the
input string starting from the root and creating the nodes of the parse tree in pre-order
(depth-first). Equivalently . . . finding the left-most derivation for an input string.

Recursive descent parsing

A recursive descent (top-down) parsing consist of a set of procedures, one for each
nonterminal.

function A
Choose an A-production, A→ X1X2 · · ·Xk ;
for all i ∈ [1 · · · k] do

if (Xi is a non terminal) then call procedure Xi ();
else if (Xi equals the current input symbol a) then

advance the input to the next symbol;
else an error has occurred;
end if

end for
end function

(Formal Languages and Compilers) 3. Syntax Analysis CS@UNICAM 25 / 70

Syntax Analysis: solutions Top-Down parsing

Top-down parsing

Backtracking is expensive and not easy to manage. With grammar with
no left-factoring and left-recursion we can do better:

At work
At each step of a top-down parsing the key problem is that of
determining the production to be applied for a nonterminal.
Let’s consider the usual sentence id + id ∗ id and a suitable grammar
for top-down parsing:
E → TE ′ E ′ → +TE ′|ε T → FT ′ T ′ → ∗FT ′|ε F → (E)|id

(Formal Languages and Compilers) 3. Syntax Analysis CS@UNICAM 26 / 70

Syntax Analysis: solutions Top-Down parsing

FIRST and FOLLOW sets

FIRST (α) set of terminals that begin strings derived from α
FOLLOW (A) set of terminals a that can appear immediately to the right of A in

some sentential form
nullable(X) it is true if it is possible to derive ε from X

FIRST

To compute FIRST (X) for all grammar symbols X , apply the following rules until no
more terminals or ε can be addedd to any FIRST set

1 if X is a terminal, then FIRST (X) = {X }
2 if X is a non terminal and X → Y1Y2 · · ·Yk is a production for some k ≥ 1, then

place a in FIRST (X) if for some i , a is in FIRST (Yj), and ε is in all of
FIRST (Y1) · · ·FIRST (Yj−1). If ε is in FIRST (Yj) for all j = 1, 2, . . . , k then add ε
to FIRST (X). If Y1 does not derive ε, then we add nothing more to FIRST (X),
but if Y1 →∗ ε, then we add FIRST (Y2), and so on.

3 if X → ε is a production, then add ε to FIRST (X)

It is then possible to compute FIRST for any string X1X2 · · ·Xk

(Formal Languages and Compilers) 3. Syntax Analysis CS@UNICAM 27 / 70

Syntax Analysis: solutions Top-Down parsing

FIRST and FOLLOW sets

FIRST (α) set of terminals that begin strings derived from α
FOLLOW (A) set of terminals a that can appear immediately to the right of A in

some sentential form
nullable(X) it is true if it is possible to derive ε from X

FIRST

To compute FIRST (X) for all grammar symbols X , apply the following rules until no
more terminals or ε can be addedd to any FIRST set

1 if X is a terminal, then FIRST (X) = {X }
2 if X is a non terminal and X → Y1Y2 · · ·Yk is a production for some k ≥ 1, then

place a in FIRST (X) if for some i , a is in FIRST (Yj), and ε is in all of
FIRST (Y1) · · ·FIRST (Yj−1). If ε is in FIRST (Yj) for all j = 1, 2, . . . , k then add ε
to FIRST (X). If Y1 does not derive ε, then we add nothing more to FIRST (X),
but if Y1 →∗ ε, then we add FIRST (Y2), and so on.

3 if X → ε is a production, then add ε to FIRST (X)

It is then possible to compute FIRST for any string X1X2 · · ·Xk

(Formal Languages and Compilers) 3. Syntax Analysis CS@UNICAM 27 / 70

Syntax Analysis: solutions Top-Down parsing

FIRST and FOLLOW sets

FOLLOW

To compute FOLLOW (A) for all non terminals A, apply the following rules until nothing
can be added to any FOLLOW set

1 Place $ in FOLLOW (S), where S is the start symbol, and $ is the input right
endmarker.

2 if there is a production A→ αBβ, then everything in FIRST (β) except ε is in
FOLLOW (B)

3 if there is a production A→ αB, or a production A→ αBβ, where FIRST (β)
contains ε, then everything in FOLLOW (A) is in FOLLOW (B)

