
Lexical Analysis: How can we do it? Regular Expressions

Regular definitions

For notational convenience we give names to certain regular
expressions. A regular definition, on the alphabet ⌃ is sequence of
definitions of the form:

d1 ! r1

d2 ! r2

. . .
dn ! rn

where:
Each di is a new symbol, not in ⌃, and not the same as any other
of the d ’s
Each ri is a regular expression over the alphabet
⌃ [{d1, d2, . . . , di�1}

(Formal Languages and Compilers) 2. Lexical Analysis CS@UNICAM 30 / 52

Lexical Analysis: How can we do it? Regular Expressions

Using regular definitions

The tokens of a language can be defined as:

letter ! a|b|...|z|A|B|...|Z
letter_ ! letter |_

compact syntax: [a � zA � B]

digit ! 0|1|...|9
compact syntax: [0 � 9]

integers ! (�|✏)digit · digit⇤

identifiers ! letter_(letter_|digit)⇤
expnot ! digit(.digit+E(+|�)digit+)? (Exponential Notation)

(Formal Languages and Compilers) 2. Lexical Analysis CS@UNICAM 31 / 52

Lexical Analysis: How can we do it? Regular Expressions

Exercise
Write regular definitions for the following languages:

I All strings of lowercase letters that contains the five vowels in
order

I All strings of lowercase letters in which the letters are in
ascending lexicographic order

I All strings of digits with no repeated digits
I All strings with an even number of a’s and and an odd number of

b’s

(Formal Languages and Compilers) 2. Lexical Analysis CS@UNICAM 32 / 52

Lexical Analysis: How can we do it? Regular Expressions

How does the lexical analyser work?

Suppose we are given a regular definition R = {d1, . . . , dm}
1 Let the input be x0 · · · xn 2 ⌃⇤

For 0  i  n check if x0 · · · xi 2 L (dj) for some j 2 {1, . . . ,m}
2 if success then we know that x0 · · · xi 2 L (dj) for some j

3 remove x0 · · · xi from input and go to 1

(Formal Languages and Compilers) 2. Lexical Analysis CS@UNICAM 33 / 52

Lexical Analysis: How can we do it? Regular Expressions

LA matching rules
Suppose that at the same time for i < j , i , j 2 {0, . . . , n}:

x0 · · · xi 2 L (dk) for some k

x0 · · · xi · · · xj 2 L (dk) or x0 · · · xi · · · xj 2 L (dh) for some h 6= k

Which is the match to consider?

longest match rule

Suppose that at the same time for i 2 {0, . . . , n} and k 6= h,
k , h 2 {1, . . . ,m}:

x0 · · · xi 2 L (dk)

x0 · · · xi 2 L (dh)

Which is the match to consider?

first one listed rule, i.e., dk

Errors: to manage errors put as last match in the list a regexp for all
lexemes not in the language

(Formal Languages and Compilers) 2. Lexical Analysis CS@UNICAM 34 / 52

Lexical Analysis: How can we do it? Regular Expressions

LA matching rules
Suppose that at the same time for i < j , i , j 2 {0, . . . , n}:

x0 · · · xi 2 L (dk) for some k

x0 · · · xi · · · xj 2 L (dk) or x0 · · · xi · · · xj 2 L (dh) for some h 6= k

Which is the match to consider?

longest match rule

Suppose that at the same time for i 2 {0, . . . , n} and k 6= h,
k , h 2 {1, . . . ,m}:

x0 · · · xi 2 L (dk)

x0 · · · xi 2 L (dh)

Which is the match to consider?

first one listed rule, i.e., dk

Errors: to manage errors put as last match in the list a regexp for all
lexemes not in the language

(Formal Languages and Compilers) 2. Lexical Analysis CS@UNICAM 34 / 52

Lexical Analysis: How can we do it? Regular Expressions

LA matching rules
Suppose that at the same time for i < j , i , j 2 {0, . . . , n}:

x0 · · · xi 2 L (dk) for some k

x0 · · · xi · · · xj 2 L (dk) or x0 · · · xi · · · xj 2 L (dh) for some h 6= k

Which is the match to consider?

longest match rule

Suppose that at the same time for i 2 {0, . . . , n} and k 6= h,
k , h 2 {1, . . . ,m}:

x0 · · · xi 2 L (dk)

x0 · · · xi 2 L (dh)

Which is the match to consider?

first one listed rule, i.e., dk

Errors: to manage errors put as last match in the list a regexp for all
lexemes not in the language

