
2. Lexical Analysis

Andrea Polini, Luca Tesei

Formal Languages and Compilers
MSc in Computer Science

University of Camerino

(Formal Languages and Compilers) 2. Lexical Analysis CS@UNICAM 1 / 18



Lexical Analysis: What does a Lexer do?

ToC

1 Lexical Analysis: What does a Lexer do?

2 Short Notes on Formal Languages

(Formal Languages and Compilers) 2. Lexical Analysis CS@UNICAM 2 / 18



Lexical Analysis: What does a Lexer do?

Lexical Analysis

if (i==j)
z=0;

else
z=1;

\tif (i==j)\n\t\tz=0;\n\telse\n\t\tz=1;

(Formal Languages and Compilers) 2. Lexical Analysis CS@UNICAM 3 / 18



Lexical Analysis: What does a Lexer do?

Lexical Analysis

if (i==j)
z=0;

else
z=1;

\tif (i==j)\n\t\tz=0;\n\telse\n\t\tz=1;

(Formal Languages and Compilers) 2. Lexical Analysis CS@UNICAM 3 / 18



Lexical Analysis: What does a Lexer do?

Token, Pattern Lexeme

Token
A token is a pair consisting of a token name and an optional attribute
value. The token names are the input symbols that the parser
processes.

Pattern
A pattern is a description of the form that the lexemes of a token may
take. In the case of a keyword as a token, the pattern is just the
sequence of characters that form the keyword.

Lexeme
A lexeme is a sequence of characters in the source program that
matches the pattern for a token and is identified by the lexical analyzer
as an instance of that token.

(Formal Languages and Compilers) 2. Lexical Analysis CS@UNICAM 4 / 18



Lexical Analysis: What does a Lexer do?

Lexical Analysis

Token Class (or Class)
- In English: Noun, Verb, Adjective, Adverb, Article, . . .

- In a programming language: Identifier, Keywords, “(”, “)”, Numbers,
. . .

(Formal Languages and Compilers) 2. Lexical Analysis CS@UNICAM 5 / 18



Lexical Analysis: What does a Lexer do?

Lexical Analysis

Token classes corresponds to sets of strings

Identifier
- strings of letter or digits starting with a letter

Integer
- a non-empty string of digits

Keyword
- “else”, “if”, “while”, . . .

Whitespace
- a non-empty sequence of blanks, newlines, and tabs

(Formal Languages and Compilers) 2. Lexical Analysis CS@UNICAM 6 / 18



Lexical Analysis: What does a Lexer do?

Lexical Analysis

Token classes corresponds to sets of strings

Identifier
- strings of letter or digits starting with a letter

Integer
- a non-empty string of digits

Keyword
- “else”, “if”, “while”, . . .

Whitespace
- a non-empty sequence of blanks, newlines, and tabs

(Formal Languages and Compilers) 2. Lexical Analysis CS@UNICAM 6 / 18



Lexical Analysis: What does a Lexer do?

Lexical Analysis

Token classes corresponds to sets of strings

Identifier
- strings of letter or digits starting with a letter

Integer
- a non-empty string of digits

Keyword
- “else”, “if”, “while”, . . .

Whitespace
- a non-empty sequence of blanks, newlines, and tabs

(Formal Languages and Compilers) 2. Lexical Analysis CS@UNICAM 6 / 18



Lexical Analysis: What does a Lexer do?

Lexical Analysis

Token classes corresponds to sets of strings

Identifier
- strings of letter or digits starting with a letter

Integer
- a non-empty string of digits

Keyword
- “else”, “if”, “while”, . . .

Whitespace
- a non-empty sequence of blanks, newlines, and tabs

(Formal Languages and Compilers) 2. Lexical Analysis CS@UNICAM 6 / 18



Lexical Analysis: What does a Lexer do?

Lexical Analysis

Token classes corresponds to sets of strings

Identifier
- strings of letter or digits starting with a letter

Integer
- a non-empty string of digits

Keyword
- “else”, “if”, “while”, . . .

Whitespace
- a non-empty sequence of blanks, newlines, and tabs

(Formal Languages and Compilers) 2. Lexical Analysis CS@UNICAM 6 / 18



Lexical Analysis: What does a Lexer do?

Lexical Analysis

Therefore the role of the lexical analyser (Lexer) is:
Classify program substring according to role (token class)
communicate tokens to parser

Why is not wise to merge the two components?

(Formal Languages and Compilers) 2. Lexical Analysis CS@UNICAM 7 / 18



Lexical Analysis: What does a Lexer do?

Lexical Analysis

Therefore the role of the lexical analyser (Lexer) is:
Classify program substring according to role (token class)
communicate tokens to parser

Why is not wise to merge the two components?