(Formal Languages and Compilers) 3. Syntax Analysis CS@UNICAM 28 / 70

Syntax Analysis: solutions Top-Down parsing

FIRST and FOLLOW sets

Derive FIRST , FOLLOW , nullable sets for the expression grammar
Now consider the following grammar:

E → TE ′ E ′ → +TE ′|ε T → FT ′ T ′ → ∗FT ′|ε F → (E)|id

(Formal Languages and Compilers) 3. Syntax Analysis CS@UNICAM 29 / 70

Syntax Analysis: solutions Top-Down parsing

LL(1) Grammars

LL(k)
Predictive parsing that does not need backtracking. L stands for
Left-to-right second L stands for Leftmost and K indicates the
maximum number of symbol to lookahead before taking a decision

Most programming constructs can be expressed using an LL(1)
grammar. A grammar G is LL(1) iff whenever A→ α|β are two distinct
productions of G, the following conditions hold:

1 for no terminal a do both α and β derive strings beginning with a
2 At most one of α and β can derive the empty string
3 if β →∗ ε, then α does not derive any string belonging with a

terminal in FOLLOW (A). Likewise if α→∗ ε, then β does not
derive any string belonging with a terminal in FOLLOW (A)

(Formal Languages and Compilers) 3. Syntax Analysis CS@UNICAM 30 / 70

Syntax Analysis: solutions Top-Down parsing

LL(1) Grammars

LL(k)
Predictive parsing that does not need backtracking. L stands for
Left-to-right second L stands for Leftmost and K indicates the
maximum number of symbol to lookahead before taking a decision

Most programming constructs can be expressed using an LL(1)
grammar. A grammar G is LL(1) iff whenever A→ α|β are two distinct
productions of G, the following conditions hold:

1 for no terminal a do both α and β derive strings beginning with a
2 At most one of α and β can derive the empty string
3 if β →∗ ε, then α does not derive any string belonging with a

terminal in FOLLOW (A). Likewise if α→∗ ε, then β does not
derive any string belonging with a terminal in FOLLOW (A)

(Formal Languages and Compilers) 3. Syntax Analysis CS@UNICAM 30 / 70

Syntax Analysis: solutions Top-Down parsing

LL(1) - Parsing table
The parsing table is a two dimension array in which rows a nonterminal symbols and
columns are terminal symbols. In each cell a production is then stored (determinism).

Construction of the Parsing Table

Input: Grammar G = 〈VT ,VN ,S,P〉
Output: Parsing table M
for all A→ α ∈ P do

for all a ∈ FIRST (A) do
add A→ α to M[A,a]

end for
if ε ∈ FIRST (α) then

for all b ∈ FOLLOW (A) do
add A→ α to M[A,b]

end for
if ε ∈ FIRST (α) ∧ $ ∈ FOLLOW (A) then

add A→ α to M[A,$]
end if

end if
end for

(Formal Languages and Compilers) 3. Syntax Analysis CS@UNICAM 31 / 70

Syntax Analysis: solutions Top-Down parsing

FIRST and FOLLOW sets

Derive the parsing table for the expresion grammar:

E → TE ′ E ′ → +TE ′|ε T → FT ′ T ′ → ∗FT ′|ε F → (E)|id
FIRST FOLLOW Null.

E (, id), $
E ′ +),$ yes
T (, id +,), $
T ′ ∗ +,), $ yes
F (, id ∗,+,), $

(Formal Languages and Compilers) 3. Syntax Analysis CS@UNICAM 32 / 70

Syntax Analysis: solutions Top-Down parsing

Parsing table

Derive FIRST , FOLLOW , nullable sets and parsing table for the following grammar:

S → iEtSS′|a S′ → eS|ε E → b

Pasing table:

a b e i t $

S S → a S → iEtSS′

S′ S′ → ε S′ → ε
S′ → eS

E E → b

(Formal Languages and Compilers) 3. Syntax Analysis CS@UNICAM 33 / 70

Syntax Analysis: solutions Top-Down parsing

Parsing table

Derive FIRST , FOLLOW , nullable sets and parsing table for the following grammar:

S → iEtSS′|a S′ → eS|ε E → b

Pasing table:

a b e i t $

S S → a S → iEtSS′

S′ S′ → ε S′ → ε
S′ → eS

E E → b

(Formal Languages and Compilers) 3. Syntax Analysis CS@UNICAM 33 / 70

Syntax Analysis: solutions Top-Down parsing

Non-recursive predictive parsing

Table-driven predictive parsing
Input: A string w and a parsing table M for grammar G
Output: if w is in L (G), a leftmost derivation of w , otherwise an error indication
set ip to pint to the first symbol of w ;
set X to the top stack symbol;
while (X 6= $) do

if (X is a) then pop the stack and advnce ip;
else if (X is a terminal) then error();
else if (M[X ,a] is an error entry) then error();
else if (M[X ,a] = X → Y1Y2 · · ·Yk) then c

output the production X → Y1Y2 · · ·Yk ;
pop the stack;
push Yk Yk−1 · · ·Y1 onto the stack, with Y1 on top;

end if
Set X to the top stack symbol;

end while

(Formal Languages and Compilers) 3. Syntax Analysis CS@UNICAM 34 / 70

Syntax Analysis: solutions Top-Down parsing

LL(1) parser moves (1/2)

MATCHED STACK INPUT ACTION
E$ id + id ∗ id$

(Formal Languages and Compilers) 3. Syntax Analysis CS@UNICAM 35 / 70

Syntax Analysis: solutions Top-Down parsing

LL(1) parser moves (2/2)

MATCHED STACK INPUT ACTION
S$ ibtibtaea$

(Formal Languages and Compilers) 3. Syntax Analysis CS@UNICAM 36 / 70

Syntax Analysis: solutions Top-Down parsing

Error Recovery in Predictive Parsing

Error detection

An error is detected during predictive parsing when the terminal on top of the stack
does not match the next input symbol or when nonterminal A is on top of the stack, a
is the next input symbol, and M[A,a] is ERROR.

(Formal Languages and Compilers) 3. Syntax Analysis CS@UNICAM 37 / 70

Syntax Analysis: solutions Top-Down parsing

Error Recovery in Predictive Parsing

Error detection

An error is detected during predictive parsing when the terminal on top of the stack
does not match the next input symbol or when nonterminal A is on top of the stack, a
is the next input symbol, and M[A,a] is ERROR.

Panic Mode

Based on the idea of skipping symbols on the input until a token in a synchronizing set
appears. Strategies:

I place all symbols in FOLLOW (A) into the synchronizing set for nonterminal A.
I symbols starting higher level constructs
I use of ε-productions to change the symbol in the stack
I just pop the symbol in the stack and send alert

(Formal Languages and Compilers) 3. Syntax Analysis CS@UNICAM 37 / 70

Syntax Analysis: solutions Top-Down parsing

Error Recovery in Predictive Parsing

Error detection

An error is detected during predictive parsing when the terminal on top of the stack
does not match the next input symbol or when nonterminal A is on top of the stack, a
is the next input symbol, and M[A,a] is ERROR.

Phrase-level recovery

Fill the blank entries in the predictive parsing table with entries to recovery routines.

(Formal Languages and Compilers) 3. Syntax Analysis CS@UNICAM 37 / 70

Syntax Analysis: solutions Bottom-Up Parsing

ToC

1 Syntax Analysis: the problem

2 Theoretical Background

3 Syntax Analysis: solutions
Top-Down parsing
Bottom-Up Parsing

(Formal Languages and Compilers) 3. Syntax Analysis CS@UNICAM 38 / 70

Syntax Analysis: solutions Bottom-Up Parsing

Bottom-up Parsing

Bottom-up Parsing
The problem of Bottom-up parsing can be viewed as the problem of
constructing a parse tree for an input string beginning at the leaves
and working up towards the root.
In particular we will consider the problem of finding the right-most
derivation given an input string, through a series of reductions to reach
the initial symbol

Let’s consider the input string id ∗ id using the simple grammar for
expressions

(Formal Languages and Compilers) 3. Syntax Analysis CS@UNICAM 39 / 70

Syntax Analysis: solutions Bottom-Up Parsing

Bottom-up Parsing

Bottom-up Parsing
The problem of Bottom-up parsing can be viewed as the problem of
constructing a parse tree for an input string beginning at the leaves
and working up towards the root.
In particular we will consider the problem of finding the right-most
derivation given an input string, through a series of reductions to reach
the initial symbol

Let’s consider the input string id ∗ id using the simple grammar for
expressions

(Formal Languages and Compilers) 3. Syntax Analysis CS@UNICAM 39 / 70

Syntax Analysis: solutions Bottom-Up Parsing

Tools for Bottom-up Parsing

Reductions
In a bottom-up parser at each step a reduction is applied. A certain
string is reduced to the non terminal applying in reverse a production.
The key decision is when to reduce!

