
Syntax Analysis: solutions Top-Down parsing

LL(1) Grammars

LL(k)
Predictive parsing that does not need backtracking. The first L stands
for Left-to-right and the second L stands for Leftmost and k indicates
the maximum number of lookahead symbols needed to take a decision

Most programming constructs can be expressed using an LL(1)
grammar. A grammar G is LL(1) iff whenever A ! ↵ | � are two
distinct productions of G, the following conditions hold:

1 for no terminal a do both ↵ and � derive strings beginning with a

2 at most one of ↵ and � can derive the empty string
3 if � !⇤ ✏, then ↵ does not derive any string starting with a terminal

in FOLLOW (A). Likewise if ↵ !⇤ ✏, then � does not derive any
string starting with a terminal in FOLLOW (A)

(Formal Languages and Compilers) 3. Syntax Analysis CS@UNICAM 32 / 69

Syntax Analysis: solutions Top-Down parsing

LL(1) Grammars

LL(k)
Predictive parsing that does not need backtracking. The first L stands
for Left-to-right and the second L stands for Leftmost and k indicates
the maximum number of lookahead symbols needed to take a decision

Most programming constructs can be expressed using an LL(1)
grammar. A grammar G is LL(1) iff whenever A ! ↵ | � are two
distinct productions of G, the following conditions hold:

1 for no terminal a do both ↵ and � derive strings beginning with a

2 at most one of ↵ and � can derive the empty string
3 if � !⇤ ✏, then ↵ does not derive any string starting with a terminal

in FOLLOW (A). Likewise if ↵ !⇤ ✏, then � does not derive any
string starting with a terminal in FOLLOW (A)

(Formal Languages and Compilers) 3. Syntax Analysis CS@UNICAM 32 / 69

Syntax Analysis: solutions Top-Down parsing

Parsing table

Derive FIRST , FOLLOW , nullable sets and parsing table for the following grammar:
S ! iEtSS

0|a S
0 ! eS|✏ E ! b

Parsing table:

a b e i t $

S S ! a S ! iEtSS
0

S
0

S
0 ! ✏ S

0 ! ✏
S

0 ! eS

E E ! b

(Formal Languages and Compilers) 3. Syntax Analysis CS@UNICAM 33 / 69

Syntax Analysis: solutions Top-Down parsing

Parsing table

Derive FIRST , FOLLOW , nullable sets and parsing table for the following grammar:
S ! iEtSS

0|a S
0 ! eS|✏ E ! b

Parsing table:

a b e i t $

S S ! a S ! iEtSS
0

S
0

S
0 ! ✏ S

0 ! ✏
S

0 ! eS

E E ! b

(Formal Languages and Compilers) 3. Syntax Analysis CS@UNICAM 33 / 69

Syntax Analysis: solutions Top-Down parsing

Non-recursive predictive parsing

Table-driven predictive parsing
Input: A string w and a parsing table M for grammar G
Output: if w is in L (G), a leftmost derivation of w , otherwise an error indication
set ip to pint to the first symbol of w ;
set X to the top stack symbol;
while (X 6= $) do

if (X is a) then pop the stack and advnce ip;
else if (X is a terminal) then error();
else if (M[X ,a] is an error entry) then error();
else if (M[X ,a] = X ! Y1Y2 · · ·Yk) then c

output the production X ! Y1Y2 · · ·Yk ;
pop the stack;
push Yk Yk�1 · · ·Y1 onto the stack, with Y1 on top;

end if
Set X to the top stack symbol;

end while

(Formal Languages and Compilers) 3. Syntax Analysis CS@UNICAM 34 / 69

Syntax Analysis: solutions Top-Down parsing

LL(1) parser moves (1/2)

MATCHED STACK INPUT ACTION
E$ id + id ⇤ id$

(Formal Languages and Compilers) 3. Syntax Analysis CS@UNICAM 35 / 69

Syntax Analysis: solutions Top-Down parsing

LL(1) parser moves (2/2)

MATCHED STACK INPUT ACTION
S$ ibtibtaea$

(Formal Languages and Compilers) 3. Syntax Analysis CS@UNICAM 36 / 69

Syntax Analysis: solutions Top-Down parsing

Error Recovery in Predictive Parsing

Error detection
An error is detected during predictive parsing when the terminal on top of the stack
does not match the next input symbol or when nonterminal A is on top of the stack, a

is the next input symbol, and M[A,a] is ERROR.

