Universita di Camerino

1336

2. Lexical Analysis

Andrea Polini, Luca Tesei

Formal Languages and Compilers
MSc in Computer Science
University of Camerino

(Formal Lang nd Compilers) 2. Lexical Analysis CS@UNICAM

1/18



Lexical Analysis: What does a Lexer do?

ToC

@ Lexical Analysis: What does a Lexer do?

(Formal Lang nd Compilers) 2. Lexical Analysis CS@UNICAM 2/18



What does a Lexer do?

Lexical Analysis

nd Compilers) 2. Lexical Analysis

CS@UNICAM

3/18



Lexical Analysis: What does a Lexer do?

Lexical Analysis

\tif (i==73)\n\t\tz=0;\n\telse\n\t\tz=1;

(Formal Langu and Compilers) 2. Lexical Analysis CS@UNICAM 3/18



Lexical Analysis: What does a Lexer do?

Token, Pattern Lexeme

Token

A token is a pair consisting of a token name and an optional attribute
value. The token names are the input symbols that the parser
processes.

l A\

A pattern is a description of the form that the lexemes of a token may
take. In the case of a keyword as a token, the pattern is just the
sequence of characters that form the keyword.

Lexeme

A lexeme is a sequence of characters in the source program that
matches the pattern for a token and is identified by the lexical analyzer
as an instance of that token.

| A\

A\

(Formal Languages and Compilers) 2. Lexical Analysis CS@UNICAM 4/18



Lexical Analysis: What does a Lexer do?

Lexical Analysis

@ Token Class (or Class)
- In English: Noun, Verb, Adjective, Adverb, Article, . ..

- In a programming language: Identifier, Keywords, “(”, “)”, Numbers,

(Formal Langu and Compilers) 2. Lexical Analysis CS@UNICAM 5/18



Lexical Analysis

@ Token classes corresponds to sets of strings

(Formal Langu and ers 2. Lexical Analysis CS@UNICAM 6/18



Lexical Analysis: What does a Lexer do?

Lexical Analysis

@ Token classes corresponds to sets of strings

@ Identifier
- strings of letter or digits starting with a letter

(Formal Langu and Compile 2. Lexical Analysis CS@UNICAM 6/18



Lexical Analysis: What does a Lexer do?

Lexical Analysis

@ Token classes corresponds to sets of strings

@ Identifier

- strings of letter or digits starting with a letter
@ Integer

- a non-empty string of digits

(Formal Langu and Compilers) 2. Lexical Analysis CS@UNICAM 6/18



Lexical Analysis: What does a Lexer do?

Lexical Analysis

@ Token classes corresponds to sets of strings

@ Identifier

- strings of letter or digits starting with a letter
@ Integer

- a non-empty string of digits
@ Keyword

- “else”, “if”, “while”, ...

(Formal Langue nd Compilers) 2. Lexical Analysis CS@UNICAM

6/18



Lexical Analysis: What does a Lexer do?

Lexical Analysis

@ Token classes corresponds to sets of strings

@ Identifier
- strings of letter or digits starting with a letter
@ Integer
- a non-empty string of digits
@ Keyword
- “else”, “if”, “while”, ...
@ Whitespace
- a non-empty sequence of blanks, newlines, and tabs

(Formal Langu and Compilers) 2. Lexical Analysis CS@UNICAM 6/18



Lexical Analysis: What does a Lexer do?

Lexical Analysis

Therefore the role of the lexical analyser (Lexer) is:
@ Classify program substring according to role (token class)
@ communicate tokens to parser

Characters flow Lexical <class, string>
- Parser ---
Analyzer

(Formal Langu and Compilers) 2. Lexical Analysis CS@UNICAM

7/18



Lexical Analysis: What does a Lexer do?

Lexical Analysis

Therefore the role of the lexical analyser (Lexer) is:
@ Classify program substring according to role (token class)
@ communicate tokens to parser

Characters flow H <class, string>
i Lexical P L
inti=10; Analyzer

(Formal Langu and Compilers) 2. Lexical Analysis CS@UNICAM

7/18



Lexical Analysis: What does a Lexer do?