Handle Pruning
A handle is a substring that matches the body of a production, and
whose reduction represents a step in, along the reverse of a rightmost
derivation.

Consider the grammar S → 0S1|01 and the two sentential forms
000111,00S11

(Formal Languages and Compilers) 3. Syntax Analysis CS@UNICAM 40 / 70

Syntax Analysis: solutions Bottom-Up Parsing

Tools for Bottom-up Parsing

Reductions
In a bottom-up parser at each step a reduction is applied. A certain
string is reduced to the non terminal applying in reverse a production.
The key decision is when to reduce!

Handle Pruning
A handle is a substring that matches the body of a production, and
whose reduction represents a step in, along the reverse of a rightmost
derivation.

Consider the grammar S → 0S1|01 and the two sentential forms
000111,00S11

(Formal Languages and Compilers) 3. Syntax Analysis CS@UNICAM 40 / 70

Syntax Analysis: solutions Bottom-Up Parsing

Limitations of LL(1) parsing and shift reduce parsing

Consider the grammar S → 0S1|01 and the word 000111

(Formal Languages and Compilers) 3. Syntax Analysis CS@UNICAM 41 / 70

Syntax Analysis: solutions Bottom-Up Parsing

Shift-reduce parsing

Shift-reduce parsing

A shift-reduce parser is a particular kind of bottom-up parser in which a stack holds
grammar symbols and an input buffer holds the rest of the string to be parsed. Four
possible actions are possible:

I shift
I reduce
I accept
I error

Conflicts

I shift/reduce
I reduce/reduce

(Formal Languages and Compilers) 3. Syntax Analysis CS@UNICAM 42 / 70

Syntax Analysis: solutions Bottom-Up Parsing

Shift-reduce parsing

Shift-reduce parsing

A shift-reduce parser is a particular kind of bottom-up parser in which a stack holds
grammar symbols and an input buffer holds the rest of the string to be parsed. Four
possible actions are possible:

I shift
I reduce
I accept
I error

Conflicts

I shift/reduce
I reduce/reduce

(Formal Languages and Compilers) 3. Syntax Analysis CS@UNICAM 42 / 70

Syntax Analysis: solutions Bottom-Up Parsing

Shift-reduce parsing

Consider the grammar S → SS + |SS ∗ |a and the following sentential forms:
SSS + a ∗+, SS + a ∗ a+, aaa ∗ a + +

(Formal Languages and Compilers) 3. Syntax Analysis CS@UNICAM 43 / 70

Syntax Analysis: solutions Bottom-Up Parsing

LR Parsing

LR Parsers
LR parsers show interesting good properties:

I all programming languages admit a grammar that can be parsed
by an LR parser

I most general non-backtracking shift-reduce parser
I syntactic errors can be detected as soon as it is possible to do so

on a left-to right scan of the input
I the class of grammars that can be parsed by an LR is a proper

superset of that parsable with a predictive parsing strategy

(Formal Languages and Compilers) 3. Syntax Analysis CS@UNICAM 44 / 70

Syntax Analysis: solutions Bottom-Up Parsing

Items and LR(0) Automaton

Item
An Item is a production in which a dot has been added in the body.
Intuitively indicates how much of a production we have seen during
parsing.
One collection of sets of LR(0) items, called the canonical LR(0)
collection, provides the basis for constructing a DFA that is used to
make decisions.
The construction of the canonical LR(0) is based on two functions
CLOSURE and GOTO

(Formal Languages and Compilers) 3. Syntax Analysis CS@UNICAM 45 / 70

Syntax Analysis: solutions Bottom-Up Parsing

CLOSURE

If I is a set of items for a grammr G, then CLOSURE(I) is the set of items
constructed from I by the two rules:

