
Syntax Directed Translation Schemes

ToC

1 Semantic Analysis: the problem

2 Syntax Directed Definitions

3 Syntax Directed Translation Schemes

(Formal Languages and Compilers) 4. Semantic Analysis I CS@UNICAM 19 / 34

Syntax Directed Translation Schemes

Syntax Directed Translation

Syntax Directed Translation

A Syntax Directed Translation scheme permits to embed program
fragments, called semantic actions, within production bodies. An SDT
is a context-free grammar with program fragments embedded within
production bodies.

SDTs are an alternative approach to SDDs
an STD is like an SDD except that the order of evaluation of the
semantic rules is explicitly specified
program fragments embedded within productions in curly braces
are called semantic actions:

rest ! + term {print(0+0)} rest1

(Formal Languages and Compilers) 4. Semantic Analysis I CS@UNICAM 20 / 34

Syntax Directed Translation Schemes

Syntax Directed Translation

Construction

Any SDT can be implemented by first building a parse tree and then
performing the actions in a left-to-right depth-first order.

However, SDT are typically implemented during parsing without the
need to build a parse tree:

introduce distinct marker nonterminals Mi in place of each
embedded action;
each marker has only one production Mi ! ✏.
If the grammar with marker nonterminals can be parsed by a given
method, then the SDT can be implemented during parsing

(Formal Languages and Compilers) 4. Semantic Analysis I CS@UNICAM 21 / 34

Syntax Directed Translation Schemes

Syntax Directed Translation

STDs can be easily used to implement two important classes of SDDs:

grammar LR-parsable and SDD S-attributed
grammar LL-parsable and SDD L-attributed

In both cases the semantic rules of the SDD can be converted into an
STD with actions that are executed at the right time.

During parsing an action in a production body is executed as soon as
all the grammar symbols to the left of the action have been matched.

(Formal Languages and Compilers) 4. Semantic Analysis I CS@UNICAM 22 / 34

Syntax Directed Translation Schemes

Postfix translation schemes

Simplest situation: bottom-up parsing with S-attributed SSD. In that
case all the actions in the SDT are placed at the and of the production
bodies. (Postfix SDT)

implementation

Postfix SDT are easy to implement with additional attributes for the
stack cell. In particular it is useful to associate to each non-terminal on
the stack the values assumed by the corresponding attributes.

(Formal Languages and Compilers) 4. Semantic Analysis I CS@UNICAM 23 / 34

Syntax Directed Translation Schemes

Postfix translation schemes

For instance if you have a production like A ! XYZ with a postfix SDT
you will apply the actions in the SDT just before reducing XYZ to A.
Stack elements will be complex or include pointers to complex data
structures.

(Formal Languages and Compilers) 4. Semantic Analysis I CS@UNICAM 24 / 34

Syntax Directed Translation Schemes

SDT with actions inside productions

Consider the production B ! X{a}Y . When do we perform the action
inside the production?

if the parse is bottom-up then we perform the action ’a’ as soon as
this occurrence of X appears on top of the parsing stack
if the parse is top-down we perform ’a’ just before we attempt to
expand the occurrence of Y (non terminal) or check for Y on input
(terminal)

Imagine each SDT fragment as a distinct non-terminal M with the only
production M ! ✏

(Formal Languages and Compilers) 4. Semantic Analysis I CS@UNICAM 25 / 34

Syntax Directed Translation Schemes

Implementing SDT

Not all SDT can be implemented during parsing

General implementation rules

Any SDT can be implemented as follows:
I Ignore the actions and parse the input to produce a parse tree
I Examine each interior node, say a production A ! ↵. Add

additional children to N for the actions in ↵, so the children of N
from left to right have exactly the symbols and actions of ↵

I Perform a preorder traversal of the tree, and as soon as a node
labeled by actions is visited, perform that action

