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Note Regular expressions are written with the usual precedence order: operator ∗

has precedence on concatenation, which has precedence on |. Moreover, the usual

shorthands + and ? may be used.

Exercise 1
Write a regular expression denoting the language accepted by the following
automaton:
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Solution
The expression is (a|b)+c∗.

Exercise 2
Use Thompson algorithm to construct an NFA accepting the language de-
noted by (ab|ac)∗d.

1



Solution
The syntax tree of the regexp is a concatenation between a star and a d, then
the star is of a union between two concatenations. Following the inductive
definitions of the Thomposon algorithm the following NFA is obtained:
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Exercise 3
Write a minimal automaton for the language (a|b)∗ | (b|c)∗d.

Solution
Let us first use non-determinism to easily define an NFA for the language:
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Now we can use the subset construction algorithm to find an equivalent
DFA. The move table of the obtained DFA is the following one where ac-
cepting states are {A,B,C,E}:

State a b c d

A = {0, 1, 2} B C D E
B = {1} B B
C = {1, 2} B C D E
D = {2} D D E
E = {3}

It is quite clear from the table that state A and state C are equivalent,
while the rest of the states behave differently. However, for the sake of
completeness, let us apply the minimisation algorithm.

First, let us complete the DFA by adding a dead state F to which we
create a transition for every empty entry in the table.

The first partition to consider is (ABCE), (DF ). Consider the group
(DF ); we have that move(D, d) = E and move(F, d) = F . We conclude that
the two states are not equivalent because the input d sends the two states in
different groups. Thus, the new partition to consider is (ABCE), (D), (F ).

The only group that can be refined is (ABCE). We have move(A, d) = E,
move(B, d) = F , move(C, d) = E, move(E, d) = F . Thus, the new partition
is (AC), (BE), (D), (F ).
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We have already observed that there are no differences between A and
C. Let us then consider B and E. We have that move(B, a) = B and
move(E, a) = F . Thus they must be distinguished. We obtain the following
automaton, which is minimal for the language and in which the dead state
F is not represented:
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Exercise 3

Define a deterministic automaton that accepts the following language:

a∗b+c | (a|b)∗db∗(c|ε)

Illustrate all the steps to reach the proposed solution.

Solution

We can start from a non-deterministic automaton directly obtained from the
regular expression using a simplified version of the automaton that would be
generated by the Thompson algorithm:
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Let’s apply the subset construction algorithm to get an equivalent determin-
istic automaton. The resulting move table is the following:

State a b c d

A = {0, 1, 4} B C D
B = {1, 4} B C D
C = {2, 4} E C F D
D = {5} D G
E = {4} E E D
F = {3}
G = {6}

The final states are F , D and G. Notice that states A and B are equivalent
because they are both non-final and they behave in the same way. Thus,
they can be identified.
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