
3. Syntax Analysis

Andrea Polini, Luca Tesei

Formal Languages and Compilers
MSc in Computer Science

University of Camerino

(Formal Languages and Compilers) 3. Syntax Analysis CS@UNICAM 1 / 70

Syntax Analysis: the problem

ToC

1 Syntax Analysis: the problem

2 Theoretical Background

3 Syntax Analysis: solutions
Top-Down parsing
Bottom-Up Parsing

(Formal Languages and Compilers) 3. Syntax Analysis CS@UNICAM 2 / 70

Syntax Analysis: the problem

Syntax analysis

Parsing
Parsing is the activity of taking a string of terminals and figuring out how to derive it
from the start symbol of a grammar. If a derivation cannot be obtained then syntax
errors must be reported within the string.

The Parser
The parser obtains a sequence of tokens and verifies that the sequence can be
correctly generated by a given grammar of the source language. For well-formed
programs the parser will generate a parse tree that will be passed to the next compiler
phase.

(Formal Languages and Compilers) 3. Syntax Analysis CS@UNICAM 3 / 70

Syntax Analysis: the problem

Parse Tree

Parse tree
A parse tree shows how the start symbol of a grammar derives the
string in the language. If A ! XYZ is a production applied in a
derivation, the parse tree will have an interior node labeled with A with
three children labeled X ,Y ,Z from left to right:

I the root is always labeled with the start symbols
I leaves are labeled with terminals or ✏
I interior nodes are labeled with non-terminal symbols
I parent-children relations among nodes depend from the rules

defined by the grammar

(Formal Languages and Compilers) 3. Syntax Analysis CS@UNICAM 4 / 70

Syntax Analysis: the problem

Parsing Example

Expressions grammar I
E ! E + E | E � E | E ⇤ E | E/E | (E) | id

Find the sequence or productions for the string “id + id ⇤ id” and derive
the corresponding parse tree

Expressions grammar II
E ! E + T | E � T | T

T ! T ⇤ F | T/F | F

F ! (E) | id

(Formal Languages and Compilers) 3. Syntax Analysis CS@UNICAM 5 / 70

Syntax Analysis: the problem

Parsing Example

Expressions grammar I
E ! E + E | E � E | E ⇤ E | E/E | (E) | id

Find the sequence or productions for the string “id + id ⇤ id” and derive
the corresponding parse tree

Expressions grammar II
E ! E + T | E � T | T

T ! T ⇤ F | T/F | F

F ! (E) | id

(Formal Languages and Compilers) 3. Syntax Analysis CS@UNICAM 5 / 70

Syntax Analysis: the problem

Type of parsers

Three general type of parsers:
I universal (any kind of grammar)
I top-down
I bottom-up

(Formal Languages and Compilers) 3. Syntax Analysis CS@UNICAM 6 / 70

Theoretical Background

ToC

1 Syntax Analysis: the problem

2 Theoretical Background

3 Syntax Analysis: solutions
Top-Down parsing
Bottom-Up Parsing

(Formal Languages and Compilers) 3. Syntax Analysis CS@UNICAM 7 / 70

Theoretical Background

Chomsky Hierarchy

A hierarchy of grammars can be defined imposing constraints on the
structure of the productions in set P (↵,�, � 2 V⇤, a 2 VT ,A,B 2 VN):
T0. Unrestricted Grammars:

Production Schema: no constraints
Recognizing Automaton: Turing Machines

T1. Context Sensitive Grammars:
Production Schema: ↵A� ! ↵��
Recognizing Automaton: Linear Bound Automaton (LBA)

T2. Context-Free Grammars:
Production Schema: A ! �
Recognizing Automaton: Non-deterministic Push-down Automaton

T3. Regular Grammars:
Production Schema: A ! a or A ! aB

Recognizing Automaton: Finite State Automaton

(Formal Languages and Compilers) 3. Syntax Analysis CS@UNICAM 8 / 70

Theoretical Background

Grammar Definition

Context Free Grammar
A Context Free Grammar is a tuple G = hVT ,VN ,S,Pi where:

I VT is a finite non-empty set of terminal symbols (alphabet)
I VN is a finite non-empty set of non-terminal symbols s.t.