(Formal Languages and Compilers) 2. Lexical Analysis CS@UNICAM 7 / 18



Lexical Analysis: What does a Lexer do?

Lexical Analysis

Therefore the role of the lexical analyser (Lexer) is:
Classify program substring according to role (token class)
communicate tokens to parser

Why is not wise to merge the two components?

(Formal Languages and Compilers) 2. Lexical Analysis CS@UNICAM 7 / 18



Lexical Analysis: What does a Lexer do?

Lexical Analysis

Let’s analyse these lines of code:

\tif (i==j)\n\t\tz=0;\n\telse\n\t\tz=1;

x=0;\n\twhile (x<10) {\n\tx++;\n}

Token Classes: Identifier, Integer, Keyword, Whitespace

(Formal Languages and Compilers) 2. Lexical Analysis CS@UNICAM 8 / 18



Lexical Analysis: What does a Lexer do?

Lexical Analysis

Therefore an implementation of a lexical analyser must do two things:
Recognise substrings corresponding to tokens

the lexemes

Identify the token class for each lexemes

(Formal Languages and Compilers) 2. Lexical Analysis CS@UNICAM 9 / 18



Lexical Analysis: What does a Lexer do?

Lexical Analysis - Tricky problems

FORTRAN rule: whitespace is insignificant
i.e. VA R1 is the same as VAR1

DO 5 I = 1,25

DO 5 I = 1.25

In FORTRAN the “5” refers to a label you will find in the following of the program code

(Formal Languages and Compilers) 2. Lexical Analysis CS@UNICAM 10 / 18



Lexical Analysis: What does a Lexer do?

Lexical Analysis - Tricky problems

The goal is to partition the string. This is implemented by reading
left-to-right, recognising one token at a time
“Lookahead” may be required to decide where one token ends
and the next token begins
PL/1 keywords are not reserved

IF ELSE THEN THEN = ELSE; ELSE ELSE = THEN

DECLARE(ARG1,...,ARGN)
Is DECLARE a keyword or an array reference?

Need for an unbounded lookahead

(Formal Languages and Compilers) 2. Lexical Analysis CS@UNICAM 11 / 18



Lexical Analysis: What does a Lexer do?

Lexical Analysis - Tricky problems

The goal is to partition the string. This is implemented by reading
left-to-right, recognising one token at a time
“Lookahead” may be required to decide where one token ends
and the next token begins
PL/1 keywords are not reserved

IF ELSE THEN THEN = ELSE; ELSE ELSE = THEN

DECLARE(ARG1,...,ARGN)
Is DECLARE a keyword or an array reference?

Need for an unbounded lookahead

(Formal Languages and Compilers) 2. Lexical Analysis CS@UNICAM 11 / 18



Lexical Analysis: What does a Lexer do?

Lexical Analysis - Tricky problems

The goal is to partition the string. This is implemented by reading
left-to-right, recognising one token at a time
“Lookahead” may be required to decide where one token ends
and the next token begins
PL/1 keywords are not reserved

IF ELSE THEN THEN = ELSE; ELSE ELSE = THEN

DECLARE(ARG1,...,ARGN)
Is DECLARE a keyword or an array reference?

Need for an unbounded lookahead

(Formal Languages and Compilers) 2. Lexical Analysis CS@UNICAM 11 / 18



Lexical Analysis: What does a Lexer do?

Lexical Analysis - Tricky problems

C++ template syntax:

Foo<Bar>

C++ stream syntax:

cin >> var;

Foo<Bar<Barr>>

(Formal Languages and Compilers) 2. Lexical Analysis CS@UNICAM 12 / 18



Lexical Analysis: What does a Lexer do?

Lexical Analysis - Tricky problems

C++ template syntax:

Foo<Bar>

C++ stream syntax:

cin >> var;

Foo<Bar<Barr>>

(Formal Languages and Compilers) 2. Lexical Analysis CS@UNICAM 12 / 18



Short Notes on Formal Languages

ToC

1 Lexical Analysis: What does a Lexer do?

2 Short Notes on Formal Languages

(Formal Languages and Compilers) 2. Lexical Analysis CS@UNICAM 13 / 18



Short Notes on Formal Languages

Languages

Language
Let Σ be a set of characters generally referred to as the alphabet. A
language over Σ is a set of strings of characters drawn from Σ

Alphabet = English character =⇒ Language = English sentences
Alphabet = ASCII =⇒ Language = C programs

Given Σ = {a,b} examples of simple languages are:
L1 = {a,ab,aa}
L2 = {b,ab,aabb}
L3 = {s | s has an equal number of a’s and b’s}
. . .