(Formal Languages and Compilers) 2. Lexical Analysis CS@UNICAM 34 / 52

Lexical Analysis: How can we do it? Regular Expressions

LA matching rules
Suppose that at the same time for i < j , i , j 2 {0, . . . , n}:

x0 · · · xi 2 L (dk) for some k

x0 · · · xi · · · xj 2 L (dk) or x0 · · · xi · · · xj 2 L (dh) for some h 6= k

Which is the match to consider?

longest match rule

Suppose that at the same time for i 2 {0, . . . , n} and k 6= h,
k , h 2 {1, . . . ,m}:

x0 · · · xi 2 L (dk)

x0 · · · xi 2 L (dh)

Which is the match to consider?

first one listed rule, i.e., dk

Errors: to manage errors put as last match in the list a regexp for all
lexemes not in the language

(Formal Languages and Compilers) 2. Lexical Analysis CS@UNICAM 34 / 52

Lexical Analysis: How can we do it? Regular Expressions

LA matching rules
Suppose that at the same time for i < j , i , j 2 {0, . . . , n}:

x0 · · · xi 2 L (dk) for some k

x0 · · · xi · · · xj 2 L (dk) or x0 · · · xi · · · xj 2 L (dh) for some h 6= k

Which is the match to consider?

longest match rule

Suppose that at the same time for i 2 {0, . . . , n} and k 6= h,
k , h 2 {1, . . . ,m}:

x0 · · · xi 2 L (dk)

x0 · · · xi 2 L (dh)

Which is the match to consider?

first one listed rule, i.e., dk

Errors: to manage errors put as last match in the list a regexp for all
lexemes not in the language

(Formal Languages and Compilers) 2. Lexical Analysis CS@UNICAM 34 / 52

Lexical Analysis: How can we do it? Regular Expressions

LA matching rules
Suppose that at the same time for i < j , i , j 2 {0, . . . , n}:

x0 · · · xi 2 L (dk) for some k

x0 · · · xi · · · xj 2 L (dk) or x0 · · · xi · · · xj 2 L (dh) for some h 6= k

Which is the match to consider?

longest match rule

Suppose that at the same time for i 2 {0, . . . , n} and k 6= h,
k , h 2 {1, . . . ,m}:

x0 · · · xi 2 L (dk)

x0 · · · xi 2 L (dh)

Which is the match to consider?

first one listed rule, i.e., dk

Errors: to manage errors put as last match in the list a regexp for all
lexemes not in the language

(Formal Languages and Compilers) 2. Lexical Analysis CS@UNICAM 34 / 52

Lexical Analysis: How can we do it? Regular Expressions

LA matching rules
Suppose that at the same time for i < j , i , j 2 {0, . . . , n}:

x0 · · · xi 2 L (dk) for some k

x0 · · · xi · · · xj 2 L (dk) or x0 · · · xi · · · xj 2 L (dh) for some h 6= k

Which is the match to consider?

longest match rule

Suppose that at the same time for i 2 {0, . . . , n} and k 6= h,
k , h 2 {1, . . . ,m}:

x0 · · · xi 2 L (dk)

x0 · · · xi 2 L (dh)

Which is the match to consider?

first one listed rule, i.e., dk

Errors: to manage errors put as last match in the list a regexp for all
lexemes not in the language

(Formal Languages and Compilers) 2. Lexical Analysis CS@UNICAM 34 / 52

Lexical Analysis: How can we do it? Finite State Automata

Finite Automata

Regular Expressions = specification of tokens
Finite Automata = recognition of tokens

Finite Automaton
A Finite Automaton A is a tuple hS,⌃, �, s0,Fi where:

I S represents the set of states
I ⌃ represents a set of symbols (alphabet)
I � represents the transition function (� : S ⇥ ⌃ ! . . .)
I s0 represents the start state (s0 2 S)
I F represents the set of accepting states (F ✓ S)

In two flavours: Deterministic Finite Automata (DFA) and
Non-Deterministic Finite Automata (NFA)

(Formal Languages and Compilers) 2. Lexical Analysis CS@UNICAM 35 / 52

Lexical Analysis: How can we do it? Finite State Automata

Finite Automata

Regular Expressions = specification of tokens
Finite Automata = recognition of tokens

Finite Automaton
A Finite Automaton A is a tuple hS,⌃, �, s0,Fi where:

I S represents the set of states
I ⌃ represents a set of symbols (alphabet)
I � represents the transition function (� : S ⇥ ⌃ ! . . .)
I s0 represents the start state (s0 2 S)
I F represents the set of accepting states (F ✓ S)

