
Short Notes on Formal Languages

Meaning function L

Meaning Function
Once you defined a way to describe the strings in a language it is
important to define a meaning function L that maps syntax to
semantics

I e.g. the case for numbers

Why using a meaning function?
Makes clear what is syntax, what is semantics
Allows us to consider notation as a separate issue
Expressions and meanings are not 1 to 1

Warning
It should never happen that the same

syntactical structure has more meanings

(Formal Languages and Compilers) 2. Lexical Analysis CS@UNICAM 18 / 52

Short Notes on Formal Languages

Meaning function L

Meaning Function
Once you defined a way to describe the strings in a language it is
important to define a meaning function L that maps syntax to
semantics

I e.g. the case for numbers

Why using a meaning function?
Makes clear what is syntax, what is semantics
Allows us to consider notation as a separate issue
Expressions and meanings are not 1 to 1

Warning
It should never happen that the same

syntactical structure has more meanings

(Formal Languages and Compilers) 2. Lexical Analysis CS@UNICAM 18 / 52

Short Notes on Formal Languages

Meaning function L

Meaning Function
Once you defined a way to describe the strings in a language it is
important to define a meaning function L that maps syntax to
semantics

I e.g. the case for numbers

Why using a meaning function?
Makes clear what is syntax, what is semantics
Allows us to consider notation as a separate issue
Expressions and meanings are not 1 to 1

Warning
It should never happen that the same

syntactical structure has more meanings

(Formal Languages and Compilers) 2. Lexical Analysis CS@UNICAM 18 / 52

Lexical Analysis: How can we do it?

ToC

1 Lexical Analysis: What does a Lexer do?

2 Short Notes on Formal Languages

3 Lexical Analysis: How can we do it?
Regular Expressions
Finite State Automata

(Formal Languages and Compilers) 2. Lexical Analysis CS@UNICAM 19 / 52

Lexical Analysis: How can we do it?

Languages

We need to define which is the set of strings in any token class.
Therefore we need to choose the right mechanisms to describe such
sets:

- Reducing at minimum the complexity needed to recognise
lexemes

- Identifying effective and simple ways to describe the patterns

- Regular languages seem to be enough powerful to define all the
lexemes in any token class

- Regular expressions are a suitable way to syntactically identify
strings belonging to a regular language

(Formal Languages and Compilers) 2. Lexical Analysis CS@UNICAM 20 / 52

Lexical Analysis: How can we do it?

Strings

Parts of a string
Terms related to stings:

I a prefix of a string s is the string obtained removing zero or more
characters from the end of s

I a suffix of a string s is the string obtained removing zero or more
characters from the beginning of s

I a substring of a string s is obtained deleting any prefix and any
suffix from s

I proper prefixes, suffixes and substrings of a string s are those
prefixes, suffixes and substrings of s, respectively, that are not
empty (✏) or not equal to s itself

I a subsequence of a string s is any string formed by deleting zero
or more not necessarily consecutive positions of s

(Formal Languages and Compilers) 2. Lexical Analysis CS@UNICAM 21 / 52

Lexical Analysis: How can we do it? Regular Expressions

Regular expressions (regexp): Syntax

To form a syntactically correct regexp we have the following rules:
Single character: ’c’ is a regexp for each c 2 ⌃;
Epsilon: ✏ is a regexp;
Union: a + b is a regexp if a and b are regexps (also written a|b);
Concatenation: a · b is a regexps if a and b are regexps (also
written ab);
Iteration (Kleene star): a⇤ is a regexp if a is a regexp;
Brackets: (a) is a regexp if a is a regexp

(Formal Languages and Compilers) 2. Lexical Analysis CS@UNICAM 22 / 52

Lexical Analysis: How can we do it? Regular Expressions

Regular expressions (regexp): Syntax

To avoid too much brackets we fix the following precedence and
associativity rules:

⇤ has the highest precedence and is left associative
· has the second highest precedence and is left associative
+ has the lowest precedence and is left associative
e.g., a + bc⇤ means a + (b(c⇤)); abc + d + e means
(((ab)c) + d) + e; . . .