(Formal Languages and Compilers) 2. Lexical Analysis CS@UNICAM 14 / 18



Short Notes on Formal Languages

Grammar Definition

Grammar
A Grammar G is a tuple 〈VT ,VN ,S,P〉 where:

I VT is a finite and non empty set of terminal symbols (alphabet)
I VN is a finite set of non-terminal symbols s.t. VN ∩ VT = ∅
I S ∈ VN is the start symbol
I P is a finite set of productions s.t. P ⊆ (V∗ · VN · V∗)× V∗ where
V∗ = VT ∪ VN

(Formal Languages and Compilers) 2. Lexical Analysis CS@UNICAM 15 / 18



Short Notes on Formal Languages

Derivations

Derivations
Given a grammar G = 〈VT ,VN ,S,P〉 a derivation is a sequence of
strings φ1, φ2, ..., φn s.t.
∀i ∈ {1, ..,n}.φi ∈ V∗ ∧ ∀i ∈ {1, ...,n − 1}.∃p ∈ P : φi →p φi+1
We generally write φ1 →∗ φn to indicate that from φ1 it is possible to
derive φn repeatedly applying productions in P

Generated Language
The language generated by a grammar G = 〈VT ,VN ,S,P〉
corresponds to: L(G) = {x | x ∈ V∗T ∧ S →∗ x}

(Formal Languages and Compilers) 2. Lexical Analysis CS@UNICAM 16 / 18



Short Notes on Formal Languages

Derivations

Derivations
Given a grammar G = 〈VT ,VN ,S,P〉 a derivation is a sequence of
strings φ1, φ2, ..., φn s.t.
∀i ∈ {1, ..,n}.φi ∈ V∗ ∧ ∀i ∈ {1, ...,n − 1}.∃p ∈ P : φi →p φi+1
We generally write φ1 →∗ φn to indicate that from φ1 it is possible to
derive φn repeatedly applying productions in P

Generated Language
The language generated by a grammar G = 〈VT ,VN ,S,P〉
corresponds to: L(G) = {x | x ∈ V∗T ∧ S →∗ x}

(Formal Languages and Compilers) 2. Lexical Analysis CS@UNICAM 16 / 18



Short Notes on Formal Languages

Chomsky Hierarchy

A hierarchy of grammars can be defined imposing constraints on the
structure of the productions in set P (α, β, γ ∈ V∗,a ∈ VT ,A,B ∈ VN ):
T0. Unrestricted Grammars:

Production Schema: no constraints
Recognizing Automaton: Turing Machines

T1. Context Sensitive Grammars:
Production Schema: αAβ → αγβ
Recognizing Automaton: Linear Bound Automaton (LBA)

T2. Context-Free Grammars:
Production Schema: A→ γ
Recognizing Automaton: Non-deterministic Push-down Automaton

T3. Regular Grammars:
Production Schema: A→ a or A→ aB
Recognizing Automaton: Finite State Automaton

(Formal Languages and Compilers) 2. Lexical Analysis CS@UNICAM 17 / 18



Short Notes on Formal Languages

Meaning function L

Meaning Function
Once you defined a way to describe the strings in a language it is
important to define a meaning function L that maps syntax to
semantics

I e.g. the case for numbers

Why using a meaning function?
Makes clear what is syntax, what is semantics
Allows us to consider notation as a separate issue
Expressions and meanings are not 1 to 1

Warning
It should never happen that the same

syntactical structure has more meanings

(Formal Languages and Compilers) 2. Lexical Analysis CS@UNICAM 18 / 18



Short Notes on Formal Languages

Meaning function L

Meaning Function
Once you defined a way to describe the strings in a language it is
important to define a meaning function L that maps syntax to
semantics

I e.g. the case for numbers

Why using a meaning function?
Makes clear what is syntax, what is semantics
Allows us to consider notation as a separate issue
Expressions and meanings are not 1 to 1

Warning
It should never happen that the same

syntactical structure has more meanings

(Formal Languages and Compilers) 2. Lexical Analysis CS@UNICAM 18 / 18



Short Notes on Formal Languages

Meaning function L

Meaning Function
Once you defined a way to describe the strings in a language it is
important to define a meaning function L that maps syntax to
semantics

I e.g. the case for numbers

Why using a meaning function?
Makes clear what is syntax, what is semantics
Allows us to consider notation as a separate issue
Expressions and meanings are not 1 to 1

Warning
It should never happen that the same

syntactical structure has more meanings

(Formal Languages and Compilers) 2. Lexical Analysis CS@UNICAM 18 / 18


	Lexical Analysis: What does a Lexer do?
	Short Notes on Formal Languages

