
Lexical Analysis: How can we do it? Finite State Automata

NFA to DFA

NFA 2 DFA
Given an NFA accepting a language L there exists a DFA accepting the same
language

The derivation of a DFA from an NFA is based on the concept of
✏-closure

The subset construction algorithm makes the transformation using
the following operations:

✏-closure(s) with s 2 S
✏-closure(T) =

S
s2T ✏-closure(s) where T ✓ S

move(T , a) with T ✓ S and a 2 ⌃

(Formal Languages and Compilers) 2. Lexical Analysis CS@UNICAM 42 / 51

Lexical Analysis: How can we do it? Finite State Automata

NFA to DFA

build the ✏-closure(. . .) for different states/sets

build move(T , a) for different sets and elements

(Formal Languages and Compilers) 2. Lexical Analysis CS@UNICAM 43 / 51

Lexical Analysis: How can we do it? Finite State Automata

NFA to DFA

Subset Construction Algorithm
The Subset Construction algorithm permits to derive a DFA hS,⌃, �D, s0,FDi from an
NFA hN ,⌃, �N , n0,FNi

s0 ✏-closure({n0}); S {s0}; FD ?; worklist {s0};
if (s0 \ FN 6= ?) then FD FD [s0;
end if
while (worklist 6= ?) do

take and remove q from worklist;
for all (c 2 ⌃) do

t ✏-closure(move(q, c));
�D[q, c] t ;
if (t /2 S) then

S S [t ; worklist worklist [t ;
end if
if (t \ FN 6= ?) then FD FD [t ;
end if

end for
end while

(Formal Languages and Compilers) 2. Lexical Analysis CS@UNICAM 44 / 51

Lexical Analysis: How can we do it? Finite State Automata

Simulating DFA and NFA

DFA
s = s0;
c = nextChar();
while (c 6= eof) do

s = move(s, c);
c = nextChar();

end while
if (s 2 F) then return “yes”;
else return “no”;
end if

NFA
S = ✏-closure(s0);
c = nextChar();
while (c 6= eof) do

S = ✏-closure(move(S, c));
c = nextChar();

end while
if (S \ F 6= ?) then return “yes”;
else return “no”;
end if

(Formal Languages and Compilers) 2. Lexical Analysis CS@UNICAM 45 / 51

Lexical Analysis: How can we do it? Finite State Automata

Exercises NFA to DFA

Derive an NFA for the regexp: (a|b)⇤abb

NFA to DFA for the obtained NFA

(Formal Languages and Compilers) 2. Lexical Analysis CS@UNICAM 46 / 51

Lexical Analysis: How can we do it? Finite State Automata

Exercises NFA to DFA

Derive an NFA for the regexp: (a|b)⇤abb

NFA to DFA for the obtained NFA

(Formal Languages and Compilers) 2. Lexical Analysis CS@UNICAM 46 / 51

Lexical Analysis: How can we do it? Finite State Automata

DFA to Minimal DFA

Note
Reducing the size of the automaton does not reduce the number of moves needed to
recognise a string, nevertheless it reduces the size of the transition table that could
more easily fit the size of a cache

Equivalent states
Two states of a DFA are equivalent if they produce the same “behaviour” on any input
string.

Let D = hS,⌃, �, q0,Fi be a DFA. Two states si and sj of D are considered equivalent,
written si ⌘ sj , iff

8x 2 ⌃⇤.(si

x
��! s

0
i ^ s

0
i 2 F) () (sj

x
��! s

0
j ^ s

0
j 2 F)

(Formal Languages and Compilers) 2. Lexical Analysis CS@UNICAM 47 / 51

Lexical Analysis: How can we do it? Finite State Automata

DFA to Minimal DFA – Partition Refinement Algorithm

Deriving a minimal DFA

Transform a DFA hS,⌃, �D, s0,FDi into a minimal DFA hS 0,⌃, �0D, s00,F 0Di

// ⇧ is a partition of the set of states S
⇧ {FD ,S � FD} // Initially there are only two groups of states: final states and non-final states

repeat
⇧new ⇧ // create a working copy ⇧new
for all groups G in ⇧ do

partition G in subgroups G1, . . . , Gn (n � 1) such that two states s and t are in the same subgroup Gi iff

8c 2 ⌃ ((s 6
c

��!) ^ (t 6
c

��!)) _ ((s
c

��! s
0) ^ (t

c

��! t
0) ^ (s0, t

0 2 Ḡ) for some group Ḡ in ⇧)
// subgroups Gi ’s may be composed of only one state

⇧new ⇧new � G [{G1, . . . , Gn} // Replace G with the obtained subgroups in ⇧new
// the partition is refined: the group G is possibly replaced with a finer partition G1, . . . , Gn

end for
until ⇧new = ⇧ // exit when the partition cannot be refined further

// Now ⇧ contains a set of groups that are a partition of the states S
// The algorithm continues with the construction of the minimal DFA . . .

(Formal Languages and Compilers) 2. Lexical Analysis CS@UNICAM 48 / 51

Lexical Analysis: How can we do it? Finite State Automata

DFA to Minimal DFA – Partition Refinement Algorithm

// Continues from the previous slide . . .
// the states of the minimal DFA are representatives of groups of equivalent states, those that are in ⇧
S0 ? and F0

D
 ?

for all groups G in ⇧ do
choose a state in G as the representative for G and add it to S0

if G \ FD 6= ? // G contains either all final states or all non-final states then
add the representative state for G also to F0

D

end if
end for
s
0
0 the representative state of the group G containing s0

for all states s 2 S0 do
for all charachters c 2 ⌃ do

if �D [s, c] is defined then
�0

D
[s, c] the representative state of the group G containing the state �D [s, c]

end if
end for

end for

Uniqueness of the minimal DFA
There exists a unique DFA, up to isomorphism, that recognises a regular language L
and has minimal number of states. Two DFA are isomorphic iff they are equal by
neglecting the labels of the states.

(Formal Languages and Compilers) 2. Lexical Analysis CS@UNICAM 49 / 51

Lexical Analysis: How can we do it? Finite State Automata

Exercises

RegExp 2 DFA
I Minimise the DFA for the regexp (a|b)⇤abb

I Consider the regexp a(b|c)⇤ and derive the minimal accepting DFA
I Define an automated strategy to decide if two regular expressions define the

same language combining the algorithms defined so far

Regular Languages properties
I Specify a DFA accepting all strings of a’s and b’s that do not contain the

substring aab

I Show that the complement of a regular language, on alphabet ⌃, is still a regular
language

I Show that the intersection of two regular languages, on alphabet ⌃, is still a
regular language

(Formal Languages and Compilers) 2. Lexical Analysis CS@UNICAM 50 / 51

Lexical Analysis: How can we do it? Finite State Automata

Summary

Lexical Analysis
Relevant concepts we have encountered:

Tokens, Patterns, Lexemes
Chomsky hierarchy and regular languages
Regular expressions
Problems and solutions in matching strings
DFA and NFA
Transformations

RegExp ! NFA
NFA ! DFA
DFA ! Minimal DFA

(Formal Languages and Compilers) 2. Lexical Analysis CS@UNICAM 51 / 51

	Lexical Analysis: What does a Lexer do?
	Short Notes on Formal Languages
	Lexical Analysis: How can we do it?
	Regular Expressions
	Finite State Automata