Moreover we will use the following shorthands:
At least one: a+ ⌘ aa⇤

Option: a? ⌘ a + ✏

Range: [a � z] ⌘ 0a0 + 0b0 + · · ·+ 0z 0

Excluded range: [^a � z] ⌘ complement of [a � z]

(Formal Languages and Compilers) 2. Lexical Analysis CS@UNICAM 23 / 52

Lexical Analysis: How can we do it? Regular Expressions

Meaning function L

The meaning function L maps syntax to semantics: L (e) = M
where e is a regexp and M is a set of strings

Given an alphabet ⌃ and regular expressions a and b over ⌃:
L (✏) = {✏}
L (0c0) = {c}, where c 2 ⌃

L (a + b) = L (a) [L (b)

L (ab) = L (a)� L (b)

L (a⇤) =
S

i�0 L (a)i where
⇢

L (a)0 = {✏}
L (a)i = L (a)� L (a)i�1

� is the concatenation of languages:

L1 � L2 = {s1s2 | s1 2 L1 ^ s2 2 L2}

(Formal Languages and Compilers) 2. Lexical Analysis CS@UNICAM 24 / 52

Lexical Analysis: How can we do it? Regular Expressions

Some equivalence laws for regexps

Given regexps e1 and e2, they are equivalent, written e1 ⌘ e2, if and
only if L (e1) = L (e2)

Let a, b, c be regexps, then:

a + b ⌘ b + a + is commutative
a + (b + c) ⌘ (a + b) + c + is associative
a + a ⌘ a + is idempotent
a(bc) ⌘ (ab)c · is associative
a(b + c) ⌘ ab + bc · distributes over + on the left
(a + b)c ⌘ ac + bc · distributes over + on the right
a✏ ⌘ ✏a ⌘ a ✏ is the identity for ·
(✏+ a)⇤ ⌘ a⇤ ✏ is guaranteed in a closure
a⇤⇤ ⌘ a⇤ the Kleene star is idempotent

(Formal Languages and Compilers) 2. Lexical Analysis CS@UNICAM 25 / 52

Lexical Analysis: How can we do it? Regular Expressions

Regular Languages

Semantics of Regular Expressions
Regular expressions (syntax)
specify regular languages (semantics)

A language L is regular if and only if there exists a regular expression
e such that L (e) = L

Closure Properties of Regular Languages
Regular languages are closed with respect to union, intersection,
complement

If L1 and L2 are regular languages then L1 [L2, L1 \ L2 and Lc

1 are
regular languages

(Formal Languages and Compilers) 2. Lexical Analysis CS@UNICAM 26 / 52

Lexical Analysis: How can we do it? Regular Expressions

Exercise
Consider ⌃ = {0, 1}. What are the sets defined by the following REs?

I 1⇤

I (1 + 0)1
I 0⇤ + 1⇤

I (0 + 1)⇤

Exercise
Given the regular language identified by (0 + 1)⇤1(0 + 1)⇤ which are the regular
expressions identifying the same language among the following one:

I (01 + 11)⇤(0 + 1)⇤

I (0 + 1)⇤(10 + 11 + 1)(0 + 1)⇤

I (1 + 0)⇤1(1 + 0)⇤

I (0 + 1)⇤(0 + 1)(0 + 1)⇤

(Formal Languages and Compilers) 2. Lexical Analysis CS@UNICAM 27 / 52

Lexical Analysis: How can we do it? Regular Expressions

Exercise
Consider ⌃ = {0, 1}. What are the sets defined by the following REs?

I 1⇤

I (1 + 0)1
I 0⇤ + 1⇤

I (0 + 1)⇤

Exercise
Given the regular language identified by (0 + 1)⇤1(0 + 1)⇤ which are the regular
expressions identifying the same language among the following one:

I (01 + 11)⇤(0 + 1)⇤

I (0 + 1)⇤(10 + 11 + 1)(0 + 1)⇤

I (1 + 0)⇤1(1 + 0)⇤

I (0 + 1)⇤(0 + 1)(0 + 1)⇤

(Formal Languages and Compilers) 2. Lexical Analysis CS@UNICAM 27 / 52

Lexical Analysis: How can we do it? Regular Expressions

Exercise
Choose the regular languages that are correct specifications of the
following English-language description:
Twelve-hour times of the form “04:13PM”. Minutes should always be a two digit
number, but hours may be a single digit

I (0 + 1)?[0 � 9] : [0 � 5][0 � 9](AM + PM)

I ((0 + ✏)[0 � 9] + 1[0 � 2]) : [0 � 5][0 � 9](AM + PM)

I (0⇤[0 � 9] + 1[0 � 2]) : [0 � 5][0 � 9](AM + PM)

I (0?[0 � 9] + 1(0 + 1 + 2) : [0 � 5][0 � 9](A + P)M

(Formal Languages and Compilers) 2. Lexical Analysis CS@UNICAM 28 / 52

Lexical Analysis: How can we do it? Regular Expressions

Exercise
Describe the languages denoted by the following RegExp:

I a(a|b)⇤a
I a⇤ba⇤ba⇤ba⇤

I ((✏|a)b⇤)⇤

(Formal Languages and Compilers) 2. Lexical Analysis CS@UNICAM 29 / 52

