
Syntax Directed Definitions

Semantic Rules with side effects
Example

Let’s consider the following grammar:
D ! TL; T ! int|float L ! L1, id|id
Let’s add sematic rules to successively permit type checking

(Formal Languages and Compilers) 4. Semantic Analysis I CS@UNICAM 15 / 33

Syntax Directed Definitions

Semantic Rules with side effects
Exercise

Let’s consider the following grammar that generates binary numbers
with a decimal point:
S ! L.L|L L ! LB|B B ! 0|1
Design an L-attributed and an S-attributed SDD to make the translation
in decimal numbers

(Formal Languages and Compilers) 4. Semantic Analysis I CS@UNICAM 16 / 33

Syntax Directed Definitions

Abstract Syntax Tree

Abstract Syntax Tree

Abstract Syntax Tree (AST), or just syntax tree, is a tree representation of the abstract
syntactic structure of source code written in a programming language. Each node of
the tree denotes a construct occurring in the source code. The syntax is “abstract” in
not representing every detail appearing in the real syntax. For instance, grouping
parentheses are implicit in the tree structure, and a syntactic construct like an
if-condition-then expression may be denoted by means of a single node with three
branches.
Syntax trees are useful for translation purpose making the phase much easier.

Let’s consider the sentence (a + b) ⇤ 5 over the grammar:
E ! TE 0 E 0 ! +TE 0|✏ T ! FT 0 T 0 ! ⇤FT 0|✏ F ! (E)|id|num

Let’s build the parse tree and the AST

(Formal Languages and Compilers) 4. Semantic Analysis I CS@UNICAM 17 / 33

Syntax Directed Definitions

Using SDT to build AST

To build a syntax tree two different kind of nodes need to be created, the leaves
(Leaf (op, val)) and the internal nodes (Node(op, c1, . . . , cn)). In the following consider
the sentence a � 4 + c.

1 Let’s built an SDD with actions permitting to derive the syntax tree for
expressions grammar in the form suitable for LR parsing.
E ! E1 + T , E ! E1 � T , E ! T , T ! (E), T ! id, T ! num

2 Let’s repeat the exercise for an expression grammar parsable by LL parsers.
E ! TE 0, E 0 ! +TE 0

1, E 0 ! �TE 0
1, E 0 ! ✏, T ! (E), T ! id, T ! num

Towards type checking

Let’s now consider the case of a grammar for type definition:
T ! BC, B ! int, B ! float, C ! [num]C, C ! ✏
Define sematics rules to assign a type to an expression and try it on the sentence:

int[2][3]

(Formal Languages and Compilers) 4. Semantic Analysis I CS@UNICAM 18 / 33

	Semantic Analysis: the problem
	Syntax Directed Definitions
	Syntax Directed Translation Schemes

