$a(b \mid C)^{*}$ find a himimol DFA
CANONICAL StRATEGG

1) a $(b \mid c)^{t} \rightarrow$ NFA Thompson's alpouttom
2) NFA \rightarrow DFA Gubset coustruction algo uthm
3) DFA \rightarrow minimal DFA Partition Refinement Alg.

To solve this particulen pioblen we can skep 11 and 2) esscy and give dilectly a DFA

$$
\mathcal{L}\left(a(b \mid c)^{*}\right)=\left\{a x \mid x \in\{b, c\}^{*}\right\}
$$

$$
\pi^{(1)}=\{\{0\},\{2\}\}
$$

This partitien connat be wefined se
this automaton is alo kinsimal for the lappege.

Ex: Given τ_{1}, z_{2} regexps, are they equivalut?

$$
\tau_{1} \equiv \tau_{2} \text { af } \mathscr{L}\left(r_{1}\right)=\mathcal{L}\left(r_{2}\right)
$$

Strategy:

1) $\tau_{2} \rightarrow N F A_{1}$
2)

$$
N F A_{1} \longrightarrow D F A_{1}
$$

$$
r_{2} \rightarrow N F A_{2}
$$

$$
N F A_{2} \rightarrow D P A_{2}
$$

isomorphic
3) $D F A_{1} \longrightarrow D F A_{1}$ min
4) if $\left(D F A_{1 \text { _min }} \approx D F A_{2 \text { min }}\right)$

$$
D F A_{2} \longrightarrow D F A L_{\text {_min }}
$$

then return YES
else return NO

$$
\mathscr{L}=\left\{x \in\left\{a,\left.b\right|^{*} \mid \times \neq y a b b z \text { for any } y, z \in\{a, b\}^{*}\right\}\right.
$$

State o "Lepiniming"
State 1 "I have not seen an a yet"
state 2 " Ait character was a"
State 3" Loot sequence was ab"
state $\&$ "The string contains abb" $\mathcal{L}^{\prime}=\left\{x \in\{a, b\}^{*} \mid \quad x=y\right.$ abb z for some

$$
\left.y, z \in\{\theta, b\}^{*}\right\}
$$

\mathcal{L}^{\prime} is the complement of \mathcal{Y}. NFA for \mathcal{L}^{\prime} :

Tronsfom

inte a DFA

	a	b
$A=\{0\}$	$\{0,2\}=B$	$\{0\}=A$
$B=\{0,2\}$	$\{0,2\}=B$	$\{0,2\}=C$
$C=\{0,2\}$	$\{0,1\}=B$	$\{0,3\}=D$
$D=\{0,3\}$	$\{0,1,3\}=E$	$\{0,3\}=D$
$E=\{0,1,3\}$	$\{0,2,3\}=E$	$\{0,2,3\}=F$
$F=\{0,2,3\}$	$\{0,2,3\}=E$	$\{0,3\}=0$

Theoren: $\mathbb{I F}^{\mathcal{Z}}$ is a requbor Cargnege then $\mathcal{Z}^{c}=\Sigma^{x}-\mathcal{Z}$ is a reguler Canguge.
Proef: 1) \mathcal{L} ia regular ther there is a regulor exporession r_{2} such that $L\left(r_{\mathscr{L}}\right)=\mathscr{L}$

A the Canguage denated by rye.
2) $r_{z} \rightarrow$ NFA q 3) NFA $q \rightarrow$ DFA $_{2}$
4) if DTAA is Blacking, ther ade the deed stote
5) $D F A^{\prime} \mathcal{L}$ is $D F A A_{2}$ s.t. the final and non-fimol stetes are exchanjeol
6) Thus, DFA'LL acceps \mathscr{L}^{C}
7) By Keeene theorem, since there is a DPA occepting \mathcal{L}^{c} the \mathcal{L}^{c} is RequLar

Keeche Theoun
L is regular
if \exists rexexp e s.t. $\mathscr{L}(2)=L$
iff \exists NFA occeptrang L
iff \exists DFA accepting L
Z_{2} regular L_{2} regular
$? \mathcal{Z}_{1} \cap \mathcal{Z}_{2}$ is reguer? YES

In Lex \wedge spactor
if 2 is a repexp Λ_{2} is a regesp

$$
\mathcal{L}\left(\wedge_{r}\right)=\sum^{*}-\mathscr{L}(r)
$$

$$
\mathcal{L}_{2} \rightarrow z_{2} \text { vgesp }
$$

requer
Then $\uparrow\left(\Lambda_{r_{1}} \mid \Lambda_{r_{2}}\right)$ is a repula expression $\operatorname{denoting}\left(\mathcal{L}_{2}^{c} \cup \mathscr{L}_{2}^{c}\right)^{c}=\mathscr{L}_{2} \cap \mathscr{L}_{2}$.
Thus, $\mathscr{L}_{1} \cap \mathscr{L}_{2}$ is regulor D

Another way:

$$
\begin{aligned}
& \mathscr{L}_{1} \rightarrow r_{2} \rightarrow N F A_{2} \rightarrow D F A_{2}=\left\langle S_{2}, \Sigma_{1} s_{0}^{1}, \delta_{1}, F_{2}\right\rangle \\
& \mathscr{L}_{2} \rightarrow r_{2} \rightarrow N F A_{2} \rightarrow D F A_{2}=\left\langle S_{2}, \Sigma, s_{0}^{2}, \delta_{2}, F_{2}\right\rangle
\end{aligned}
$$

Crete an automaton that aceppts $\mathcal{L}_{2} \cap \mathcal{L}_{2}$

$$
\left\langle S_{1} \times S_{2}, \Sigma_{1}\left(S_{0}^{1}, S_{0}^{2}\right), \delta, F_{2} \times F_{2}\right\rangle
$$

where δ is defined s.t. $\quad \forall s \in S_{21}, \in S_{2}, c \in E$

$$
\text { if }\left(\delta_{1}(s, c)=s^{\prime}\right.
$$

and $\left.\delta_{2}(t, c)=t^{\prime}\right)$ then $\delta((s, t), c)=$ $\left(s, t^{\prime}\right)$

Example \rightarrow

This autoustar eccopts $\{a b\}=\mathcal{L}_{2} \cap \mathcal{L}_{2}$

