
Syntax Analysis: solutions Top-Down parsing

ToC

1 Syntax Analysis: the problem

2 Theoretical Background

3 Syntax Analysis: solutions
Top-Down parsing
Bottom-Up Parsing

(Formal Languages and Compilers) 3. Syntax Analysis CS@UNICAM 21 / 70

Syntax Analysis: solutions Top-Down parsing

Left Recursion

Left recursive grammars

A grammar G is left recursive if it has a non terminal A such that there is a derivation
A

⇤
==) A↵ for some sting ↵. Top-down parsing strategies cannot handle left-recursive

grammars

Immediate left recursion
A grammar as an immediate left recursion if there is at least one production of the
form A ! A↵. It is possible to transform the grammar still generating the same
language and removing the left recursion. Consider the generale case:

A ! A↵1 | A↵2 | · · · | A↵m | �1 | �2 | · · · | �n

where n,m � 1 and all �i do not start with A. Equivalent productions are:

A ! �1A
0 | �2A

0 | · · · | �nA
0

A
0 ! ↵1A

0 | ↵2A
0 | · · · | ↵mA

0 | ✏

(Formal Languages and Compilers) 3. Syntax Analysis CS@UNICAM 22 / 70

Syntax Analysis: solutions Top-Down parsing

Left Recursion

Left recursive grammars

A grammar G is left recursive if it has a non terminal A such that there is a derivation
A

⇤
==) A↵ for some sting ↵. Top-down parsing strategies cannot handle left-recursive

grammars

Immediate left recursion
A grammar as an immediate left recursion if there is at least one production of the
form A ! A↵. It is possible to transform the grammar still generating the same
language and removing the left recursion. Consider the generale case:

A ! A↵1 | A↵2 | · · · | A↵m | �1 | �2 | · · · | �n

where n,m � 1 and all �i do not start with A. Equivalent productions are:

A ! �1A
0 | �2A

0 | · · · | �nA
0

A
0 ! ↵1A

0 | ↵2A
0 | · · · | ↵mA

0 | ✏

(Formal Languages and Compilers) 3. Syntax Analysis CS@UNICAM 22 / 70

Syntax Analysis: solutions Top-Down parsing

Eliminating Left Recursion

The following is a general algorithm to eliminate left recursion at any level

Input: Grammar G with no cycles or ✏� productions

Output: An equivalent grammar with no left recursion
Arrange the non terminals in some order A1,A2, ...,An

for all i 2 [1...n] do
for all j 2 [1...i � 1] do

replace each production of the form Ai ! Aj� by the
productions Ai ! �1�|�2�| · · · |�k� where Aj ! �1|�2| · · · |�k are all current
Aj � productions

end for
eliminate the immediate left recursion among the Ai � productions

end for

(Formal Languages and Compilers) 3. Syntax Analysis CS@UNICAM 23 / 70

Syntax Analysis: solutions Top-Down parsing

Left Factoring

Left Factoring

Left Factoring is a grammar transformation that is useful for producing a grammar
suitable for predictive, or top-down, parsing. When the choice between two alternative
productions is not clear, we may be able to rewrite the productions to defer the
decision until enough of the input has been seen that we can make the right choice

Transformation rule
In general the grammar:

A ! ↵�1 | ↵�2

can be rewritten in:

A ! ↵A
0

A
0 ! �1|�2

In general find the longest prefix and then iterate till no two alternatives for a
nonterminal have a common prefix

(Formal Languages and Compilers) 3. Syntax Analysis CS@UNICAM 24 / 70

Syntax Analysis: solutions Top-Down parsing

Left Factoring

Left Factoring

Left Factoring is a grammar transformation that is useful for producing a grammar
suitable for predictive, or top-down, parsing. When the choice between two alternative
productions is not clear, we may be able to rewrite the productions to defer the
decision until enough of the input has been seen that we can make the right choice

Transformation rule
In general the grammar:

A ! ↵�1 | ↵�2

can be rewritten in:

A ! ↵A
0

A
0 ! �1|�2

In general find the longest prefix and then iterate till no two alternatives for a
nonterminal have a common prefix

(Formal Languages and Compilers) 3. Syntax Analysis CS@UNICAM 24 / 70

Syntax Analysis: solutions Top-Down parsing

Top-down parsing

Top-down parsing

Top-down parsing can be viewed as the problem of constructing a parse tree for the
input string starting from the root and creating the nodes of the parse tree in pre-order
(depth-first). Equivalently . . . finding the left-most derivation for an input string.

Recursive descent parsing

A recursive descent (top-down) parsing consist of a set of procedures, one for each
nonterminal.

function A
Choose an A-production, A ! X1X2 · · ·Xk ;
for all i 2 [1 · · · k] do

if (Xi is a non terminal) then call procedure Xi();
else if (Xi equals the current input symbol a) then

advance the input to the next symbol;
else an error has occurred;
end if

end for
end function

(Formal Languages and Compilers) 3. Syntax Analysis CS@UNICAM 25 / 70

Syntax Analysis: solutions Top-Down parsing

Top-down parsing

Backtracking is expensive and not easy to manage. With grammar with
no left-factoring and left-recursion we can do better:

At work
At each step of a top-down parsing the key problem is that of
determining the production to be applied for a nonterminal.
Let’s consider the usual sentence id + id ⇤ id and a suitable grammar
for top-down parsing:
E ! TE 0 E 0 ! +TE 0|✏ T ! FT 0 T 0 ! ⇤FT 0|✏ F ! (E)|id

