Meaning Function

Once you defined a way to describe the strings in a language it is important to define a meaning function \mathscr{L} that maps syntax to semantics

- e.g. the case for numbers
- Why using a meaning function?
 - Makes clear what is syntax, what is semantics
 - Allows us to consider notation as a separate issue
 - Expressions and meanings are not 1 to 1

Warning

It should never happen that the same syntactical structure has more meanings

(Formal Languages and Compilers)

2. Lexical Analysis

CS@UNICAM 18 / 52

Meaning Function

Once you defined a way to describe the strings in a language it is important to define a meaning function \mathscr{L} that maps syntax to semantics

- e.g. the case for numbers
- Why using a meaning function?
 - Makes clear what is syntax, what is semantics
 - Allows us to consider notation as a separate issue
 - Expressions and meanings are not 1 to 1

Warning

It should never happen that the same syntactical structure has more meanings

Meaning Function

Once you defined a way to describe the strings in a language it is important to define a meaning function \mathscr{L} that maps syntax to semantics

- e.g. the case for numbers
- Why using a meaning function?
 - Makes clear what is syntax, what is semantics
 - Allows us to consider notation as a separate issue
 - Expressions and meanings are not 1 to 1

Warning

It should never happen that the same syntactical structure has more meanings

(Formal Languages and Compilers)

2. Lexical Analysis

CS@UNICAM 18 / 52

ToC

Lexical Analysis: What does a Lexer do?

Short Notes on Formal Languages

Lexical Analysis: How can we do it?

- Regular Expressions
- Finite State Automata

(I) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1))

Languages

We need to define which is the set of strings in any token class. Therefore we need to choose the right mechanisms to describe such sets:

- Reducing at minimum the complexity needed to recognise lexemes
- Identifying effective and simple ways to describe the patterns
- Regular languages seem to be enough powerful to define all the lexemes in any token class
- Regular expressions are a suitable way to syntactically identify strings belonging to a regular language

Strings

Parts of a string

Terms related to stings:

- a prefix of a string s is the string obtained removing zero or more characters from the end of s
- a suffix of a string s is the string obtained removing zero or more characters from the beginning of s
- a substring of a string s is obtained deleting any prefix and any suffix from s
- proper prefixes, suffixes and substrings of a string s are those prefixes, suffixes and substrings of s, respectively, that are not empty (ε) or not equal to s itself
- a subsequence of a string s is any string formed by deleting zero or more not necessarily consecutive positions of s

Regular Expressions

Regular expressions (regexp): Syntax

To form a syntactically correct regexp we have the following rules:

- Single character: 'c' is a regexp for each $c \in \Sigma$;
- Epsilon: ϵ is a regexp;
- Union: a + b is a regexp if a and b are regexps (also written a|b);
- Concatenation: a · b is a regexps if a and b are regexps (also written ab);
- Iteration (Kleene star): a* is a regexp if a is a regexp;
- Brackets: (a) is a regexp if a is a regexp

Regular expressions (regexp): Syntax

To avoid too much brackets we fix the following precedence and associativity rules:

- * has the highest precedence and is left associative
- has the second highest precedence and is left associative
- + has the lowest precedence and is left associative
- e.g., a + bc* means a + (b(c*)); abc + d + e means (((ab)c) + d) + e; ...

Moreover we will use the following shorthands:

- At least one: $a^+ \equiv aa^*$
- Option: $a? \equiv a + \epsilon$
- Range: $[a z] \equiv 'a' + 'b' + \dots + 'z'$
- Excluded range: $[^{A}a z] \equiv \text{complement of } [a z]$

The meaning function *L* maps syntax to semantics: *L*(*e*) = *M* where *e* is a regexp and *M* is a set of strings

Given an alphabet Σ and regular expressions *a* and *b* over Σ :