Lexical Analysis

Therefore the role of the lexical analyser (Lexer) is:
@ Classify program substring according to role (token class)
@ communicate tokens to parser

Characters flow H <class, string>
i Lexical P L
inti=10; Analyzer

Why is not wise to merge the two components?

(Formal Lan nd Compilers) 2. Lexical Analysis CS@UNICAM

7/18



Lexical Analysis: What does a Lexer do?

Lexical Analysis

Let’s analyse these lines of code:

\tif (i==73)\n\t\tz=0;\n\telse\n\t\tz=1;

x=0; \n\twhile (x<10) {\n\tx++;\n}

Token Classes: Identifier, Integer, Keyword, Whitespace

(Formal Lang nd Compilers) 2. Lexical Analysis CS@UNICAM

8/18



Lexical Analysis: What does a Lexer do?

Lexical Analysis

Therefore an implementation of a lexical analyser must do two things:
@ Recognise substrings corresponding to tokens
o the lexemes

@ Identify the token class for each lexemes

(Formal Langusz nd Compilers) 2. Lexical Analysis CS@UNICAM 9/18



Lexical Analysis: What does a Lexer do?

Lexical Analysis - Tricky problems

@ FORTRAN rule: whitespace is insignificant
o i.e. VA R1 is the same as VAR

DO 5 I

1,25

DO 5 I = 1.25

In FORTRAN the “5” refers to a label you will find in the following of the program code

(Formal

2. Lexical Analysis CS@UNICAM 10/18



Lexical Analysis: What does a Lexer do?

Lexical Analysis - Tricky problems

@ The goal is to partition the string. This is implemented by reading
left-to-right, recognising one token at a time

@ “Lookahead” may be required to decide where one token ends
and the next token begins

@ PL/1 keywords are not reserved

IF ELSE THEN THEN = ELSE; ELSE ELSE = THEN

(Formal Languages and Compilers) 2. Lexical Analysis CS@UNICAM 11/18



Lexical Analysis: What does a Lexer do?

Lexical Analysis - Tricky problems

@ The goal is to partition the string. This is implemented by reading
left-to-right, recognising one token at a time

@ “Lookahead” may be required to decide where one token ends
and the next token begins

@ PL/1 keywords are not reserved

IF ELSE THEN THEN = ELSE; ELSE ELSE = THEN

DECLARE (ARG1, ..., ARGN)
Is DECLARE a keyword or an array reference?

(Formal Languages and Compilers) 2. Lexical Analysis CS@UNICAM 11/18



Lexical Analysis: What does a Lexer do?

Lexical Analysis - Tricky problems

@ The goal is to partition the string. This is implemented by reading
left-to-right, recognising one token at a time

@ “Lookahead” may be required to decide where one token ends
and the next token begins

@ PL/1 keywords are not reserved

IF ELSE THEN THEN = ELSE; ELSE ELSE = THEN

DECLARE (ARG1, ..., ARGN)
Is DECLARE a keyword or an array reference?

Need for an unbounded lookahead

(Formal Languages and Compilers) 2. Lexical Analysis CS@UNICAM 11/18



Lexical Analysis - Tricky problems

o C++ template syntax:

Foo<Bar>

@ C++ stream syntax:

cin >> var;

(Formal Langu and pilers 2. Lexical Analysis CS@UNICAM

12/18



Lexical Analysis - Tricky problems

o C++ template syntax:

Foo<Bar>

@ C++ stream syntax:

cin >> var;

Foo<Bar<Barr>>

(Formal Langu and pilers 2. Lexical Analysis CS@UNICAM

12/18



Short Notes on Formal Languages

ToC

e Short Notes on Formal Languages

2. Lexical Analysis CS@UNICAM 13/18



Short Notes on Formal Languages

Languages

Language
Let X be a set of characters generally referred to as the alphabet. A
language over X is a set of strings of characters drawn from ¥

Alphabet = English character — Language = English sentences
Alphabet = ASCIl — Language = C programs

Given ¥ = {a, b} examples of simple languages are:
@ L1 ={a, ab,aa}
@ L, ={b, ab, aabb}
@ L3 = {s| s has an equal number of a’s and b’s}
° ...