1 Initially, add every item in I to CLOSURE(I)
2 if A→ α · Bβ is in CLOSURE(I) and B → γ is a production, then

add the item B → ·γ to CLOSURE(I), if is not already there. Apply
this rule until no more items can be added to CLOSURE(I)

(Formal Languages and Compilers) 3. Syntax Analysis CS@UNICAM 46 / 70

Syntax Analysis: solutions Bottom-Up Parsing

CLOSURE

Consider the expression grammar:
E ′ → E E → E + T |T T → T ∗ F |F F → (E)|id
Compute the closure of the item E ′ → ·E

(Formal Languages and Compilers) 3. Syntax Analysis CS@UNICAM 47 / 70

Syntax Analysis: solutions Bottom-Up Parsing

GOTO

GOTO(I,X)
GOTO(I,X) is defined to be the closure of the set of all items
[A→ αX · β] such that [A→ α · Xβ] is in I.

I Intuitively the GOTO function is used to define the transition of the LR(0)
automaton for a grammar. The states of the automaton correspond to sets of
items, and GOTO(I,X) specifies the transition from the state for I under input X

(Formal Languages and Compilers) 3. Syntax Analysis CS@UNICAM 48 / 70

Syntax Analysis: solutions Bottom-Up Parsing

Build the LR(0) automaton

Build the LR(0)automaton for the expression grammar:
E ′ → E E → E + T |T T → T ∗ F |F F → (E)|id

(Formal Languages and Compilers) 3. Syntax Analysis CS@UNICAM 49 / 70

Syntax Analysis: solutions Bottom-Up Parsing

Use of the LR(0) automaton

The LR(0) automaton can be used for deriving a parsing table, which has a number of
states equal to the states of the LR(0) automaton and the actions are dependent from
the action of the automaton itself. The parsing table will have two different sections,
one named ACTION and the other GOTO:

Parsing table

1 The ACTION table has a row for each state of the LR(0) automaton and a column
for each terminal symbol. The value of ACTION[i ,a] can have one of for forms:

1 Shift j where j is a state (generally abbreviated as Sj).
2 Reduce A→ β. The action of the parser reduces β to A in the stack

(generally abbreviated as R(A→ β))
3 Accept
4 Error

2 The GOTO table has a row for each state of the LR(0) automaton and a column
for each nonterminal. The value of GOTO[Ii ,A] = Ij if the GOTO function maps
set of items accordingly on the LR(0) automaton

(Formal Languages and Compilers) 3. Syntax Analysis CS@UNICAM 50 / 70

Syntax Analysis: solutions Bottom-Up Parsing

LR(0) table construction

LR(0) table

The LR(0) table is built according to the following rules, where “i” is the considered
state and “a” a symbol in the input alphabet:

1 ACTION[i ,a]← shift j
if [A→ α · aβ] is in state i and GOTO(i ,a) = j – (generally represented as Sj)

2 ACTION[i ,∗]← reduce(A→ β)
if state i includes the item (A→ β·) – (generally represented as R(A→ β))

3 ACTION[i ,∗]← accept
if the state includes the item S′ → S·

4 ACTION[i ,∗]← error
in all the other situations

(Formal Languages and Compilers) 3. Syntax Analysis CS@UNICAM 51 / 70

Syntax Analysis: solutions Bottom-Up Parsing

LR(0) table construction

Consider the following grammars and sentences:
S → CC C → cC|d sentence: “ccd” and “ddd”

(Formal Languages and Compilers) 3. Syntax Analysis CS@UNICAM 52 / 70

Syntax Analysis: solutions Bottom-Up Parsing

LR(0) table construction

Consider the following grammars and sentences:
S → aS|Ba B → Ba|b sentence: “aaba”

(Formal Languages and Compilers) 3. Syntax Analysis CS@UNICAM 53 / 70

Syntax Analysis: solutions Bottom-Up Parsing

Use of the LR(0) automaton

Consider the string id*id and parse it

STACK SYMBOLS INPUT ACTION
0 $ id*id$ · · ·

(Formal Languages and Compilers) 3. Syntax Analysis CS@UNICAM 54 / 70

Syntax Analysis: solutions Bottom-Up Parsing

LR Parsing algorithm

General LR parsing program
The initial state of the parser is s0 for the state and w (the whole string) on the input
buffer.