•
$$\mathscr{L}(\epsilon) = \{\epsilon\}$$

• $\mathscr{L}('c') = \{c\}$, where $c \in \Sigma$
• $\mathscr{L}(a+b) = \mathscr{L}(a) \cup \mathscr{L}(b)$
• $\mathscr{L}(ab) = \mathscr{L}(a) \odot \mathscr{L}(b)$
• $\mathscr{L}(a^*) = \bigcup_{i \ge 0} \mathscr{L}(a)^i$ where $\begin{cases} \mathscr{L}(a)^0 = \{\epsilon\}\\ \mathscr{L}(a)^i = \mathscr{L}(a) \odot \mathscr{L}(a)^{i-1} \end{cases}$

 \odot is the concatenation of languages:

$$L_1 \odot L_2 = \{s_1 s_2 \mid s_1 \in L_1 \land s_2 \in L_2\}$$

B + 4 B +

Some equivalence laws for regexps

Given regexps e_1 and e_2 , they are equivalent, written $e_1 \equiv e_2$, if and only if $\mathcal{L}(e_1) = \mathcal{L}(e_2)$

Let *a*, *b*, *c* be regexps, then:

$$a + b \equiv b + a$$

$$a + (b + c) \equiv (a + b) + c$$

$$a + a \equiv a$$

$$a(bc) \equiv (ab)c$$

$$a(b + c) \equiv ab + bc$$

$$(a + b)c \equiv ac + bc$$

$$a\epsilon \equiv \epsilon a \equiv a$$

$$(\epsilon + a)^* \equiv a^*$$

$$a^{**} \equiv a^*$$

- + is commutative
- c + is associative
 - + is idempotent
 - · is associative
 - \cdot distributes over + on the left
 - \cdot distributes over + on the right
 - ϵ is the identity for \cdot
 - ϵ is guaranteed in a closure the Kleene star is idempotent

・ ロ ト ・ 同 ト ・ 目 ト ・ 目 ト

Regular Languages

Semantics of Regular Expressions

Regular expressions (syntax) specify regular languages (semantics)

A language *L* is regular if and only if there exists a regular expression *e* such that $\mathcal{L}(e) = L$

Closure Properties of Regular Languages

Regular languages are closed with respect to union, intersection, complement

If L_1 and L_2 are regular languages then $L_1 \cup L_2$, $L_1 \cap L_2$ and L_1^c are regular languages

Consider $\Sigma = \{0, 1\}$. What are the sets defined by the following REs?

- ▶ 1*
- ► (1+0)1
- ► 0* + 1*
- ▶ (0+1)*

Exercise

Given the regular language identified by $(0 + 1)^* 1(0 + 1)^*$ which are the regular expressions identifying the same language among the following one:

- ▶ $(01+11)^*(0+1)^*$
- $(0+1)^*(10+11+1)(0+1)^*$
- $(1+0)^*1(1+0)$
- $(0+1)^*(0+1)(0+1)^*$

3

イロト 不得 トイヨト イヨト

Consider $\Sigma = \{0, 1\}$. What are the sets defined by the following REs?

- ▶ 1*
- ► (1+0)1
- ▶ 0* + 1*
- ▶ (0+1)*

Exercise

Given the regular language identified by $(0+1)^*1(0+1)^*$ which are the regular expressions identifying the same language among the following one:

- $(01+11)^*(0+1)^*$
- $(0+1)^*(10+11+1)(0+1)^*$
- $(1+0)^*1(1+0)^*$
- $(0+1)^*(0+1)(0+1)^*$

Choose the regular languages that are correct specifications of the following English-language description:

Twelve-hour times of the form "04:13PM". Minutes should always be a two digit number, but hours may be a single digit

- (0+1)?[0-9]: [0-5][0-9](AM+PM)
- $((0 + \epsilon)[0 9] + 1[0 2]) : [0 5][0 9](AM + PM)$
- $(0^*[0-9] + 1[0-2]) : [0-5][0-9](AM + PM)$
- (0?[0-9]+1(0+1+2):[0-5][0-9](A+P)M

< 口 > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

Describe the languages denoted by the following RegExp:

- ► a(a|b)*a
- ▶ a*ba*ba*ba*
- ► ((ε|a)b*)*