Lexical Analysis: How can we do it? Regular Expressions

Regular definitions

For notational convenience we give names to certain regular
expressions. A regular definition, on the alphabet ¥ is sequence of
definitions of the form:

@ di —»n

e db—n

...

@ dy—ny
where:

@ Each d; is a new symbol, not in ¥, and not the same as any other
of the d’s

@ Each r; is a regular expression over the alphabet
YU{d,ab,...,di_1}

>s and Compilers) 2. Lexical Analysis CS@UNICAM 30/52

Lexical Analysis: How can we do it? Regular Expressions

Using regular definitions

The tokens of a language can be defined as:

@ letter — alb|...|z|A|B|...|Z
@ letter_ — letter|_
@ compact syntax: [a — zA — B]
@ digit — 0[1]...|9
@ compact syntax: [0 — 9]
@ integers — (—|e)digit - digit*
@ identifiers — letter_(letter_|digit)x
@ expnot — digit(.digit* E(+|—)digit"™)? (Exponential Notation)

(Formal Languages and Compilers) 2. Lexical Analysis CS@UNICAM

31/52

Regular Expressions

Write regular definitions for the following languages:

» All strings of lowercase letters that contains the five vowels in
order

» All strings of lowercase letters in which the letters are in
ascending lexicographic order

» All strings of digits with no repeated digits

» All strings with an even number of a’s and and an odd number of
b’s

~ (Formal Languages and Compilers) | 2. Lexical Analysis CS@UNICAM 32/52

Lexical Analysis: How can we do it? Regular Expressions

How does the lexical analyser work?

Suppose we are given a regular definition R = {d;,...,dn}
@ Letthe inputbe xq-- - x, € ©*
For 0 </ < ncheckif xo---x; € £(d;) forsome j € {1,...,m}
@ if success then we know that x; - - - x; € £(d}) for some j
© remove x; - - - x; from input and go to 1

(Formal Languages and Compilers) 2. Lexical Analysis CS@UNICAM

33/52

Lexical Analysis: How can we do it? Regular Expressions

LA matching rules

Suppose that at the same time for i <, i,j € {0, ..., n}:
@ Xp- X € Z(dy) for some k
@ Xg--- XX € L(dk)orxg- - X+ X € L(dp) for some h # k

(Formal Langu and Compilers) 2. Lexical Analysis CS@UNICAM 34 /52

Lexical Analysis: How can we do it? Regular Expressions

LA matching rules

Suppose that at the same time for i <, i,j € {0, ..., n}:

@ Xp- X € Z(dy) for some k

@ Xg--- XX € L(dk)orxg- - X+ X € L(dp) for some h # k
Which is the match to consider?

(Formal Lan nd Compilers) 2. Lexical Analysis CS@UNICAM 34 /52

Lexical Analysis: How can we do it? Regular Expressions

LA matching rules

Suppose that at the same time for i <, i,j € {0, ..., n}:

@ Xp- X € Z(dy) for some k

@ Xg--- XX € L(dk)orxg- - X+ X € L(dp) for some h # k
Which is the match to consider?

longest match rule

(Formal Lan nd Compilers) 2. Lexical Analysis CS@UNICAM 34 /52

Lexical Analysis: How can we do it? Regular Expressions

LA matching rules

Suppose that at the same time for i <, i,j € {0, ..., n}:

@ Xp- X € Z(dy) for some k

@ Xg--- XX € L(dk)orxg- - X+ X € L(dp) for some h # k
Which is the match to consider?

longest match rule

Suppose that at the same time for i € {0,...,n} and k # h,
k,he{1,...,m}:

(*] X0~--X,'€$(dk)

o X0~--X,'€92/)(dh)

(Formal Languages and Compilers) 2. Lexical Analysis CS@UNICAM

34 /52

Lexical Analysis: How can we do it? Regular Expressions

LA matching rules

Suppose that at the same time for i <, i,j € {0, ..., n}:

@ Xp- X € Z(dy) for some k

@ Xg--- XX € L(dk)orxg- - X+ X € L(dp) for some h # k
Which is the match to consider?

longest match rule

Suppose that at the same time for i € {0,...,n} and k # h,
k,he{1,...,m}:

@ Xo--- X € L(dk)

(*] X0~--X/€$(dh)
Which is the match to consider?

