
ANTLR
a short introduction

Andrea Polini, Luca Tesei

Formal Languages and Compilers
MSc in Computer Science

University of Camerino

(Formal Languages and Compilers) ANTLR CS@UNICAM 1 / 9

What’s that?

ANTLR v.4 is a powerful parser generator that you can use to read,
process, execute, or translate structured text or binary files.

From a grammar as a formal language description, ANTLR generates
a parser for that language that can automatically build parse trees.
ANTLR also automatically generates tree walkers that you can use to
visit the nodes of those trees to execute application-specific code.

(Formal Languages and Compilers) ANTLR CS@UNICAM 2 / 9

What’s that?

ANTLR v.4 is a powerful parser generator that you can use to read,
process, execute, or translate structured text or binary files.

From a grammar as a formal language description, ANTLR generates
a parser for that language that can automatically build parse trees.
ANTLR also automatically generates tree walkers that you can use to
visit the nodes of those trees to execute application-specific code.

(Formal Languages and Compilers) ANTLR CS@UNICAM 2 / 9

How can I get it?

Download last complete jar from
http://www.antlr.org/download.html

Put it in an appropriate folder, e.g. /usr/local/lib
The jar contains:

all dependencies necessary to run the ANTLR tool
the runtime library needed to compile and execute recognizers
generated by ANTLR
a sophisticated tree layout support library:
http://code.google.com/p/treelayout
a template engine useful for generating code and other structured
text: http://www.stringtemplate.org

(Formal Languages and Compilers) ANTLR CS@UNICAM 3 / 9

http://www.antlr.org/download.html
http://code.google.com/p/treelayout
http://www.stringtemplate.org

How can I install it?

Set the CLASSPATH environment variable to include "." and the
jar:
> export

CLASSPATH=".:/usr/local/bin/antlr-4.7.1-complete.jar:$CLASSPATH"

You can do it every time you start a session in a shell or you can
edit the .bash_profile file
To run the ANTLR4 Tool:
> java -jar /usr/local/lib/antlr-4.0-complete.jar

or directly:
> java org.antlr.v4.Tool

To save typing:
> alias antlr4=’java -jar /usr/local/lib/antlr-4.0-complete.jar’

(Formal Languages and Compilers) ANTLR CS@UNICAM 4 / 9

How should I use it?

File Hello.g4
grammar Hello; // Define a grammar called Hello
r : ’hello’ ID ; // Match the word ’hello’ followed by an identifier
ID : [a-z]+ ; // Match lower-case identifiers
WS : [\t \r \n]+ -> skip ; // skip spaces, tabs, newlines, \r (Windows)

> antlr4 Hello.g4
produces:
Hello.g4 HelloLexer.java HelloParser.java
Hello.tokens HelloLexer.tokens
HelloBaseListener.java HelloListener.java
Then:
> javac *.java

(Formal Languages and Compilers) ANTLR CS@UNICAM 5 / 9

Testing Hello

ANTLR4 generates an executable recognizer embodied by
HelloParser.java and HelloLexer.java

There is not (yet) a main program to trigger language recognition
ANTLR4 provides a a flexible testing tool in the runtime library
called TestRig

> alias grun=’java org.antlr.v4.runtime.misc.TestRig’

The test rig takes:
a grammar name
a starting rule name
various options for the desired output

(Formal Languages and Compilers) ANTLR CS@UNICAM 6 / 9

Testing Hello

> grun Hello r -tokens # start the TestRig on grammar Hello at rule r
hello parrt # input for the recognizer that you type
<eof> # type ctrl+D on Unix or ctrl+Z on Windows}\\

Outputs a detailed description of the tokens:

[@0,0:4=’hello’,<1>,1:0]
[@1,6:10=’parrt’,<2>,1:6]
[@2,12:11=’<EOF>’,<-1>,2:0]

(Formal Languages and Compilers) ANTLR CS@UNICAM 7 / 9

Testing Hello

> grun Hello r -tree
hello parrt
<eof>

Outputs the parse tree in LISP-style text:

(r hello parrt)

(Formal Languages and Compilers) ANTLR CS@UNICAM 8 / 9

Testing Hello

> grun Hello r -gui
hello pippo
<eof>

Opens a graphical representation of the parse tree:

(Formal Languages and Compilers) ANTLR CS@UNICAM 9 / 9