(Formal Languages and Compilers) 2. Lexical Analysis CS@UNICAM 14/18



Short Notes on Formal Languages

Grammar Definition

A Grammar G is a tuple (V7, Vs, S, P) where:
» V7 is afinite and non empty set of terminal symbols (alphabet)
» V) is a finite set of non-terminal symbols s.t. VN Vy = &
» S € V) is the start symbol

» P is a finite set of productions s.t. P C (V* - V- V*) x V* where
V¥ =VrUVy

(Formal Languages and Compilers) 2. Lexical Analysis CS@UNICAM 15/18



Short Notes on Formal Languages

Derivations

Derivations

Given a grammar G = (V1, Vy, S, P) a derivation is a sequence of
strings o1, ¢», ..., ¢n S.1.

Vie{l,.,nt.¢; e V*AVie{l,..,n—1}3Ip e P: ¢j =P ¢j1

We generally write ¢4 —* ¢, to indicate that from ¢4 it is possible to
derive ¢, repeatedly applying productions in P

(Formal Languages and Compilers) 2. Lexical Analysis CS@UNICAM 16/18



Short Notes on Formal Languages

Derivations

Derivations
Given a grammar G = (V1, Vy, S, P) a derivation is a sequence of

strings o1, ¢», ..., ¢n S.1.

Vie{l,.,nt.¢; e V*AVie{l,..,n—1}3Ip e P: ¢j =P ¢j1

We generally write ¢4 —* ¢, to indicate that from ¢4 it is possible to
derive ¢, repeatedly applying productions in P

Generated Language

The language generated by a grammar G = (Vr, Var, S, P)
corresponds to: £(G) = {x | x € Vs AS =" x}

| A\

\

(Formal Languages and Compilers) 2. Lexical Analysis CS@UNICAM 16/18



Short Notes on Formal Languages

Chomsky Hierarchy

A hierarchy of grammars can be defined imposing constraints on the
structure of the productions in set P («, 8,7 € V*,;a€ V1, A, B € Vp):
TO. Unrestricted Grammars:

e Production Schema: no constraints
@ Recognizing Automaton: Turing Machines

T1. Context Sensitive Grammars:

e Production Schema: aAS8 — ayf
e Recognizing Automaton: Linear Bound Automaton (LBA)

T2. Context-Free Grammars:

@ Production Schema: A — ~
e Recognizing Automaton: Non-deterministic Push-down Automaton

T3. Regular Grammars:

e Production Schema: A— aor A— aB
e Recognizing Automaton: Finite State Automaton

(Formal Langu nd Compilers) 2. Lexical Analysis CS@UNICAM 17/18



Short Notes on Formal Languages

Meaning function .

Meaning Function

Once you defined a way to describe the strings in a language it is
important to define a meaning function . that maps syntax to
semantics

» e.g. the case for numbers

(Formal Lan nd Compilers) 2. Lexical Analysis CS@UNICAM 18/18



Short Notes on Formal Languages

Meaning function .

Meaning Function

Once you defined a way to describe the strings in a language it is
important to define a meaning function . that maps syntax to
semantics

» e.g. the case for numbers

@ Why using a meaning function?
o Makes clear what is syntax, what is semantics
o Allows us to consider notation as a separate issue
e Expressions and meanings are not 1 to 1

(Formal Lan nd Compilers) 2. Lexical Analysis CS@UNICAM 18/18



Short Notes on Formal Languages

Meaning function .

Meaning Function

Once you defined a way to describe the strings in a language it is
important to define a meaning function . that maps syntax to
semantics

» e.g. the case for numbers

@ Why using a meaning function?
o Makes clear what is syntax, what is semantics
o Allows us to consider notation as a separate issue
e Expressions and meanings are not 1 to 1

It should never happen that the same
syntactical structure has more meanings

(Formal Lang and Compilers) 2. Lexical Analysis CS@UNICAM 18/18



	Lexical Analysis: What does a Lexer do?
	Short Notes on Formal Languages