(Formal Languages and Compilers) 2. Lexical Analysis CS@UNICAM

34 /52

Lexical Analysis: How can we do it? Regular Expressions

LA matching rules

Suppose that at the same time for i <, i,j € {0, ..., n}:

@ Xp- X € Z(dy) for some k

@ Xg--- XX € L(dk)orxg- - X+ X € L(dp) for some h # k
Which is the match to consider?

longest match rule

Suppose that at the same time for i € {0,...,n} and k # h,
k,he{1,...,m}:

(*] X0~--X,'€$(dk)

(*] X0~--X/€$(dh)
Which is the match to consider?

first one listed rule, i.e., dx

(Formal Languages and Compilers) 2. Lexical Analysis CS@UNICAM 34 /52

Lexical Analysis: How can we do it? Regular Expressions

LA matching rules

Suppose that at the same time for i <, i,j € {0, ..., n}:

@ Xp- X € Z(dy) for some k

@ Xg--- XX € L(dk)orxg- - X+ X € L(dp) for some h # k
Which is the match to consider?

longest match rule

Suppose that at the same time for i € {0,...,n} and k # h,
k,he{1,...,m}:

(*] X0~--X,'€$(dk)

(*] XO---X,'ED(Z)(dh)
Which is the match to consider?

first one listed rule, i.e., dx

Errors: to manage errors put as last match in the list a regexp for all
lexemes not in the language

(Formal Languages and Compilers) 2. Lexical Analysis CS@UNICAM 34 /52

Lexical Analysis: How can we do it? Finite State Automata

Finite Automata

@ Regular Expressions = specification of tokens
@ Finite Automata = recognition of tokens

pilers) 2. Lexical Analysis

CS@UNICAM

35/52

Lexical Analysis: How can we do it? Finite State Automata

Finite Automata

@ Regular Expressions = specification of tokens
@ Finite Automata = recognition of tokens

Finite Automaton
A Finite Automaton A is a tuple (S, ¥, 4, o, F) where:
» S represents the set of states
» Y represents a set of symbols (alphabet)
» 0 represents the transition function (§: S x ¥ — ...)
» Sy represents the start state (sg € S)
» F represents the set of accepting states (F C S)

In two flavours: Deterministic Finite Automata (DFA) and
Non-Deterministic Finite Automata (NFA)

(Formal Languages and Compilers) 2. Lexical Analysis CS@UNICAM 35/52

Lexical Analysis: How can we do it? Finite State Automata

Finite Automata

Depending on the definition of 6 we distinguish between:
» Deterministic Finite Automata (DFA)-§: S x X —» S
» Nondeterministic Finite Automata (NFA) 6 : S x ¥ — Z(S)

The transition relation 6 can be represented in a table (transition table)

2(S) = 2% is the powerset of the set S of states, i.e., the set of all the
subsets of S

(Formal Languages and Compilers) 2. Lexical Analysis CS@UNICAM 36/52

Lexical Analysis: How can we do it? Finite State Automata

Finite Automata

Depending on the definition of 6 we distinguish between:
» Deterministic Finite Automata (DFA)-§: S x X —» S
» Nondeterministic Finite Automata (NFA) 6 : S x ¥ — Z(S)

The transition relation 6 can be represented in a table (transition table)

2(S) = 2% is the powerset of the set S of states, i.e., the set of all the
subsets of S

Overview of the graphical notation circle and edges (arrows)

(Formal Languages and Compilers) 2. Lexical Analysis CS@UNICAM 36/52

Lexical Analysis: How can we do it? Finite State Automata

Acceptance of Strings for DFAs

Moves of a DFA

A DFA “consumes” an input character ¢ going from a state s to a state s if

. c
5(s,c) = s, written s — &’
A DFA “consumes” a string a = a1a: - - - a, going from a state s; to a state s; if there is
a sequence of states sj.1,. .., Sitn—1, Sitn = §j S.t.
a

Vk € {1,...,n}.0(Siyk—1,ak) = Siyk, Written s, — s;

(Formal Langu and Compilers) 2. Lexical Analysis CS@UNICAM 37 /52

Lexical Analysis: How can we do it? Finite State Automata

Acceptance of Strings for DFAs

Moves of a DFA
A DFA “consumes” an input character ¢ going from a state s to a state s if

. c
5(s,c) = s, written s — &’
A DFA “consumes” a string a = a1a: - - - a, going from a state s; to a state s; if there is
a sequence of states sj.1,. .., Sitn—1, Sitn = §j S.t.
a

Vk € {1,...,n}.0(Siyk—1,ak) = Siyk, Written s, — s;

Acceptance of Strings
A DFA accepts a string a if and only if it consumes a from the initial state s, to a final

| N\

. a
state s, i.e., sy — siand s; € F

(Formal Langue nd Compilers) 2. Lexical Analysis CS@UNICAM 37 /52

Lexical Analysis: How can we do it? Finite State Automata

Acceptance of Strings for DFAs

Moves of a DFA

A DFA “consumes” an input character ¢ going from a state s to a state s if
d(s,c) = s, written s ¢
A DFA “consumes” a string a = a1a: - - - a, going from a state s; to a state s; if there is
a sequence of states sj.1,. .., Sitn—1, Sitn = §j S.t.
a