VN \ VT = ?
I S is the start symbol of the grammar s.t. S 2 VN
I P is a finite non-empty set of productions s.t. P ✓ VN ⇥ V⇤ where

V⇤ = VT [VN

(Formal Languages and Compilers) 3. Syntax Analysis CS@UNICAM 9 / 70

Theoretical Background

Push-down Automata

Definition
A Push-down Automaton is a tuple h⌃, �,Z0,S, s0,F , �i where:

I ⌃ defines the input alphabet
I � defines the alphabet for the stack
I Z0 2 � is the symbol used to represent the empty stack
I S represents the set of states
I s0 2 S is the initial state of the automaton
I F ✓ S is the set of final states
I � : S ⇥ (⌃ [{✏})⇥ � ! . . . represents the transition function

Deterministic vs. Non-Deterministic
Push-down automata can be defined according to a deterministic strategy or a
non-deterministic one. In the first case the transition function returns elements in the
set S ⇥ �⇤, in the second case the returned element belongs to the set P(S ⇥ �⇤)

(Formal Languages and Compilers) 3. Syntax Analysis CS@UNICAM 10 / 70

Theoretical Background

Push-down Automata - How do they proceed?

Intuition
I The automaton starts with an empty stack and a string to read
I On the base of its status (state, symbol at the top of the stack), and of the

character at the begining of the input string it changes its status consuming the
character from the input string.

I The status change consists in the insertion of one or more symbol in the stack
after having removed the one at the top, and in the transition to another internal
state

I the string is accepted when all the symbols in the input stream have been
considered and the automaton reach a status in which the state is final or the
stack is empty

(Formal Languages and Compilers) 3. Syntax Analysis CS@UNICAM 11 / 70

Theoretical Background

Push-down Automata

Configuration
Given a Push-dow Automaton A = h⌃, �,Z0,S, s0,F , �i a configuration is given by the
tuple hs, x , �i where:

I s 2 S, x 2 ⌃⇤, � 2 �⇤

The configuration of an automaton represent its global state and contains the
information to know its future states.

Transition
Given A = h⌃, �,Z0,S, s0,F , �i and two configurations � = hs, x , �i and
�0 = hs0, x 0, �0i it can happen that the automaton passes from the first configuration to
the second (� `A �0) iff:

I 9a 2 ⌃.x = ax
0

I 9Z 2 �, ⌘,� 2 �⇤.� = Z⌘ ^ �0 = �⌘

I �(s, a,Z) = (s0,�)

(Formal Languages and Compilers) 3. Syntax Analysis CS@UNICAM 12 / 70

Theoretical Background

Push-down Automata

Acceptance by empty stack
Given A = h⌃, �,Z0,S, s0,F , �i a configuration � = hs, x , �i accepts a
string iff x = � = ✏

Acceptance by final state
Given A = h⌃, �,Z0,S, s0,F , �i a configuration � = hs, x , �i accepts a
string iff x = ✏ and s 2 F

(Formal Languages and Compilers) 3. Syntax Analysis CS@UNICAM 13 / 70

Theoretical Background

Push-down Automata - Exercise

I Define a push-down automaton that accept the language L = {a
n
b

n|n 2 N+}
I Define a push-down automaton that accept the language L = {ww |w 2 {a, b}+}
I Define a push-down automaton that accept the language

L = {a
n
b

m
c

2n|n 2 N+ ^ m 2 N}

(Formal Languages and Compilers) 3. Syntax Analysis CS@UNICAM 14 / 70

Theoretical Background

Push-down Automata - Exercise

I Define a push-down automaton that accept the language L = {a
n
b

n|n 2 N+}
I Define a push-down automaton that accept the language L = {ww |w 2 {a, b}+}
I Define a push-down automaton that accept the language

L = {a
n
b

m
c

2n|n 2 N+ ^ m 2 N}

(Formal Languages and Compilers) 3. Syntax Analysis CS@UNICAM 14 / 70

Theoretical Background

Push-down Automata - Exercise

I Define a push-down automaton that accept the language L = {a
n
b

n|n 2 N+}
I Define a push-down automaton that accept the language L = {ww |w 2 {a, b}+}
I Define a push-down automaton that accept the language

L = {a
n
b

m
c

2n|n 2 N+ ^ m 2 N}

(Formal Languages and Compilers) 3. Syntax Analysis CS@UNICAM 14 / 70

Theoretical Background

Derivations

Derivation
The construction of a parse tree can be made precise by taking a
derivational view, in which production are considered as rewriting rules.

