
5. Semantic Analysis II
Type Checking – Intermediate Code Generation

Andrea Polini, Luca Tesei

Formal Languages and Compilers
MSc in Computer Science

University of Camerino

(Formal Languages and Compilers) 5. Semantic Analysis II CS@UNICAM 1 / 36

Preliminaries

ToC

1 Preliminaries

2 Types

3 Control Flow

(Formal Languages and Compilers) 5. Semantic Analysis II CS@UNICAM 2 / 36

Preliminaries

Intermediate Code generation

Last block in the front end of a compiler. We will consider:
intermediate representations – memory management is still
abstracted
static checking – type checking in particular
intermediate code generation – the C programming language is
often selected as an intermediate form because it is flexible, it
compiles into efficient machine code and its compilers are widely
available.

(Formal Languages and Compilers) 5. Semantic Analysis II CS@UNICAM 3 / 36

Preliminaries

Intermediate Representations

The two most important intermediate representations are:
Trees: parse trees, (abstract) syntax trees
Linear representations: three-address code

(Formal Languages and Compilers) 5. Semantic Analysis II CS@UNICAM 4 / 36

Preliminaries

Tree Representations

(Abstract) syntax trees can be generated during parsing using a
synthesized attribute
Let’s see an example for a basic while language

(Formal Languages and Compilers) 5. Semantic Analysis II CS@UNICAM 5 / 36

Preliminaries

Tree Representations

Example of syntax tree

(Formal Languages and Compilers) 5. Semantic Analysis II CS@UNICAM 6 / 36

Preliminaries

Concrete vs Abstract Syntax

Nodes with “similar” treatment for translation and type checking
can be grouped

(Formal Languages and Compilers) 5. Semantic Analysis II CS@UNICAM 7 / 36

Preliminaries

Direct Acyclic Graph (DAG)

A Direct Acyclic Graph (DAG) can be considered a compacted form of
an Abstract Syntax Tree where common terms are not repeated. The
result is that “leaves” will have more than one parent resulting in a
graph rather than a tree structure

Consider the case of the expression a + a ∗ (b − c) + (b − c) ∗ d

(Formal Languages and Compilers) 5. Semantic Analysis II CS@UNICAM 8 / 36

Preliminaries

DAG generation

How to generate it
The derivation of a DAG is much similar to that of a AST. In particular it
is enough to revise the implementation of the Node method to avoid
the replications of nodes

Let’s recall the SDD for simple expressions...

(Formal Languages and Compilers) 5. Semantic Analysis II CS@UNICAM 9 / 36

Preliminaries

Three Address Code

The term “three-address code” comes from instructions of the general
form x = y op z with three addresses (two for the operands and one
for the result

In “three-address code” operations there is at most one operator on
the right side of each single instruction.
Consider the expression: x+y*z the codification will look like . . .

Building blocks
Three address code is built from two concepts: addresses,
instructions.

(Formal Languages and Compilers) 5. Semantic Analysis II CS@UNICAM 10 / 36

Preliminaries

Three Address Code

The term “three-address code” comes from instructions of the general
form x = y op z with three addresses (two for the operands and one
for the result

In “three-address code” operations there is at most one operator on
the right side of each single instruction.
Consider the expression: x+y*z the codification will look like . . .

Building blocks
Three address code is built from two concepts: addresses,
instructions.

(Formal Languages and Compilers) 5. Semantic Analysis II CS@UNICAM 10 / 36

Preliminaries

Founding concepts

Addresses
I name
I constant
I compiler generated temporary

Three address codes are linearized representation of a syntax tree or
DAG

(Formal Languages and Compilers) 5. Semantic Analysis II CS@UNICAM 11 / 36

Preliminaries

Founding concepts

Instructions
I assignment (with binary and unary operators) – e.g. x = y op z,

x = op y
I copy instructions – e.g. x = y
I unconditional jump – e.g. goto L
I conditional jump with boolean – if x goto L, ifFalse x goto L
I conditional jump with relational operators – if x relop y goto L
I procedure calls and returns – e.g. param x, call p,n, and y =
call p,n