Vk € {1,...,n}.0(Siyk—1,ak) = Siyk, Written s, — s;

Acceptance of Strings
A DFA accepts a string a if and only if it consumes a from the initial state s, to a final
state s;, i.e., Sp i> siand s; € F

| N\

Accepted Language

The language accepted by a DFA is the set of all the strings a such that sp 2, s; and
SieF

(Formal Langue nd Compilers) 2. Lexical Analysis CS@UNICAM 37 /52

Define the following automata:
» DFA for a single 1
» DFA for accepting any number of 1’s followed by a single 0

» DFA for any sequence of a or b (possibly empty) followed by 'abb’

Which regular expression corresponds to the automaton?
@ 1)
@ (1710)(110)
© 1°1(01)*(001)*(000*1)*

© (0[1)*00
~ (Formal Languages and Compilers) | 2. Lexical Analysis CS@UNICAM 38/52

v

Lexical Analysis: How can we do it? Finite State Automata

€-Moves

DFA, NFA and e-moves

e DFA
e at most one transition for one input in a given state
@ No e-moves
@ NFA
e can have multiple transitions for one input in a given state
@ can have e-moves, i.e., § : S x (X U {e}) = £2(S)
e smaller (exponentially)

(Formal Lang nd Compilers) 2. Lexical Analysis CS@UNICAM 39/52

Lexical Analysis: How can we do it? Finite State Automata

Acceptance of Strings for NFAs

Moves of an NFA

An NFA “consumes” an input character ¢ going from a state s to a state s’ if

s’ € §(s, c), written s ¢
An NFA can move from a state s to a state s’ without consuming any input character,

written s — s’
An NFA “consumes” a string a = asa. - - - @, going from a state s; to a state s; if there

. Xo Xq Xm—1
is a sequence of moves §; — Si1 —... Siym_1 — Sitm = §; S.t.
Vk € {0,...,m—1}.81k € 8(Sivk, Xk) @nd XoX; - - - Xm_1 = @, written s, == s;

and Compilers) 2. Lexical Analysis CS@UNICAM 40/52

Lexical Analysis: How can we do it? Finite State Automata

Acceptance of Strings for NFAs

Moves of an NFA

An NFA “consumes” an input character ¢ going from a state s to a state s’ if
s’ € §(s, c), written s ¢

An NFA can move from a state s to a state s’ without consuming any input character,

written s — s’
An NFA “consumes” a string a = asa. - - - @, going from a state s; to a state s; if there

. Xo Xq Xm—1
is a sequence of moves §; — Si1 —... Siym_1 — Sitm = §; S.t.
Vk € {0,...,m—1}.81k € 8(Sivk, Xk) @nd XoX; - - - Xm_1 = @, written s, == s;

| A\

Acceptance of Strings

An NFA accepts a string a if and only if there exists at least one sequence of moves
from the initial state s, to a state s; such that s; is a final state, i.e., 3s; € F: s —> s)

(Formal Langu and Compilers) 2. Lexical Analysis CS@UNICAM 40/ 52

Lexical Analysis: How can we do it? Finite State Automata

Acceptance of Strings for NFAs

Moves of an NFA

An NFA “consumes” an input character ¢ going from a state s to a state s’ if
s’ € §(s, c), written s ¢

An NFA can move from a state s to a state s’ without consuming any input character,

written s — s’
An NFA “consumes” a string a = asa. - - - @, going from a state s; to a state s; if there

. Xo Xq Xm—1
is a sequence of moves §; — Si1 —... Siym_1 — Sitm = §; S.t.
Vk € {0,...,m—1}.81k € 8(Sivk, Xk) @nd XoX; - - - Xm_1 = @, written s, == s;

| A\

Acceptance of Strings

An NFA accepts a string a if and only if there exists at least one sequence of moves
from the initial state s, to a state s; such that s; is a final state, i.e., 3s; € F: s —> s)

Accepted Language

The language accepted by an NFA is the set of all the strings a such that
Jsie F: 8p==5

(Formal Lan nd Compilers) 2. Lexical Analysis CS@UNICAM 40/ 52

Lexical Analysis: How can we do it? Finite State Automata

From regexp to NFA

Equivalent NFA for a regexp

The Thompson’s algorithm permits to automatically derive an NFA
from the specification of a regexp. It defines basic NFAs for basic
regexps and rules to compose them:

@ fore

Q for'c
Q@ for ab
Q fora+b
Q for a* |

Now consider the regexp for (1|0)*1

(Formal Languages and Compilers) 2. Lexical Analysis CS@UNICAM 41 /52

	Lexical Analysis: What does a Lexer do?
	Short Notes on Formal Languages
	Lexical Analysis: How can we do it?
	Regular Expressions
	Finite State Automata

