Lexical Analysis: How can we do it? Finite State Automata

NFA to DFA

Given an NFA accepting a language - there exists a DFA accepting the same
language

@ The derivation of a DFA from an NFA is based on the concept of
e-closure

@ The subset construction algorithm makes the transformation using
the following operations:

o e-closure(s)withs e S
o c-closure(T) = | Jgc 7 e-Closure(s) where T C S
e move(T,a)with7T CSandac X

(Formal Lang and Compilers) 2. Lexical Analysis CS@UNICAM 42 /51

Lexical Analysis: How can we do it? Finite State Automata

NFA to DFA

@ build the e-closure(. . .) for different states/sets
@ build move(T, a) for different sets and elements

nd Compilers) 2. Lexical Analysis CS@UNICAM 43 /51

Lexical Analysis: How can we do it? Finite State Automata

NFA to DFA

Subset Construction Algorithm

The Subset Construction algorithm permits to derive a DFA (S, ¥, dp, So, Fp) from an
NFA (N, Z, dn, No, Fn)

Sp < e-closure({no}); S < {so}; Fp < @; worklist < {so};
if (So NFn 75 @) then Fp < Fp U sp;
end if
while (worklist #) do
take and remove g from worklist;
for all (c €) do
t + e-closure(move(q, c));
oplq, c] + t;
if (t ¢ S) then
S «+ S U t; worklist «+ worklist U t;
end if
if (1NFn # @) then Fp« Fp U t;
end if

end for
end while

(Formal Langua nd Compilers) 2. Lexical Analysis CS@UNICAM 44 /51

Lexical Analysis: How can we do it?

Simulating DFA and NFA

S = S0,
¢ = nextChar();
while (c # eof) do
s = move(s, ¢);
¢ = nextChar();
end while
if (s € F) then return “yes”;
else return “no”;
end if

Finite State Automata

S = e-closure(sy);
¢ = nextChar();
while (c # eof) do
S = e-closure(move(S, ¢));
¢ = nextChar();
end while
if (SN F # o) then return “yes”;
else return “no”;
end if

(Formal Lan

nd Compilers)

2. Lexical Analysis

CS@UNICAM

45/ 51

Lexical Analysis: How can we do it? Finite State Automata

Exercises NFA to DFA

@ Derive an NFA for the regexp: (a|b)*abb

(Formal Langu and Compilers) 2. Lexical Analysis CS@UNICAM 46 /51

Lexical Analysis: How can we do it? Finite State Automata

Exercises NFA to DFA

@ Derive an NFA for the regexp: (a|b)*abb
@ NFA to DFA for the obtained NFA

(Formal Languages and Compilers) 2. Lexical Analysis

CS@UNICAM

46 /51

Lexical Analysis: How can we do it? Finite State Automata

DFA to Minimal DFA

Reducing the size of the automaton does not reduce the number of moves needed to
recognise a string, nevertheless it reduces the size of the transition table that could
more easily fit the size of a cache

Equivalent states

Two states of a DFA are equivalent if they produce the same “behaviour” on any input
string.

Let D = (S, X, 9, qv, F) be a DFA. Two states s; and s; of D are considered equivalent,
written s; = s;, iff

X X
VXEX .(Si— SIAS € F) < (55— S AS €F)

(Formal Langu and Compilers) 2. Lexical Analysis CS@UNICAM 47 / 51

Lexical Analysis: How can we do it? Finite State Automata

DFA to Minimal DFA — Partition Refinement Algorithm

Deriving a minimal DFA
Transform a DFA (S, ¥, ép, So, Fp) into @ minimal DFA (S', ¥, 6p, Sy, Fp)

/I N is a partition of the set of states S
N« {Fp,S — Fp} // Initially there are only two groups of states: final states and non-final states
repeat

Mpew < M // create a working copy Myew

for all groups Gin N do
partition G in subgroups Gy, . . ., Gp (n > 1) such that two states s and t are in the same subgroup G; iff

Vee T ((s%) A (HL)) vV ((s~c—> s') A (t~c—> ') A (s',t' € G) for some group Gin M)
1/ subgroups G;’s may be composed of only one state

Mhew < Mpew — GU {Gjy, ..., Gn} // Replace G with the obtained subgroups in Myew
/] the partition is refined: the group G is possibly replaced with a finer partition Gy, . . . , Gp
end for

until Mpew = M // exit when the partition cannot be refined further
/I Now I contains a set of groups that are a partition of the states S
/I The algorithm continues with the construction of the minimal DFA . . .

v

2. Lexical Analysis CS@UNICAM 48/51

Lexical Analysis: How can we do it? Finite State Automata

DFA to Minimal DFA — Partition Refinement Algorithm

/I Continues from the previous slide . . .
/I the states of the minimal DFA are representatives of groups of equivalent states, those that are in I
S« dand Fp + @
for all groups Gin N do
choose a state in G as the representative for G and add it to S’
if GN Fp # @ // G contains either all final states or all non-final states then
add the representative state for G also to F/,
end if
end for
s(’) <+ the representative state of the group G containing sy
for all states s € S’ do
for all charachters ¢ € X do
if 6p[s, c] is defined then
5pls, c] « the representative state of the group G containing the state 5p(s, ¢]
end if
end for
end for

Uniqueness of the minimal DFA

There exists a unique DFA, up to isomorphism, that recognises a regular language .
and has minimal number of states. Two DFA are isomorphic iff they are equal by
neglecting the labels of the states.

2. Lexical Analysis CS@UNICAM 49/ 51

Exercises

RegExp 2 DFA

» Minimise the DFA for the regexp (a|b)*abb
» Consider the regexp a(b|c)* and derive the minimal accepting DFA

» Define an automated strategy to decide if two regular expressions define the
same language combining the algorithms defined so far

v

Regular Languages properties

» Specify a DFA accepting all strings of a's and b’s that do not contain the
substring aab

» Show that the complement of a regular language, on alphabet ¥, is still a regular
language

» Show that the intersection of two regular languages, on alphabet %, is still a
regular language

" (Formal Languages and Compilers) | 2. Lexical Analysis CS@UNICAM 50/51

Lexical Analysis: How can we do it? Finite State Automata

Summary

Lexical Analysis

Relevant concepts we have encountered:
@ Tokens, Patterns, Lexemes
@ Chomsky hierarchy and regular languages
@ Regular expressions
@ Problems and solutions in matching strings
o
°

DFA and NFA
Transformations

o RegExp — NFA

o NFA — DFA

e DFA — Minimal DFA

(Formal Languages and Compilers) 2. Lexical Analysis CS@UNICAM

51/51

	Lexical Analysis: What does a Lexer do?
	Short Notes on Formal Languages
	Lexical Analysis: How can we do it?
	Regular Expressions
	Finite State Automata