(Formal Languages and Compilers) 3. Syntax Analysis CS@UNICAM 37 / 69

Syntax Analysis: solutions Top-Down parsing

Error Recovery in Predictive Parsing

Error detection
An error is detected during predictive parsing when the terminal on top of the stack
does not match the next input symbol or when nonterminal A is on top of the stack, a

is the next input symbol, and M[A,a] is ERROR.

Panic Mode
Based on the idea of skipping symbols on the input until a token in a synchronizing set
appears. Strategies:

I place all symbols in FOLLOW (A) into the synchronizing set for nonterminal A.
I symbols starting higher level constructs
I use of ✏-productions to change the symbol in the stack
I just pop the symbol in the stack and send alert

(Formal Languages and Compilers) 3. Syntax Analysis CS@UNICAM 37 / 69

Syntax Analysis: solutions Top-Down parsing

Error Recovery in Predictive Parsing

Error detection
An error is detected during predictive parsing when the terminal on top of the stack
does not match the next input symbol or when nonterminal A is on top of the stack, a

is the next input symbol, and M[A,a] is ERROR.

Phrase-level recovery
Fill the blank entries in the predictive parsing table with entries to recovery routines.

(Formal Languages and Compilers) 3. Syntax Analysis CS@UNICAM 37 / 69

Syntax Analysis: solutions Bottom-Up Parsing

ToC

1 Syntax Analysis: the problem

2 Theoretical Background

3 Syntax Analysis: solutions
Top-Down parsing
Bottom-Up Parsing

(Formal Languages and Compilers) 3. Syntax Analysis CS@UNICAM 38 / 69

Syntax Analysis: solutions Bottom-Up Parsing

Bottom-up Parsing

Bottom-up Parsing
The problem of Bottom-up parsing can be viewed as the problem of
constructing a parse tree for an input string beginning at the leaves
and working up towards the root.
In particular we will consider the problem of finding the rightmost
derivation given an input string, through a series of reductions to reach
the initial symbol

Let’s consider the input string id ⇤ id using the simple grammar for
expressions

(Formal Languages and Compilers) 3. Syntax Analysis CS@UNICAM 39 / 69

Syntax Analysis: solutions Bottom-Up Parsing

Bottom-up Parsing

Bottom-up Parsing
The problem of Bottom-up parsing can be viewed as the problem of
constructing a parse tree for an input string beginning at the leaves
and working up towards the root.
In particular we will consider the problem of finding the rightmost
derivation given an input string, through a series of reductions to reach
the initial symbol

Let’s consider the input string id ⇤ id using the simple grammar for
expressions

(Formal Languages and Compilers) 3. Syntax Analysis CS@UNICAM 39 / 69

Syntax Analysis: solutions Bottom-Up Parsing

Tools for Bottom-up Parsing

Reductions
In a bottom-up parser at each step a reduction is applied. A certain
string is reduced to the head of the production (non-terminal) applying
the production in reverse. The key decision is when to reduce!

Handle Pruning
A handle is a substring of a sentential form that matches the body of a
production and whose reduction represents a step along the rightmost
derivation of the sentential form in reverse.

Consider the grammar S ! 0S1|01 and the two sentential forms
000111, 00S11

(Formal Languages and Compilers) 3. Syntax Analysis CS@UNICAM 40 / 69

Syntax Analysis: solutions Bottom-Up Parsing

Tools for Bottom-up Parsing

Reductions
In a bottom-up parser at each step a reduction is applied. A certain
string is reduced to the head of the production (non-terminal) applying
the production in reverse. The key decision is when to reduce!

Handle Pruning
A handle is a substring of a sentential form that matches the body of a
production and whose reduction represents a step along the rightmost
derivation of the sentential form in reverse.