I indexed copy instructions – e.g. x=y[i] and x[i]=y)
I Address and pointer assignment – e.g. x=&y, x=*y, *x=y)

(Formal Languages and Compilers) 5. Semantic Analysis II CS@UNICAM 12 / 36

Preliminaries

Three address code representation and storage

Let’s provide a translation for the following code fragment:

do
i=i+1;

while (a[i] < v);

Data structures to represent the intermediate code (see book):
Quadruples – includes results
Triples
Indirect Triples
Static Single-Assignment (SSA) form

(Formal Languages and Compilers) 5. Semantic Analysis II CS@UNICAM 13 / 36

Preliminaries

Three address code representation and storage

Quadruples example:

(Formal Languages and Compilers) 5. Semantic Analysis II CS@UNICAM 14 / 36

Types

ToC

1 Preliminaries

2 Types

3 Control Flow

(Formal Languages and Compilers) 5. Semantic Analysis II CS@UNICAM 15 / 36

Types

Types and Declarations

Types establish sets in which program elements can get their values.
Two main activities related to compiling:

I Type Checking uses logical rules to reason about the behaviour of
program at run time

I Translation Applications in which type related information are
useful to determine the memory space needed for names at
run-time, to compute address denoted by array reference, to apply
conversions, to determine the operators to apply . . .

(Formal Languages and Compilers) 5. Semantic Analysis II CS@UNICAM 16 / 36

Types

Type Expression

Type Expressions

A type expression is either a basic type of is formed by applying an operator, called
type constructor, to a type expression. E.g. int[2][3]

inductive constructions of types expressions

I A basic type is a type expression (generally languages include basic types such
as – boolean, char, integer, float, void, double, . . .)

I A type name is a type expression
I The array operator can be applied to a type expression to form a new type

expression
I A record form a type expression from a list of type expressions
I The function operator (→) can be used to define a function from a type s to type t
I The Cartesian product for two type expressions results in a new type expression

(Formal Languages and Compilers) 5. Semantic Analysis II CS@UNICAM 17 / 36

Types

Declarations

Let’s consider a simplified grammar for declarations:

D → T id;D | ε T → BC | record ′{′ D ′}′

B → int | float C → ε | [num]C

(Formal Languages and Compilers) 5. Semantic Analysis II CS@UNICAM 18 / 36

Types

Types and storage allocation

Worth to be mentioned:
Relative addresses can be assigned at compile time
Addressing constraints of the target machine influence
assignment of addresses

(Formal Languages and Compilers) 5. Semantic Analysis II CS@UNICAM 19 / 36

Types

Types and storage allocation for sequence of
declarations

P → { offset=0}
D

D → T id; { top.put(id.lexeme,T.type,offset);
offset = offset + T.width; }

D1

| ε
T → B { t=B.type; w=B.width; }

C { T.type = C.type; T.width = C.width; }
| record ′{′ { Env.push(top); top = new Env();

Stack.push(offset); offset=0; }
D ′}′ { T.type=record(top); T.width=offset;

top=Env.pop(); offset=Stack.pop(); }
B → int { B.type=integer; B.width=4; }

| float { B.type=float; B.width=8; }
C → [num]C1 { array(num.value,C1.type);

C.width=num.value × C1.width; }
| ε { C.type = t; C.width = w; }

(Formal Languages and Compilers) 5. Semantic Analysis II CS@UNICAM 20 / 36

Types

Translation of Expressions

In the translation of an expression we need to represent the code for
the expression and the address in which the computed value will be
stored. Therefore let’s consider an excerpt for the usual expression
grammar:

S → id = E E → E1 + E2| − E1|(E1)|id

(Formal Languages and Compilers) 5. Semantic Analysis II CS@UNICAM 21 / 36

Types

SDD for three address code translation

S → id = E S.code=E.code ||
gen(top.get(id.lexeme) ’=’ E.addr)

