
Theoretical Background

Ambiguity

A grammar that produces more than one parse tree for some sentence is said to be
ambiguos. An ambiguous grammar has more then one left-most derivation or more
than one rightmost derivation for the same sentence.

Ambiguity and Precedence of Operators

Using the simplest grammar for expressions let’s derive again the parse tree for:

id + id ⇤ id

Now consider the following grammar:
E ! E + T |E � T |T
T ! T ⇤ F |T/F |F
F ! (E)|id

Use of ambiguos grammar

In some case it can be convenient to use ambiguous grammar, but then it is
necessary to define precise disambiguating rules

(Formal Languages and Compilers) 3. Syntax Analysis CS@UNICAM 16 / 70

Theoretical Background

Ambiguity

A grammar that produces more than one parse tree for some sentence is said to be
ambiguos. An ambiguous grammar has more then one left-most derivation or more
than one rightmost derivation for the same sentence.

Ambiguity and Precedence of Operators

Using the simplest grammar for expressions let’s derive again the parse tree for:

id + id ⇤ id

Now consider the following grammar:
E ! E + T |E � T |T
T ! T ⇤ F |T/F |F
F ! (E)|id

Use of ambiguos grammar

In some case it can be convenient to use ambiguous grammar, but then it is
necessary to define precise disambiguating rules

(Formal Languages and Compilers) 3. Syntax Analysis CS@UNICAM 16 / 70

Theoretical Background

Ambiguity

A grammar that produces more than one parse tree for some sentence is said to be
ambiguos. An ambiguous grammar has more then one left-most derivation or more
than one rightmost derivation for the same sentence.

Ambiguity and Precedence of Operators

Using the simplest grammar for expressions let’s derive again the parse tree for:

id + id ⇤ id

Now consider the following grammar:
E ! E + T |E � T |T
T ! T ⇤ F |T/F |F
F ! (E)|id

Use of ambiguos grammar

In some case it can be convenient to use ambiguous grammar, but then it is
necessary to define precise disambiguating rules

(Formal Languages and Compilers) 3. Syntax Analysis CS@UNICAM 16 / 70

Theoretical Background

Ambiguity

Conditional statements
Consider the following grammar:
stmt ! if expr then stmt

| if expr then stmt else stmt

| other
decide if the following sentence belongs to the generated language:

if E1 then if E2 then S1 else S2

(Formal Languages and Compilers) 3. Syntax Analysis CS@UNICAM 17 / 70

Theoretical Background

Exercises

Consider the grammar:

S ! SS + |SS ⇤ |a

and the string aa + a⇤
I Give the leftmost derivation for the string
I Give the rightmost derivation for the string
I Give a parse tree for the string
I Is the grammar ambiguous or unambiguous?
I Describe the language generated by this grammar?

Define grammars for the following languages:
I L = {w 2 {0, 1}⇤|w is palindrom}
I L = {w 2 {0, 1}⇤|w contains the same occurrences of 0 and 1}

(Formal Languages and Compilers) 3. Syntax Analysis CS@UNICAM 18 / 70

Theoretical Background

Exercises

Consider the grammar:

S ! SS + |SS ⇤ |a

and the string aa + a⇤
I Give the leftmost derivation for the string
I Give the rightmost derivation for the string
I Give a parse tree for the string
I Is the grammar ambiguous or unambiguous?
I Describe the language generated by this grammar?

Define grammars for the following languages:
I L = {w 2 {0, 1}⇤|w is palindrom}
I L = {w 2 {0, 1}⇤|w contains the same occurrences of 0 and 1}

(Formal Languages and Compilers) 3. Syntax Analysis CS@UNICAM 18 / 70

Theoretical Background

CF grammars are capable to describe the syntax of most, but not all,
the programming languages. For instance, the requirement that
identifiers must be declared before their usage cannot be expressed in
CF grammars.

So what we can do?

Ambiguity
I Many languages admit both ambiguous and unambiguous

grammars, while some languages admit only ambiguous
grammars

I A language that only admits ambiguous grammars is called an
inherently ambiguous language, e.g.
{an bm ck | n = m or m = k ; n,m, k � 0}

I A Turing machine cannot decide whether a context-free language
is inherently ambiguous or not

(Formal Languages and Compilers) 3. Syntax Analysis CS@UNICAM 19 / 70

Theoretical Background

CF grammars are capable to describe the syntax of most, but not all,
the programming languages. For instance, the requirement that
identifiers must be declared before their usage cannot be expressed in
CF grammars.

So what we can do?