(Formal Languages and Compilers) 3. Syntax Analysis CS@UNICAM 26 / 70

Syntax Analysis: solutions Top-Down parsing

FIRST and FOLLOW sets

FIRST (↵) set of terminals that begin strings derived from ↵
FOLLOW (A) set of terminals a that can appear immediately to the right of A in

some sentential form
nullable(X) it is true if it is possible to derive ✏ from X

FIRST

To compute FIRST (X) for all grammar symbols X , apply the following rules until no
more terminals or ✏ can be addedd to any FIRST set

1 if X is a terminal, then FIRST (X) = {X }
2 if X is a non terminal and X ! Y1Y2 · · ·Yk is a production for some k � 1, then

place a in FIRST (X) if a is in FIRST (Yi), for some i  k , and ✏ is in all of
FIRST (Y1) · · ·FIRST (Yi�1). If ✏ is in FIRST (Yj) for all j = 1, 2, . . . , k then add ✏
to FIRST (X). If Y1 does not derive ✏, then we add nothing more to FIRST (X),
but if Y1 !⇤ ✏, then we add FIRST (Y2), and so on.

3 if X ! ✏ is a production, then add ✏ to FIRST (X)

It is then possible to compute FIRST for any string X1X2 · · ·Xk

(Formal Languages and Compilers) 3. Syntax Analysis CS@UNICAM 27 / 70

Syntax Analysis: solutions Top-Down parsing

FIRST and FOLLOW sets

FIRST (↵) set of terminals that begin strings derived from ↵
FOLLOW (A) set of terminals a that can appear immediately to the right of A in

some sentential form
nullable(X) it is true if it is possible to derive ✏ from X

FIRST

To compute FIRST (X) for all grammar symbols X , apply the following rules until no
more terminals or ✏ can be addedd to any FIRST set

1 if X is a terminal, then FIRST (X) = {X }
2 if X is a non terminal and X ! Y1Y2 · · ·Yk is a production for some k � 1, then

place a in FIRST (X) if a is in FIRST (Yi), for some i  k , and ✏ is in all of
FIRST (Y1) · · ·FIRST (Yi�1). If ✏ is in FIRST (Yj) for all j = 1, 2, . . . , k then add ✏
to FIRST (X). If Y1 does not derive ✏, then we add nothing more to FIRST (X),
but if Y1 !⇤ ✏, then we add FIRST (Y2), and so on.

3 if X ! ✏ is a production, then add ✏ to FIRST (X)

It is then possible to compute FIRST for any string X1X2 · · ·Xk

(Formal Languages and Compilers) 3. Syntax Analysis CS@UNICAM 27 / 70

Syntax Analysis: solutions Top-Down parsing

FIRST and FOLLOW sets

FOLLOW

To compute FOLLOW (A) for all non terminals A, apply the following rules until nothing
can be added to any FOLLOW set

1 Place $ in FOLLOW (S), where S is the start symbol, and $ is the input right
endmarker.

2 if there is a production A ! ↵B�, then everything in FIRST (�) except ✏ is in
FOLLOW (B)

3 if there is a production A ! ↵B, or a production A ! ↵B�, where FIRST (�)
contains ✏, then everything in FOLLOW (A) is in FOLLOW (B)

(Formal Languages and Compilers) 3. Syntax Analysis CS@UNICAM 28 / 70

Syntax Analysis: solutions Top-Down parsing

FIRST and FOLLOW sets

Derive FIRST , FOLLOW , nullable sets for the expression grammar
Now consider the following grammar:

E ! TE
0

E
0 ! +TE

0|✏ T ! FT
0

T
0 ! ⇤FT

0|✏ F ! (E)|id

(Formal Languages and Compilers) 3. Syntax Analysis CS@UNICAM 29 / 70

Syntax Analysis: solutions Top-Down parsing

Parsing table

The parsing table is a two dimension array in which rows a nonterminal symbols and
columns are terminal symbols plus $. In each cell a production is then stored
(determinism).

Construction of the Parsing Table

Input: Grammar G = hVT ,VN ,S,Pi
Output: Parsing table M
for all A ! ↵ 2 P do

for all a 2 FIRST (↵)\{✏} do
add A ! ↵ to M[A, a]

end for
if ✏ 2 FIRST (↵) then

for all b 2 FOLLOW (A) do // b can be $
add A ! ↵ to M[A, b]

end for
end if

end for

(Formal Languages and Compilers) 3. Syntax Analysis CS@UNICAM 30 / 70

Syntax Analysis: solutions Top-Down parsing

FIRST and FOLLOW sets

Derive the parsing table for the expresion grammar:
E ! TE

0
E

0 ! +TE
0|✏ T ! FT

0
T

0 ! ⇤FT
0|✏ F ! (E)|id

FIRST FOLLOW Null.
E (, id), $
E

0 +),$ yes
T (, id +,), $
T

0 ⇤ +,), $ yes
F (, id ⇤,+,), $

(Formal Languages and Compilers) 3. Syntax Analysis CS@UNICAM 31 / 70

	Syntax Analysis: the problem
	Theoretical Background
	Syntax Analysis: solutions
	Top-Down parsing
	Bottom-Up Parsing