E → E1 + E2 E.addr=new Temp()
E.code = E1.code || E2.code || gen(E.addr ’=’ E1.addr ’+’ E2.addr)

| −E1 E.addr=new Temp()
E.code = E1.code || gen(E.addr ’=’ ’minus’ E1.addr)

| (E1) E.addr= E1.addr, Ecode =E1.code

| id E.addr =top.get(id.lexeme), E.code= ’ ’

Consider the expression “a=b+-c” and derive the three address code translation
applying the semantic rules defined

(Formal Languages and Compilers) 5. Semantic Analysis II CS@UNICAM 22 / 36

Types

Type Checking

Type Checking ensures that the type of a construct matches that
expected by its content. In:

if (expr) stmt

the expression expr is expected to have type boolean

(Formal Languages and Compilers) 5. Semantic Analysis II CS@UNICAM 23 / 36

Types

Type Checking

Type checking rules follow the operator/operand structure of the
abstract syntax tree
e.g. the operator rel represents the operator ≤ (and other
relational ones such as <, ==, > and ≥)
the type rule for rel says that the two operands must have the
same type and the resulting type is boolean
a synthesized attribute type may be used for implementing the
rule in an SDD:

if (E1.type == E2.type) E .type = boolean;
else error;

(Formal Languages and Compilers) 5. Semantic Analysis II CS@UNICAM 24 / 36

Types

Type Checking

To do type checking is necessary to assign a type expression to each
component of the source program. Then a set of logical rules (type
system) are defined to check if any non conformity is spotted.
Type checking can take two forms:

I type synthesis
I type inference

(Formal Languages and Compilers) 5. Semantic Analysis II CS@UNICAM 25 / 36

Types

Type Synthesis

In type synthesis the type of an expression is derived from those of its
sub-expressions. Names need to be declared before usage.
A typical rule will look like the following one:

if f has type s → t and x has type s,
then expression f (x) has type t

e.g. consider the case of E1 + E2

(Formal Languages and Compilers) 5. Semantic Analysis II CS@UNICAM 26 / 36

Types

Type inference

With type inference the type of a construct is determined from the way
it is used.
A typical rule for the type inference has the form:

if f (x) is an expression,
then for some α and β, f has type α→ β and x has type α

(Formal Languages and Compilers) 5. Semantic Analysis II CS@UNICAM 27 / 36

Types

Type conversion

Consider the expression a = b + c
where the variable do not necessarily
have the same type....managed via
type conversion
All languages have their specific rules
defined for conversion:

I narrowing
I widening

Conversion can be implicit or explicit.
Implicit conversions, also called
coercions, are generally limited to
widening. Explicit conversions are
consequence of statements included
by the programmer (cast).

(Formal Languages and Compilers) 5. Semantic Analysis II CS@UNICAM 28 / 36

Types

Type conversion

Consider the expression a = b + c
where the variable do not necessarily
have the same type....managed via
type conversion
All languages have their specific rules
defined for conversion:

I narrowing
I widening

Conversion can be implicit or explicit.
Implicit conversions, also called
coercions, are generally limited to
widening. Explicit conversions are
consequence of statements included
by the programmer (cast).

(Formal Languages and Compilers) 5. Semantic Analysis II CS@UNICAM 28 / 36

Types

Type conversion

To define semantic actions for type checking two auxiliary functions are
defined:

max(t1, t2): takes two types and return the maximum
widen(a, t ,w) – where a is an address, while t and w are types:
generate type conversion if needed to widen an address a of type
t into a value of type w .

E → E1 + E2 { E.type = max(E1.type,E2.type);
a1 = widen (E1.addr,E1.type,E.type)
a2 = widen (E2.addr,E2.type,E.type)
E.addr = new Temp();
gen(E.addr ’=’ a1 ’+’ a2); }

(Formal Languages and Compilers) 5. Semantic Analysis II CS@UNICAM 29 / 36

Types

Type conversion

To define semantic actions for type checking two auxiliary functions are
defined:

max(t1, t2): takes two types and return the maximum
widen(a, t ,w) – where a is an address, while t and w are types:
generate type conversion if needed to widen an address a of type
t into a value of type w .