A sentence belongs to a language if there is a derivation from the initial
symbol to the sentence.
e.g. E ! E + E |E ⇤ E |� E |(E)|id

Kind of derivations
Each sentence can be generated according to two different strategies
leftmost and rightmost. Parsers generally return one of this two
derivations.

(Formal Languages and Compilers) 3. Syntax Analysis CS@UNICAM 15 / 70

Theoretical Background

Derivations

Derivation
The construction of a parse tree can be made precise by taking a
derivational view, in which production are considered as rewriting rules.

A sentence belongs to a language if there is a derivation from the initial
symbol to the sentence.
e.g. E ! E + E |E ⇤ E |� E |(E)|id

Kind of derivations
Each sentence can be generated according to two different strategies
leftmost and rightmost. Parsers generally return one of this two
derivations.

(Formal Languages and Compilers) 3. Syntax Analysis CS@UNICAM 15 / 70

Theoretical Background

Ambiguity

A grammar that produces more than one parse tree for some sentence is said to be
ambiguos. An ambiguous grammar has more then one left-most derivation or more
than one rightmost derivation for the same sentence.

Ambiguity and Precedence of Operators

Using the simplest grammar for expressions let’s derive again the parse tree for:

id + id ⇤ id

Now consider the following grammar:
E ! E + T |E � T |T
T ! T ⇤ F |T/F |F
F ! (E)|id

Use of ambiguos grammar

In some case it can be convenient to use ambiguous grammar, but then it is
necessary to define precise disambiguating rules

(Formal Languages and Compilers) 3. Syntax Analysis CS@UNICAM 16 / 70

Theoretical Background

Ambiguity

A grammar that produces more than one parse tree for some sentence is said to be
ambiguos. An ambiguous grammar has more then one left-most derivation or more
than one rightmost derivation for the same sentence.

Ambiguity and Precedence of Operators

Using the simplest grammar for expressions let’s derive again the parse tree for:

id + id ⇤ id

Now consider the following grammar:
E ! E + T |E � T |T
T ! T ⇤ F |T/F |F
F ! (E)|id

Use of ambiguos grammar

In some case it can be convenient to use ambiguous grammar, but then it is
necessary to define precise disambiguating rules

(Formal Languages and Compilers) 3. Syntax Analysis CS@UNICAM 16 / 70

Theoretical Background

Ambiguity

A grammar that produces more than one parse tree for some sentence is said to be
ambiguos. An ambiguous grammar has more then one left-most derivation or more
than one rightmost derivation for the same sentence.

Ambiguity and Precedence of Operators

Using the simplest grammar for expressions let’s derive again the parse tree for:

id + id ⇤ id

Now consider the following grammar:
E ! E + T |E � T |T
T ! T ⇤ F |T/F |F
F ! (E)|id

Use of ambiguos grammar

In some case it can be convenient to use ambiguous grammar, but then it is
necessary to define precise disambiguating rules

(Formal Languages and Compilers) 3. Syntax Analysis CS@UNICAM 16 / 70

Theoretical Background

Ambiguity

Conditional statements
Consider the following grammar:
stmt ! if expr then stmt

| if expr then stmt else stmt

| other
decide if the following sentence belongs to the generated language:

if E1 then if E2 then S1 else S2

(Formal Languages and Compilers) 3. Syntax Analysis CS@UNICAM 17 / 70

Theoretical Background

Exercises

Consider the grammar:

S ! SS + |SS ⇤ |a

and the string aa + a⇤
I Give the leftmost derivation for the string
I Give the rightmost derivation for the string
I Give a parse tree for the string
I Is the grammar ambiguous or unambiguous?
I Describe the language generated by this grammar?