Consider the grammar S ! 0S1|01 and the two sentential forms
000111, 00S11

(Formal Languages and Compilers) 3. Syntax Analysis CS@UNICAM 40 / 69

Syntax Analysis: solutions Bottom-Up Parsing

Shift-reduce parsing

Shift-reduce parsing

A shift-reduce parser is a particular kind of bottom-up parser in which a stack holds
grammar symbols and an input buffer holds the rest of the string to be parsed. Four
possible actions are possible:

I shift
I reduce
I accept
I error

Conflicts

I shift/reduce
I reduce/reduce

(Formal Languages and Compilers) 3. Syntax Analysis CS@UNICAM 41 / 69

Syntax Analysis: solutions Bottom-Up Parsing

Shift-reduce parsing

Shift-reduce parsing

A shift-reduce parser is a particular kind of bottom-up parser in which a stack holds
grammar symbols and an input buffer holds the rest of the string to be parsed. Four
possible actions are possible:

I shift
I reduce
I accept
I error

Conflicts

I shift/reduce
I reduce/reduce

(Formal Languages and Compilers) 3. Syntax Analysis CS@UNICAM 41 / 69

Syntax Analysis: solutions Bottom-Up Parsing

Shift-reduce parsing

Consider the grammar S ! SS + |SS ⇤ |a and the following sentential forms:
SSS + a ⇤+, SS + a ⇤ a+, aaa ⇤ a ++

(Formal Languages and Compilers) 3. Syntax Analysis CS@UNICAM 42 / 69

Syntax Analysis: solutions Bottom-Up Parsing

LR Parsing

LR Parsers
LR parsers show interesting good properties:

I all programming languages admit a grammar that can be parsed
by an LR parser

I most general non-backtracking shift-reduce parser
I syntactic errors can be detected as soon as it is possible to do so

on a left-to right scan of the input
I the class of grammars that can be parsed by an LR is a proper

superset of that parsable with a predictive parsing strategy

(Formal Languages and Compilers) 3. Syntax Analysis CS@UNICAM 43 / 69

Syntax Analysis: solutions Bottom-Up Parsing

Items and LR(0) Automaton

Item
An Item is a production in which a dot · has been added in the body.
Intuitively, it indicates how much of a production we have seen during
parsing.
One collection of sets of LR(0) items, called the canonical LR(0)
collection, provides the basis for constructing a DFA that is used to
make decisions.
The construction of the canonical LR(0) is based on two functions
CLOSURE and GOTO

(Formal Languages and Compilers) 3. Syntax Analysis CS@UNICAM 44 / 69

Syntax Analysis: solutions Bottom-Up Parsing

CLOSURE

If I is a set of items for a grammqr G, then CLOSURE(I) is the set of
items constructed from I by the following two rules:

1 Initially, add every item in I to CLOSURE(I)
2 if A ! ↵ · B� is in CLOSURE(I) and B ! � is a production, then

add the item B ! ·� to CLOSURE(I), if is not already there. Apply
this rule until no more items can be added to CLOSURE(I)

(Formal Languages and Compilers) 3. Syntax Analysis CS@UNICAM 45 / 69

Syntax Analysis: solutions Bottom-Up Parsing

CLOSURE

Consider the expression grammar:
E 0 ! E E ! E + T |T T ! T ⇤ F |F F ! (E)|id
Compute the closure of the item E 0 ! ·E

(Formal Languages and Compilers) 3. Syntax Analysis CS@UNICAM 46 / 69

Syntax Analysis: solutions Bottom-Up Parsing

GOTO

GOTO(I,X)
GOTO(I,X) is defined to be the closure of the set of all items
[A ! ↵X · �] such that [A ! ↵ · X�] is in I.

I Intuitively the GOTO function is used to define the transition of the LR(0)
automaton for a grammar. The states of the automaton correspond to sets of
items, and GOTO(I,X) specifies the transition from the state for I under input X

(Formal Languages and Compilers) 3. Syntax Analysis CS@UNICAM 47 / 69

Syntax Analysis: solutions Bottom-Up Parsing

Build the LR(0) automaton

Build the LR(0)automaton for the expression grammar:
E

0 ! E E ! E + T |T T ! T ⇤ F |F F ! (E)|id

(Formal Languages and Compilers) 3. Syntax Analysis CS@UNICAM 48 / 69

	Syntax Analysis: the problem
	Theoretical Background
	Syntax Analysis: solutions
	Top-Down parsing
	Bottom-Up Parsing