In two flavours: Deterministic Finite Automata (DFA) and
Non-Deterministic Finite Automata (NFA)

(Formal Languages and Compilers) 2. Lexical Analysis CS@UNICAM 35 / 52

Lexical Analysis: How can we do it? Finite State Automata

Finite Automata

DFA vs. NFA
Depending on the definition of � we distinguish between:

I Deterministic Finite Automata (DFA) - � : S ⇥ ⌃ ! S
I Nondeterministic Finite Automata (NFA) � : S ⇥ ⌃ ! P(S)

The transition relation � can be represented in a table (transition table)

P(S) = 2S is the powerset of the set S of states, i.e., the set of all the
subsets of S

Overview of the graphical notation circle and edges (arrows)

(Formal Languages and Compilers) 2. Lexical Analysis CS@UNICAM 36 / 52

Lexical Analysis: How can we do it? Finite State Automata

Finite Automata

DFA vs. NFA
Depending on the definition of � we distinguish between:

I Deterministic Finite Automata (DFA) - � : S ⇥ ⌃ ! S
I Nondeterministic Finite Automata (NFA) � : S ⇥ ⌃ ! P(S)

The transition relation � can be represented in a table (transition table)

P(S) = 2S is the powerset of the set S of states, i.e., the set of all the
subsets of S

Overview of the graphical notation circle and edges (arrows)

(Formal Languages and Compilers) 2. Lexical Analysis CS@UNICAM 36 / 52

Lexical Analysis: How can we do it? Finite State Automata

Acceptance of Strings for DFAs

Moves of a DFA
A DFA “consumes” an input character c going from a state s to a state s

0 if
�(s, c) = s

0, written s
c

��! s
0

A DFA “consumes” a string a = a1a2 · · · an going from a state si to a state sj if there is
a sequence of states si+1, . . . , si+n�1, si+n = sj s.t.

8k 2 {1, . . . , n}.�(si+k�1, ak) = si+k , written si

a
��! sj

Acceptance of Strings
A DFA accepts a string a if and only if it consumes a from the initial state s0 to a final
state si , i.e., s0

a
��! si and si 2 F

Accepted Language

The language accepted by a DFA is the set of all the strings a such that s0
a

��! si and
si 2 F

(Formal Languages and Compilers) 2. Lexical Analysis CS@UNICAM 37 / 52

Lexical Analysis: How can we do it? Finite State Automata

Acceptance of Strings for DFAs

Moves of a DFA
A DFA “consumes” an input character c going from a state s to a state s

0 if
�(s, c) = s

0, written s
c

��! s
0

A DFA “consumes” a string a = a1a2 · · · an going from a state si to a state sj if there is
a sequence of states si+1, . . . , si+n�1, si+n = sj s.t.

8k 2 {1, . . . , n}.�(si+k�1, ak) = si+k , written si

a
��! sj

Acceptance of Strings
A DFA accepts a string a if and only if it consumes a from the initial state s0 to a final
state si , i.e., s0

a
��! si and si 2 F

Accepted Language

The language accepted by a DFA is the set of all the strings a such that s0
a

��! si and
si 2 F

(Formal Languages and Compilers) 2. Lexical Analysis CS@UNICAM 37 / 52

Lexical Analysis: How can we do it? Finite State Automata

Acceptance of Strings for DFAs

Moves of a DFA
A DFA “consumes” an input character c going from a state s to a state s

0 if
�(s, c) = s

0, written s
c

��! s
0

A DFA “consumes” a string a = a1a2 · · · an going from a state si to a state sj if there is
a sequence of states si+1, . . . , si+n�1, si+n = sj s.t.

8k 2 {1, . . . , n}.�(si+k�1, ak) = si+k , written si

a
��! sj

Acceptance of Strings
A DFA accepts a string a if and only if it consumes a from the initial state s0 to a final
state si , i.e., s0

a
��! si and si 2 F

Accepted Language

The language accepted by a DFA is the set of all the strings a such that s0
a

��! si and
si 2 F

(Formal Languages and Compilers) 2. Lexical Analysis CS@UNICAM 37 / 52

Lexical Analysis: How can we do it? Finite State Automata

Exercise
Define the following automata:

I DFA for a single 1
I DFA for accepting any number of 1’s followed by a single 0
I DFA for any sequence of a or b (possibly empty) followed by ’abb’

Exercise

Which regular expression corresponds to the automaton?
1 (0|1)*
2 (1*|0)(1|0)
3 1*|(01)*|(001)*|(000*1)*
4 (0|1)*00