Let a be the first symbol of w$;
while true do

let s be the state on top of the stack;
if (ACTION[s,a] = shift t) then

push t onto the stack;
let a be the next input symbol;

else if (ACTION[s,a] = reduce A→ β) then
pop |β| off the stack;
let state t now be on top of the stack;
push GOTO[t ,A] onto the stack;
output the production A→ β;

else if (ACTION[s,a] = accept) then break;
else call error-recovery routine;
end if

end while

(Formal Languages and Compilers) 3. Syntax Analysis CS@UNICAM 55 / 70

Syntax Analysis: solutions Bottom-Up Parsing

SLR table construction

SLR(1) table

The LR(0) table is built according to the following rules, where “i” is the considered
state and “a” a symbol in the input alphabet:

1 ACTION[i ,a]← shift j
if [A→ α · aβ] is in state i and GOTO(i ,a) = j

2 ACTION[i ,a]← reduce(A→ β)
forall a in FOLLOW(A) and if state i includes the item (A→ β·)

3 ACTION[i ,$]← accept
if the state includes the item S′ → S·

4 ACTION[i ,∗]← error
in all the other situations

(Formal Languages and Compilers) 3. Syntax Analysis CS@UNICAM 56 / 70

Syntax Analysis: solutions Bottom-Up Parsing

SLR table construction

Consider the following grammars and sentences:
S → aS|Ba B → Ba|b sentence: “aaba”

(Formal Languages and Compilers) 3. Syntax Analysis CS@UNICAM 57 / 70

Syntax Analysis: solutions Bottom-Up Parsing

LR(0) vs. SLR parsing

Consider the usual expression grammar:
E ′ → E E → E + T |T T → T ∗ F |F F → (E)|id
build LR(0) and SLR tables for the grammar, and then parse the sentence:

id∗id+id

(Formal Languages and Compilers) 3. Syntax Analysis CS@UNICAM 58 / 70

Syntax Analysis: solutions Bottom-Up Parsing

http://smlweb.cpsc.ucalgary.ca/start.html

(Formal Languages and Compilers) 3. Syntax Analysis CS@UNICAM 59 / 70

http://smlweb.cpsc.ucalgary.ca/start.html

Syntax Analysis: solutions Bottom-Up Parsing

LL(1) vs. SLR(1)

Consider the following grammars:
I S → AaAb|BbBa A→ ε B → ε

I S → SA|A A→ a

Build parsing tables for LL(1) and SLR(1)

(Formal Languages and Compilers) 3. Syntax Analysis CS@UNICAM 60 / 70

Syntax Analysis: solutions Bottom-Up Parsing

Towards more powerful parsers

Consider the following grammar and derive the SLR parsing table:
S → L = R|R L→ ∗R|id R → L

(Formal Languages and Compilers) 3. Syntax Analysis CS@UNICAM 61 / 70

Syntax Analysis: solutions Bottom-Up Parsing

Towards more powerful parsers

Viable prefix
A Viable prefix is a prefix of a right-sentential form that can appear on
the stack of a shift-reduce parser.
We say item A→ β1 · β2 is valid for a viable prefix αβ1 if there is a
derivation S ⇒∗ αAw ⇒ αβ1β2w .

(Formal Languages and Compilers) 3. Syntax Analysis CS@UNICAM 62 / 70

Syntax Analysis: solutions Bottom-Up Parsing

LR parsers with lookahead

In order to enlarge the class of grammars that can be parsed we need
to consider more powerful parsing strategies. In particular we will
study:

I LR(1) parsers
I LALR parsers

(Formal Languages and Compilers) 3. Syntax Analysis CS@UNICAM 63 / 70

Syntax Analysis: solutions Bottom-Up Parsing

LR(1) items

LR(1) items structure
The very general idea is to encapsulate more information in the items
of an automaton to decide when to reduce. The solution is to
differentiate items on the base of lookaheads. As a result a general
item follows now the template [A→ α · β,a]

LR(1) items and reductions
Given the new form on an item, the parser will call for a reduction
A→ α only for item sets including the item [A→ α·,a] and only for
symbol a

(Formal Languages and Compilers) 3. Syntax Analysis CS@UNICAM 64 / 70

Syntax Analysis: solutions Bottom-Up Parsing

LR(1) CLOSURE and GOTO functions

Closure of an item
If [A→ α · Bβ,a] is in I then for each production B → γ and for each
terminal b in FIRST(βa) add the item [B → ·γ,b]

GOTO(I,X)
Let J initially empty. For each item [A→ α · Xβ,a] in I add item
[A→ αX · β,a] to set J. Then compute CLOSURE(J)

Consider the starting item as the closure of the item [S′ → S, $].