(Formal Languages and Compilers) 4. Semantic Analysis I CS@UNICAM 26 / 34

Syntax Directed Translation Schemes

Implementing SDT

Not all SDT can be implemented during parsing

General implementation rules

Any SDT can be implemented as follows:
I Ignore the actions and parse the input to produce a parse tree
I Examine each interior node, say a production A ! ↵. Add

additional children to N for the actions in ↵, so the children of N
from left to right have exactly the symbols and actions of ↵

I Perform a preorder traversal of the tree, and as soon as a node
labeled by actions is visited, perform that action

(Formal Languages and Compilers) 4. Semantic Analysis I CS@UNICAM 26 / 34

Syntax Directed Translation Schemes

SDT and Top-Down parsing

Note: Including semantic actions in grammars conceived for being
parsable by top-down strategies can be complicated

Question: Would it be possible to define semantic actions and then
transform the grammar?

Eliminating Left Recursion (simple case)

I In case included actions just need to be performed in the same
order then it is enough to treat them as terminal symbols
E ! E + T{print(0+0); }
E ! T

When an SDT computes attributes we need to be more careful.

(Formal Languages and Compilers) 4. Semantic Analysis I CS@UNICAM 27 / 34

Syntax Directed Translation Schemes

Eliminating Left Recursion (general case)

It is always possible to transform a recursive grammar with actions if it
is S-attributed.
In particular given the grammar with actions:

A ! A1Y {A.a = g(A1.a,Y .y)}
A ! X {A.a = f (X .x)}

Consider the parse tree fragment for a derivation:
. . .A . . .

⇤�! . . .XYY . . .

It is possible to rewrite it in an equivalent one according to the following
schema:

A ! X {R.i = f (X .x)} R {A.a = R.s}
R ! Y {R1.i = g(R.i ,Y .y)} R1 {R.s = R1.s}
R ! ✏ {R.s = R.i}

(Formal Languages and Compilers) 4. Semantic Analysis I CS@UNICAM 28 / 34

Syntax Directed Translation Schemes

Eliminating Left Recursion (general case)

It is always possible to transform a recursive grammar with actions if it
is S-attributed.
In particular given the grammar with actions:

A ! A1Y {A.a = g(A1.a,Y .y)}
A ! X {A.a = f (X .x)}

Consider the parse tree fragment for a derivation:
. . .A . . .

⇤�! . . .XYY . . .

It is possible to rewrite it in an equivalent one according to the following
schema:

A ! X {R.i = f (X .x)} R {A.a = R.s}
R ! Y {R1.i = g(R.i ,Y .y)} R1 {R.s = R1.s}
R ! ✏ {R.s = R.i}

(Formal Languages and Compilers) 4. Semantic Analysis I CS@UNICAM 28 / 34

Syntax Directed Translation Schemes

SDT for L-attributed definitions

Assuming a pre-order traversal of the parse tree we can transform a
L-attributed SDD in a SDT as follows:

1 action computing inherited attributes must be computed before the
occurrence of the non terminal. In case of more inherited
attributes for the same non terminal order them as they are
needed

2 actions for computing synthesized attributes go at the end of the
production

(Formal Languages and Compilers) 4. Semantic Analysis I CS@UNICAM 29 / 34

Syntax Directed Translation Schemes

Example

Consider the production:

S ! while (C) S1

assuming the “traditional” semantics for this
statement let’s generate the intermediate
code assuming a three-address code where
three control flow statements are generally
used:

I ifFalse x goto L

I ifTrue x goto L

I goto L

Intermediate Code Structure

(Formal Languages and Compilers) 4. Semantic Analysis I CS@UNICAM 30 / 34

Syntax Directed Translation Schemes

Example

Consider the production:

S ! while (C) S1

assuming the “traditional” semantics for this
statement let’s generate the intermediate
code assuming a three-address code where
three control flow statements are generally
used:

I ifFalse x goto L

I ifTrue x goto L

I goto L

Intermediate Code Structure

(Formal Languages and Compilers) 4. Semantic Analysis I CS@UNICAM 30 / 34

Syntax Directed Translation Schemes

while statement - rationale

The following attributes can be used to derive the translation:
I S.next : labels the beginning of the code to be executed after S is

finished
I S.code: sequence of intermediate code steps that implements the

statement S and ends with S.next
I C.true: label for the code to be executed if C is evaluated to true
I C.false: label for the code to be executed if C is evaluated to false
I C.code: sequence of intermediate code steps that implements the

condition C and jumps to C.true of to C.false depending on the
evaluation

(Formal Languages and Compilers) 4. Semantic Analysis I CS@UNICAM 31 / 34

Syntax Directed Translation Schemes

while statement - SDD and SDT

SDD

S ! while (C) S1 L1 = new();
L2 = new();
S1.next = L1;
C.false = S.next ;
C.true = L2
S.code = label||L1||C.code||label||L2||S1.code

(Formal Languages and Compilers) 4. Semantic Analysis I CS@UNICAM 32 / 34

Syntax Directed Translation Schemes

while statement - SDD and SDT

Note for the translation:

L1 and L2 can be treated as synthesized attributes for dummy nonterminals and
can be assigned to the first action in the production

SDT

S ! while ({L1 = new(); L2 = new(); C.false = S.next ;
C.true = L2; }

C) {S1.next = L1; }
S1 {S.code = label||L1||C.code||label||L2||S1.code}

(Formal Languages and Compilers) 4. Semantic Analysis I CS@UNICAM 33 / 34

Syntax Directed Translation Schemes

while statement - SDD and SDT

Note for the translation:

L1 and L2 can be treated as synthesized attributes for dummy nonterminals and
can be assigned to the first action in the production

SDT

S ! while ({L1 = new(); L2 = new(); C.false = S.next ;
C.true = L2; }

C) {S1.next = L1; }
S1 {S.code = label||L1||C.code||label||L2||S1.code}

(Formal Languages and Compilers) 4. Semantic Analysis I CS@UNICAM 33 / 34

Syntax Directed Translation Schemes

Implementing L-attributed SDD
Translation can be performed according to two different strategies:

traversing a parse tree
during parsing

Traversing a parse tree

I Build the parse tree and annotate; if the SDD is not circular there
is at least an order of execution that works

I Build the parse tree, add actions, and execute the actions in
preorder; e.g. L-attributed SDDs translated into SDTs

During parsing

I Use a recursive descent parser
I Generate code on the fly
I Implement an SDT in conjunction with an LL-parser
I Implement an SDT in conjunction with an LR-parser

(Formal Languages and Compilers) 4. Semantic Analysis I CS@UNICAM 34 / 34

Syntax Directed Translation Schemes

Implementing L-attributed SDD
Translation can be performed according to two different strategies:

traversing a parse tree
during parsing

Traversing a parse tree

I Build the parse tree and annotate; if the SDD is not circular there
is at least an order of execution that works

I Build the parse tree, add actions, and execute the actions in
preorder; e.g. L-attributed SDDs translated into SDTs

During parsing

I Use a recursive descent parser
I Generate code on the fly
I Implement an SDT in conjunction with an LL-parser
I Implement an SDT in conjunction with an LR-parser

(Formal Languages and Compilers) 4. Semantic Analysis I CS@UNICAM 34 / 34

Syntax Directed Translation Schemes

Implementing L-attributed SDD
Translation can be performed according to two different strategies:

traversing a parse tree
during parsing

Traversing a parse tree

I Build the parse tree and annotate; if the SDD is not circular there
is at least an order of execution that works

I Build the parse tree, add actions, and execute the actions in
preorder; e.g. L-attributed SDDs translated into SDTs

During parsing

I Use a recursive descent parser
I Generate code on the fly
I Implement an SDT in conjunction with an LL-parser
I Implement an SDT in conjunction with an LR-parser

(Formal Languages and Compilers) 4. Semantic Analysis I CS@UNICAM 34 / 34

	Semantic Analysis: the problem
	Syntax Directed Definitions
	Syntax Directed Translation Schemes