Define grammars for the following languages:
I L = {w 2 {0, 1}⇤|w is palindrom}
I L = {w 2 {0, 1}⇤|w contains the same occurrences of 0 and 1}
I L = {w 2 {0, 1}⇤|w does not contain the substring 011}

(Formal Languages and Compilers) 3. Syntax Analysis CS@UNICAM 18 / 70

Theoretical Background

Exercises

Consider the grammar:

S ! SS + |SS ⇤ |a

and the string aa + a⇤
I Give the leftmost derivation for the string
I Give the rightmost derivation for the string
I Give a parse tree for the string
I Is the grammar ambiguous or unambiguous?
I Describe the language generated by this grammar?

Define grammars for the following languages:
I L = {w 2 {0, 1}⇤|w is palindrom}
I L = {w 2 {0, 1}⇤|w contains the same occurrences of 0 and 1}
I L = {w 2 {0, 1}⇤|w does not contain the substring 011}

(Formal Languages and Compilers) 3. Syntax Analysis CS@UNICAM 18 / 70

Theoretical Background

CF grammars are capable to describe most, but not all, of the syntax
of programming languages. For instance, the requirement that
identifiers must be dclared before their usage cannot be expressed in
CF grammar.

So what we can do?

Ambiguity
I Many languages admit both ambiguous and unambiguous

grammars, while some languages admit only ambiguous
grammars

I A language that only admits ambiguous grammars is called an
inherently ambiguous language

I A Turing machine cannot decide whether a context-free language
is ambiguous or not

(Formal Languages and Compilers) 3. Syntax Analysis CS@UNICAM 19 / 70

Theoretical Background

CF grammars are capable to describe most, but not all, of the syntax
of programming languages. For instance, the requirement that
identifiers must be dclared before their usage cannot be expressed in
CF grammar.

So what we can do?

Ambiguity
I Many languages admit both ambiguous and unambiguous

grammars, while some languages admit only ambiguous
grammars

I A language that only admits ambiguous grammars is called an
inherently ambiguous language

I A Turing machine cannot decide whether a context-free language
is ambiguous or not

(Formal Languages and Compilers) 3. Syntax Analysis CS@UNICAM 19 / 70

Theoretical Background

CF grammars are capable to describe most, but not all, of the syntax
of programming languages. For instance, the requirement that
identifiers must be dclared before their usage cannot be expressed in
CF grammar.

So what we can do?

Ambiguity
I Many languages admit both ambiguous and unambiguous

grammars, while some languages admit only ambiguous
grammars

I A language that only admits ambiguous grammars is called an
inherently ambiguous language

I A Turing machine cannot decide whether a context-free language
is ambiguous or not

(Formal Languages and Compilers) 3. Syntax Analysis CS@UNICAM 19 / 70

Theoretical Background

CF grammars are capable to describe most, but not all, of the syntax
of programming languages. For instance, the requirement that
identifiers must be dclared before their usage cannot be expressed in
CF grammar.

So what we can do?

Ambiguity
I Many languages admit both ambiguous and unambiguous

grammars, while some languages admit only ambiguous
grammars

I A language that only admits ambiguous grammars is called an
inherently ambiguous language

I A Turing machine cannot decide whether a context-free language
is ambiguous or not

(Formal Languages and Compilers) 3. Syntax Analysis CS@UNICAM 19 / 70

Theoretical Background

CF grammars are capable to describe most, but not all, of the syntax
of programming languages. For instance, the requirement that
identifiers must be dclared before their usage cannot be expressed in
CF grammar.

So what we can do?

Ambiguity
I Many languages admit both ambiguous and unambiguous

grammars, while some languages admit only ambiguous
grammars

I A language that only admits ambiguous grammars is called an
inherently ambiguous language

I A Turing machine cannot decide whether a context-free language
is ambiguous or not

(Formal Languages and Compilers) 3. Syntax Analysis CS@UNICAM 19 / 70

	Syntax Analysis: the problem
	Theoretical Background
	Syntax Analysis: solutions
	Top-Down parsing
	Bottom-Up Parsing