Exercise
Compute the LR(1) item sets for the following grammar:
S → CC C → cC|d

(Formal Languages and Compilers) 3. Syntax Analysis CS@UNICAM 65 / 70

Syntax Analysis: solutions Bottom-Up Parsing

LR(1) parsing table

How to build the LR(1) parsing table
1 build the collection of sets of LR(1) items for the grammar
2 Parsing actions for state i are:

1 if [A→ α · aβ,b] is in Ii and GOTO(Ii ,a)= Ij then set ACTION[i ,a] to
shift J.

2 if [A→ α·,a] is in Ii A 6= S′ then set ACTION[i ,a] to reduce(A→ α)
3 if [S′ → S·, $] is in Ii then set ACTION[i , $] to accept

3 if GOTO(Ii ,A)= Ij then GOTO[i ,A]= j
4 All entries not defined so far are mare "error"
5 The initial state of the parse is the one constructed from the set of

items containing [S′ → ·S, $]

Consider the following grammar and derive the LR(1) parsing table:
S → L = R|R L→ ∗R|id R → L

(Formal Languages and Compilers) 3. Syntax Analysis CS@UNICAM 66 / 70

Syntax Analysis: solutions Bottom-Up Parsing

LR(1) parsing

Consider the following grammar and discuss applicability of LR(1)
parsing:
S → aSa | a

Which is the language generated?
Propose an alternative grammar parsable using an LR(1) parser

(Formal Languages and Compilers) 3. Syntax Analysis CS@UNICAM 67 / 70

Syntax Analysis: solutions Bottom-Up Parsing

LR(1) parsing

Consider the following grammar and discuss applicability of LR(1)
parsing:
S → aSa | a

Which is the language generated?
Propose an alternative grammar parsable using an LR(1) parser

(Formal Languages and Compilers) 3. Syntax Analysis CS@UNICAM 67 / 70

Syntax Analysis: solutions Bottom-Up Parsing

LALR parsing

I LR(1) for a real language a SLR parser has several hundred
states. For the same language an LR(1) parser has several
thousand states

I Can we produce a parser with power similar to LR(1) and table
dimension similar to SLR?

(Formal Languages and Compilers) 3. Syntax Analysis CS@UNICAM 68 / 70

Syntax Analysis: solutions Bottom-Up Parsing

LALR parsing
Let’s consider the LR(1) automaton for the grammar
S → CC C → cC|d

LALR table can be built from LR(1) automaton merging “similar” item sets.

(Formal Languages and Compilers) 3. Syntax Analysis CS@UNICAM 69 / 70

Syntax Analysis: solutions Bottom-Up Parsing

LALR parsing
Let’s consider the LR(1) automaton for the grammar
S → CC C → cC|d

LALR table can be built from LR(1) automaton merging “similar” item sets.

(Formal Languages and Compilers) 3. Syntax Analysis CS@UNICAM 69 / 70

Syntax Analysis: solutions Bottom-Up Parsing

Exercises

Consider the grammar:
S → Aa|bAc|dc|bda A→ d
show that is LALR(1) but not SLR(1)

Consider the grammar:
S → Aa|bAc|Bc|bBa A→ d B → d
show that is LR(1) but not LALR(1)

(Formal Languages and Compilers) 3. Syntax Analysis CS@UNICAM 70 / 70

Syntax Analysis: solutions Bottom-Up Parsing

Exercises

Consider the grammar:
S → Aa|bAc|dc|bda A→ d
show that is LALR(1) but not SLR(1)

Consider the grammar:
S → Aa|bAc|Bc|bBa A→ d B → d
show that is LR(1) but not LALR(1)

(Formal Languages and Compilers) 3. Syntax Analysis CS@UNICAM 70 / 70

	Syntax Analysis: the problem
	Theoretical Background
	Syntax Analysis: solutions
	Top-Down parsing
	Bottom-Up Parsing

