
Formal Languages and Compilers
Exercises on Lexical Analysis I with Solutions

MSc in Computer Science, University of Camerino
prof. Luca Tesei

Note Regular expressions are written with the usual precedence order: operator ∗

has precedence on concatenation, which has precedence on |. Moreover, the usual

shorthands + and ? may be used.

Exercise 1
Write a regular expression denoting the language accepted by the following
automaton:

0

1

2

3
a

b

a

b

c

ε ε
ε

c

Solution
The expression is (a|b)+c∗.

Exercise 2
Use Thompson algorithm to construct an NFA accepting the language de-
noted by (ab|ac)∗d.

1

Solution
The syntax tree of the regexp is a concatenation between a star and a d, then
the star is of a union between two concatenations. Following the inductive
definitions of the Thomposon algorithm the following NFA is obtained:

0 1

2 3 4

5

876

9

10

ε

ε

a

a

ε

c ε

ε

ε

d

b

ε

ε

Exercise 3
Write a minimal automaton for the language (a|b)∗ | (b|c)∗d.

Solution
Let us first use non-determinism to easily define an NFA for the language:

2

0

1

2 3

ε

ε

{b,c}

{a,b}

d

Now we can use the subset construction algorithm to find an equivalent
DFA. The move table of the obtained DFA is the following one where ac-
cepting states are {A,B,C,E}:

State a b c d

A = {0, 1, 2} B C D E
B = {1} B B
C = {1, 2} B C D E
D = {2} D D E
E = {3}

It is quite clear from the table that state A and state C are equivalent,
while the rest of the states behave differently. However, for the sake of
completeness, let us apply the minimisation algorithm.

First, let us complete the DFA by adding a dead state F to which we
create a transition for every empty entry in the table.

The first partition to consider is (ABCE), (DF). Consider the group
(DF); we have that move(D, d) = E and move(F, d) = F . We conclude that
the two states are not equivalent because the input d sends the two states in
different groups. Thus, the new partition to consider is (ABCE), (D), (F).

The only group that can be refined is (ABCE). We have move(A, d) = E,
move(B, d) = F , move(C, d) = E, move(E, d) = F . Thus, the new partition
is (AC), (BE), (D), (F).

3

We have already observed that there are no differences between A and
C. Let us then consider B and E. We have that move(B, a) = B and
move(E, a) = F . Thus they must be distinguished. We obtain the following
automaton, which is minimal for the language and in which the dead state
F is not represented:

AC D

B

E

b
a

c

d
{b,c}

{a,b}

d

Exercise 3

Define a deterministic automaton that accepts the following language:

a∗b+c | (a|b)∗db∗(c|ε)

Illustrate all the steps to reach the proposed solution.

Solution

We can start from a non-deterministic automaton directly obtained from the
regular expression using a simplified version of the automaton that would be
generated by the Thompson algorithm:

4

0

1 2 3

5 6

a

ε

ε

b
cb

d c

ba,b

4

Let’s apply the subset construction algorithm to get an equivalent determin-
istic automaton. The resulting move table is the following:

State a b c d

A = {0, 1, 4} B C D
B = {1, 4} B C D
C = {2, 4} E C F D
D = {5} D G
E = {4} E E D
F = {3}
G = {6}

The final states are F , D and G. Notice that states A and B are equivalent
because they are both non-final and they behave in the same way. Thus,
they can be identified.

5

