Formal Languages and Compilers Exercises on Lexical Analysis I with Solutions

MSc in Computer Science, University of Camerino prof. Luca Tesei

Note Regular expressions are written with the usual precedence order: operator * has precedence on concatenation, which has precedence on |. Moreover, the usual shorthands ${ }^{+}$and ? may be used.

Exercise 1

Write a regular expression denoting the language accepted by the following automaton:

Solution

The expression is $(a \mid b)^{+} c^{*}$.

Exercise 2

Use Thompson algorithm to construct an NFA accepting the language denoted by $(a b \mid a c)^{*} d$.

Solution

The syntax tree of the regexp is a concatenation between a star and a d, then the star is of a union between two concatenations. Following the inductive definitions of the Thomposon algorithm the following NFA is obtained:

Exercise 3

Write a minimal automaton for the language $(a \mid b)^{*} \mid(b \mid c)^{*} d$.

Solution

Let us first use non-determinism to easily define an NFA for the language:

Now we can use the subset construction algorithm to find an equivalent DFA. The move table of the obtained DFA is the following one where accepting states are $\{A, B, C, E\}$:

State	a	b	c	d
$A=\{0,1,2\}$	B	C	D	E
$B=\{1\}$	B	B		
$C=\{1,2\}$	B	C	D	E
$D=\{2\}$		D	D	E
$E=\{3\}$				

It is quite clear from the table that state A and state C are equivalent, while the rest of the states behave differently. However, for the sake of completeness, let us apply the minimisation algorithm.

First, let us complete the DFA by adding a dead state F to which we create a transition for every empty entry in the table.

The first partition to consider is $(A B C E),(D F)$. Consider the group $(D F)$; we have that $\operatorname{move}(D, d)=E$ and $\operatorname{move}(F, d)=F$. We conclude that the two states are not equivalent because the input d sends the two states in different groups. Thus, the new partition to consider is $(A B C E),(D),(F)$.

The only group that can be refined is $(A B C E)$. We have move $(A, d)=E$, $\operatorname{move}(B, d)=F, \operatorname{move}(C, d)=E, \operatorname{move}(E, d)=F$. Thus, the new partition is $(A C),(B E),(D),(F)$.

We have already observed that there are no differences between A and C. Let us then consider B and E. We have that $\operatorname{move}(B, a)=B$ and $\operatorname{move}(E, a)=F$. Thus they must be distinguished. We obtain the following automaton, which is minimal for the language and in which the dead state F is not represented:

Exercise 3

Define a deterministic automaton that accepts the following language:

$$
a^{*} b^{+} c \mid(a \mid b)^{*} d b^{*}(c \mid \epsilon)
$$

Illustrate all the steps to reach the proposed solution.

Solution

We can start from a non-deterministic automaton directly obtained from the regular expression using a simplified version of the automaton that would be generated by the Thompson algorithm:

Let's apply the subset construction algorithm to get an equivalent deterministic automaton. The resulting move table is the following:

State	a	b	c	d
$A=\{0,1,4\}$	B	C		D
$B=\{1,4\}$	B	C		D
$C=\{2,4\}$	E	C	F	D
$D=\{5\}$		D	G	
$E=\{4\}$	E	E		D
$F=\{3\}$				
$G=\{6\}$				

The final states are F, D and G. Notice that states A and B are equivalent because they are both non-final and they behave in the same way. Thus, they can be identified.

