
4. Semantic Analysis I
Syntax Directed Definitions – Syntax Directed Translation Schemes

Andrea Polini, Luca Tesei

Formal Languages and Compilers
MSc in Computer Science

University of Camerino

(Formal Languages and Compilers) 4. Semantic Analysis I CS@UNICAM 1 / 32

Semantic Analysis: the problem

ToC

1 Semantic Analysis: the problem

2 Syntax Directed Definitions

3 Syntax Directed Translation Schemes

(Formal Languages and Compilers) 4. Semantic Analysis I CS@UNICAM 2 / 32

Semantic Analysis: the problem

Where we are?

So far we were able to check:
the program includes correct “words”
“words” are combined in correct “sentences”

What’s next?

I We would like to perform additional checks to increase guarantees
of correctness

I We would like to transform the program from the source language
into the target one, and according to precisely defined semantic
rules

(Formal Languages and Compilers) 4. Semantic Analysis I CS@UNICAM 3 / 32

Semantic Analysis: the problem

Where we are?

So far we were able to check:
the program includes correct “words”
“words” are combined in correct “sentences”

What’s next?

I We would like to perform additional checks to increase guarantees
of correctness

I We would like to transform the program from the source language
into the target one, and according to precisely defined semantic
rules

(Formal Languages and Compilers) 4. Semantic Analysis I CS@UNICAM 3 / 32

Semantic Analysis: the problem

Where we are?

So far we were able to check:
the program includes correct “words”
“words” are combined in correct “sentences”

What’s next?

I We would like to perform additional checks to increase guarantees
of correctness

I We would like to transform the program from the source language
into the target one, and according to precisely defined semantic
rules

(Formal Languages and Compilers) 4. Semantic Analysis I CS@UNICAM 3 / 32

Semantic Analysis: the problem

Additional checks

Additional Checks

There are many additional checks that can be performed to increase
correctness of code:

I Coherent usage of variables
definition-usage
type

I Existence of unreacheable code blocks
I . . .

Semantic Analysis

In semantic analysis context sensitive analysis are performed without
resurrecting to Context Sensitive grammar definitions. Here we focus
on mechanisms for type checking and generation of intermediate code

(Formal Languages and Compilers) 4. Semantic Analysis I CS@UNICAM 4 / 32

Semantic Analysis: the problem

Semantic analysis

(Formal Languages and Compilers) 4. Semantic Analysis I CS@UNICAM 5 / 32

Syntax Directed Definitions

ToC

1 Semantic Analysis: the problem

2 Syntax Directed Definitions

3 Syntax Directed Translation Schemes

(Formal Languages and Compilers) 4. Semantic Analysis I CS@UNICAM 6 / 32

Syntax Directed Definitions

Syntax Directed Definitions

Attributes

Attributes are used to associate characteristics and store values
associated to grammar symbols.
A syntax directed definition provides the semantic rules to permit the
definition of the values for the attributes

PRODUCTION SEMANTIC RULE
E ! E1 + T E .code = E1.code||T .code||0+0

I attributes are associated to grammar symbols and can be of any
kind

I rules are associated to productions

(Formal Languages and Compilers) 4. Semantic Analysis I CS@UNICAM 7 / 32

Syntax Directed Definitions

Attributes

An SDD can be defined using two different kinds of attributes:
I Synthesized attributes: a synthesized attributes at node N is

defined only in terms of attribute values at the children of N and at
N itself

I Inherited attributes: an inherited attribute at node N is defined only
in terms of attribute values at N ’s parent, N itself, and N ’s siblings

(Formal Languages and Compilers) 4. Semantic Analysis I CS@UNICAM 8 / 32

Syntax Directed Definitions

Attributes
Example

Consider the usual grammar and let’s define a set of “reasonable”
semantic rules:
L ! E E ! E + T E ! T T ! T ⇤ F T ! F F ! (E) F ! id

(Formal Languages and Compilers) 4. Semantic Analysis I CS@UNICAM 9 / 32

Syntax Directed Definitions

SDD and parse trees

An SDD with only synthesized attributes is called S-attributed

It is generally useful to represent attributes within parse trees. A parse
tree showing the values of attributes is referred as an annotated parse
tree

Order of evaluation for attributes

The order of evaluation of attributes should reflect the defined parsing
strategy. In any case semantic rules impose an order of evalution that
in case, inherited and synthetized attributes are present at the same
time, is not guaranteed to exist.

Let’s consider the expression “(3+4)*(5+6)” and let’s derive its
annotated parse tree from the semantic rules defined before

(Formal Languages and Compilers) 4. Semantic Analysis I CS@UNICAM 10 / 32

Syntax Directed Definitions

Inherited attributes example

Let’s consider the non left recursive and factored grammar for
expressions:
E ! TE 0 E 0 ! +TE 0|✏ T ! FT 0 T 0 ! ⇤FT 0|✏ F ! (E)|id
define an SDD using as reference the parse tree for the sentence
“3 + 5 ⇤ 6”

(Formal Languages and Compilers) 4. Semantic Analysis I CS@UNICAM 11 / 32

Syntax Directed Definitions

Evaluation Orders for SDD’s

Dependency Graphs

A dependency graph represents the flow of information among the
attribute instances in a particular parse tree.

I each attribute for a grammar symbol constitute a node in the graph
I syntesized attributes
I inherited attributes

Let’s identify the dependency graph for the parse tree defined before,
and let’s compute the value of the various attributes

(Formal Languages and Compilers) 4. Semantic Analysis I CS@UNICAM 12 / 32

Syntax Directed Definitions

SDD with acyclic topological sort

S-attributed

If every attribute is synthesized the SDD is said S-attributed, in such a
case an LR parser could even avoid the explicit derivation of the parse
tree

L-attributed

Each attribute in the SDD satisfies one of the following conditions:
I it is synthesized
I it is inherited but it depends only from attributes on siblings on the

left or inherited attributes associated to the parent symbol
I it is inherited or synthesized from attributes from the same symbol

in a way that cycle are not generated

(Formal Languages and Compilers) 4. Semantic Analysis I CS@UNICAM 13 / 32

Syntax Directed Definitions

Semantic rules with controlled side effects

Side effects

A side effect consists of program fragment contained with semantic
rules. It is necessary to control side effects is SDD in two possible
ways:

I Permit incidental side effects
I Constraint admissible evaluation orders so to have the same

translation with any admissible order.

Why to use them?

I to associate actions to carry on with specific steps of the compiler
I to print messages for the user useful during compilation
I to check correctness related aspects (e.g. types)

(Formal Languages and Compilers) 4. Semantic Analysis I CS@UNICAM 14 / 32

Syntax Directed Definitions

Semantic rules with controlled side effects

Side effects

A side effect consists of program fragment contained with semantic
rules. It is necessary to control side effects is SDD in two possible
ways:

I Permit incidental side effects
I Constraint admissible evaluation orders so to have the same

translation with any admissible order.

Why to use them?

I to associate actions to carry on with specific steps of the compiler
I to print messages for the user useful during compilation
I to check correctness related aspects (e.g. types)

(Formal Languages and Compilers) 4. Semantic Analysis I CS@UNICAM 14 / 32

	Semantic Analysis: the problem
	Syntax Directed Definitions
	Syntax Directed Translation Schemes