(Formal Languages and Compilers) 2. Lexical Analysis CS@UNICAM 38 / 52

Lexical Analysis: How can we do it? Finite State Automata

✏-moves

DFA, NFA and ✏-moves
DFA

at most one transition for one input in a given state
no ✏-moves

NFA
can have multiple transitions for one input in a given state
can have ✏-moves, i.e., � : S ⇥ (⌃ [{✏}) ! P(S)
smaller (exponentially)

(Formal Languages and Compilers) 2. Lexical Analysis CS@UNICAM 39 / 52

Lexical Analysis: How can we do it? Finite State Automata

Acceptance of Strings for NFAs

Moves of an NFA
An NFA “consumes” an input character c going from a state s to a state s

0 if
s
0 2 �(s, c), written s

c

��! s
0

An NFA can move from a state s to a state s
0 without consuming any input character,

written s
✏

��! s
0

An NFA “consumes” a string a = a1a2 · · · an going from a state si to a state sj if there

is a sequence of moves si

x0
��! si+1

x1
��!··· si+m�1

xm�1
��! si+m = sj s.t.

8k 2 {0, . . . ,m � 1}.si+k 2 �(si+k , xk) and x0x1 · · · xm�1 = a, written si

a
==) sj

Acceptance of Strings
An NFA accepts a string a if and only if there exists at least one sequence of moves
from the initial state s0 to a state si such that si is a final state, i.e., 9si 2 F : s0

a
==) si

Accepted Language
The language accepted by an NFA is the set of all the strings a such that
9si 2 F : s0

a
==) si

(Formal Languages and Compilers) 2. Lexical Analysis CS@UNICAM 40 / 52

Lexical Analysis: How can we do it? Finite State Automata

Acceptance of Strings for NFAs

Moves of an NFA
An NFA “consumes” an input character c going from a state s to a state s

0 if
s
0 2 �(s, c), written s

c

��! s
0

An NFA can move from a state s to a state s
0 without consuming any input character,

written s
✏

��! s
0

An NFA “consumes” a string a = a1a2 · · · an going from a state si to a state sj if there

is a sequence of moves si

x0
��! si+1

x1
��!··· si+m�1

xm�1
��! si+m = sj s.t.

8k 2 {0, . . . ,m � 1}.si+k 2 �(si+k , xk) and x0x1 · · · xm�1 = a, written si

a
==) sj

Acceptance of Strings
An NFA accepts a string a if and only if there exists at least one sequence of moves
from the initial state s0 to a state si such that si is a final state, i.e., 9si 2 F : s0

a
==) si

Accepted Language
The language accepted by an NFA is the set of all the strings a such that
9si 2 F : s0

a
==) si

(Formal Languages and Compilers) 2. Lexical Analysis CS@UNICAM 40 / 52

Lexical Analysis: How can we do it? Finite State Automata

Acceptance of Strings for NFAs

Moves of an NFA
An NFA “consumes” an input character c going from a state s to a state s

0 if
s
0 2 �(s, c), written s

c

��! s
0

An NFA can move from a state s to a state s
0 without consuming any input character,

written s
✏

��! s
0

An NFA “consumes” a string a = a1a2 · · · an going from a state si to a state sj if there

is a sequence of moves si

x0
��! si+1

x1
��!··· si+m�1

xm�1
��! si+m = sj s.t.

8k 2 {0, . . . ,m � 1}.si+k 2 �(si+k , xk) and x0x1 · · · xm�1 = a, written si

a
==) sj

Acceptance of Strings
An NFA accepts a string a if and only if there exists at least one sequence of moves
from the initial state s0 to a state si such that si is a final state, i.e., 9si 2 F : s0

a
==) si

Accepted Language
The language accepted by an NFA is the set of all the strings a such that
9si 2 F : s0

a
==) si

(Formal Languages and Compilers) 2. Lexical Analysis CS@UNICAM 40 / 52

Lexical Analysis: How can we do it? Finite State Automata

From regexp to NFA

Equivalent NFA for a regexp
The Thompson’s algorithm permits to automatically derive an NFA
from the specification of a regexp. It defines basic NFAs for basic
regexps and rules to compose them:

1 for ✏
2 for ’c’
3 for ab

4 for a + b

5 for a⇤

Now consider the regexp for (1|0)*1

(Formal Languages and Compilers) 2. Lexical Analysis CS@UNICAM 41 / 52

	Lexical Analysis: What does a Lexer do?
	Short Notes on Formal Languages
	Lexical Analysis: How can we do it?
	Regular Expressions
	Finite State Automata