Ambiguity
I Many languages admit both ambiguous and unambiguous

grammars, while some languages admit only ambiguous
grammars

I A language that only admits ambiguous grammars is called an
inherently ambiguous language, e.g.
{an bm ck | n = m or m = k ; n,m, k � 0}

I A Turing machine cannot decide whether a context-free language
is inherently ambiguous or not

(Formal Languages and Compilers) 3. Syntax Analysis CS@UNICAM 19 / 70

Theoretical Background

CF grammars are capable to describe the syntax of most, but not all,
the programming languages. For instance, the requirement that
identifiers must be declared before their usage cannot be expressed in
CF grammars.

So what we can do?

Ambiguity
I Many languages admit both ambiguous and unambiguous

grammars, while some languages admit only ambiguous
grammars

I A language that only admits ambiguous grammars is called an
inherently ambiguous language, e.g.
{an bm ck | n = m or m = k ; n,m, k � 0}

I A Turing machine cannot decide whether a context-free language
is inherently ambiguous or not

(Formal Languages and Compilers) 3. Syntax Analysis CS@UNICAM 19 / 70

Theoretical Background

CF grammars are capable to describe the syntax of most, but not all,
the programming languages. For instance, the requirement that
identifiers must be declared before their usage cannot be expressed in
CF grammars.

So what we can do?

Ambiguity
I Many languages admit both ambiguous and unambiguous

grammars, while some languages admit only ambiguous
grammars

I A language that only admits ambiguous grammars is called an
inherently ambiguous language, e.g.
{an bm ck | n = m or m = k ; n,m, k � 0}

I A Turing machine cannot decide whether a context-free language
is inherently ambiguous or not

(Formal Languages and Compilers) 3. Syntax Analysis CS@UNICAM 19 / 70

Theoretical Background

CF grammars are capable to describe the syntax of most, but not all,
the programming languages. For instance, the requirement that
identifiers must be declared before their usage cannot be expressed in
CF grammars.

So what we can do?

Ambiguity
I Many languages admit both ambiguous and unambiguous

grammars, while some languages admit only ambiguous
grammars

I A language that only admits ambiguous grammars is called an
inherently ambiguous language, e.g.
{an bm ck | n = m or m = k ; n,m, k � 0}

I A Turing machine cannot decide whether a context-free language
is inherently ambiguous or not

(Formal Languages and Compilers) 3. Syntax Analysis CS@UNICAM 19 / 70

Syntax Analysis: solutions

ToC

1 Syntax Analysis: the problem

2 Theoretical Background

3 Syntax Analysis: solutions
Top-Down parsing
Bottom-Up Parsing

(Formal Languages and Compilers) 3. Syntax Analysis CS@UNICAM 20 / 70

Syntax Analysis: solutions Top-Down parsing

ToC

1 Syntax Analysis: the problem

2 Theoretical Background

3 Syntax Analysis: solutions
Top-Down parsing
Bottom-Up Parsing

(Formal Languages and Compilers) 3. Syntax Analysis CS@UNICAM 21 / 70

Syntax Analysis: solutions Top-Down parsing

Left Recursion

Left recursive grammars

A grammar G is left recursive if it has a non terminal A such that there is a derivation
A

⇤
==) A↵ for some sting ↵. Top-down parsing strategies cannot handle left-recursive

grammars

Immediate left recursion
A grammar as an immediate left recursion if there is at least one production of the
form A ! A↵. It is possible to transform the grammar still generating the same
language and removing the left recursion. Consider the generale case:

A ! A↵1 | A↵2 | · · · | A↵m | �1 | �2 | · · · | �n

where n,m � 1 and all �i do not start with A. Equivalent productions are:

A ! �1A
0 | �2A

0 | · · · | �nA
0

A
0 ! ↵1A

0 | ↵2A
0 | · · · | ↵mA

0 | ✏

(Formal Languages and Compilers) 3. Syntax Analysis CS@UNICAM 22 / 70

Syntax Analysis: solutions Top-Down parsing

Left Recursion

Left recursive grammars

A grammar G is left recursive if it has a non terminal A such that there is a derivation
A

⇤
==) A↵ for some sting ↵. Top-down parsing strategies cannot handle left-recursive

grammars

Immediate left recursion
A grammar as an immediate left recursion if there is at least one production of the
form A ! A↵. It is possible to transform the grammar still generating the same
language and removing the left recursion. Consider the generale case:

A ! A↵1 | A↵2 | · · · | A↵m | �1 | �2 | · · · | �n

where n,m � 1 and all �i do not start with A. Equivalent productions are:

A ! �1A
0 | �2A

0 | · · · | �nA
0

A
0 ! ↵1A

0 | ↵2A
0 | · · · | ↵mA

0 | ✏

(Formal Languages and Compilers) 3. Syntax Analysis CS@UNICAM 22 / 70

	Syntax Analysis: the problem
	Theoretical Background
	Syntax Analysis: solutions
	Top-Down parsing
	Bottom-Up Parsing