E → E1 + E2 { E.type = max(E1.type,E2.type);
a1 = widen (E1.addr,E1.type,E.type)
a2 = widen (E2.addr,E2.type,E.type)
E.addr = new Temp();
gen(E.addr ’=’ a1 ’+’ a2); }

(Formal Languages and Compilers) 5. Semantic Analysis II CS@UNICAM 29 / 36

Control Flow

ToC

1 Preliminaries

2 Types

3 Control Flow

(Formal Languages and Compilers) 5. Semantic Analysis II CS@UNICAM 30 / 36

Control Flow

Control Flow

Boolean expression are the building block for influencing the flow of a program. They
are manipulated to:

I Alter the flow of control – like in if (E)S
I Compute logical values

Two different approaches to evaluation:
I Eager
I Lazy

(Formal Languages and Compilers) 5. Semantic Analysis II CS@UNICAM 31 / 36

Control Flow

Short-Circuit Code

Boolean operators ||, && and ! translate into jumps
The operators do not appear on the code
The value of a boolean expression is represented by a position in
the code sequence

if (x < 100 || x > 200 && x != y) x = 0;

is translated to

if x < 100 goto L2
ifFalse x > 200 goto L1
ifFalse x != y goto L1

L2: x = 0
L1: ...

(Formal Languages and Compilers) 5. Semantic Analysis II CS@UNICAM 32 / 36

Control Flow

Translation using jumping code

Statements and Boolean Expressions have a synthesised
attribute code that is a string containing the translated code
Boolean Expressions have two inherited attributes true and false
representing labels to which the control flows if the expression is
true or false, respectively

(Formal Languages and Compilers) 5. Semantic Analysis II CS@UNICAM 33 / 36

Control Flow

Control Flow – commands

P → S S.next=newlabel(), P.code = S.code || label(S.next)
S → assign S.code=assign.code
S → if (B) S1 B.true=newlabel(), B.false=S1.next=S.next

S.code=B.code||label(B.true)||S1.code
S → if (B) S1 else S2 B.true=newlabel(), B.false=newlabel()

S1.next=S2.next=S.next
S.code=B.code||label(B.true)||S1.code

||gen(’goto’ S.next)|| label(B.false)|| S2.code
S → while (B) S1 begin=newlabel(), B.true=newlabel()

B.false=S.next, S1.next=begin
S.code=label(begin)||B.code||label(B.true)||S1.code

||gen(’goto’ begin)
S → S1 S2 S1.next=newlabel(), S2.next=S.next

S.code = S1.code||label(S1.next)||S2.code

(Formal Languages and Compilers) 5. Semantic Analysis II CS@UNICAM 34 / 36

Control Flow

Control Flow – Boolean expressions

B → B1||B2 B1.true=B.true
B1.false=newlabel()
B2.true = B.true
B2.false=B.false
B.code = B1.code || label(B1.false)|| B2.code

B → B1&&B2 B1.true=newlabel()
B1.false=B.false
B2.true = B.true
B2.false=B.false
B.code = B1.code || label(B1.true)|| B2.code

B → E1relE2 B.code = E1.code||E2.code
|| gen(’if’ E1.addr rel.op E2.addr ’goto’ B.true)
|| gen(’goto’ B.false)

B → true B.code=gen(’goto’ B.true)
B → false B.code=gen(’goto’ B.false)

(Formal Languages and Compilers) 5. Semantic Analysis II CS@UNICAM 35 / 36

Control Flow

Control Flow – commands

Let’s translate the following program:

if (x != y && x == z) x = y + z;

(Formal Languages and Compilers) 5. Semantic Analysis II CS@UNICAM 36 / 36

	Preliminaries
	Types
	Control Flow

