Regular definitions

For notational convenience we give names to certain regular expressions. A regular definition, on the alphabet Σ is sequence of definitions of the form:

•
$$d_1 \rightarrow r_1$$

• $d_2 \rightarrow r_2$

•
$$d_n \rightarrow r_n$$

where:

- Each d_i is a new symbol, not in Σ, and not the same as any other of the d's
- Each r_i is a regular expression over the alphabet $\Sigma \cup \{d_1, d_2, \dots, d_{i-1}\}$

Using regular definitions

The tokens of a language can be defined as:

- letter $\rightarrow a|b|...|z|A|B|...|Z$
- letter_ \rightarrow letter|_
 - compact syntax: [*a zA B*]
- digit $\rightarrow 0|1|...|9$
 - compact syntax: [0 9]
- integers $\rightarrow (-|\epsilon)$ digit \cdot digit*
- identifiers \rightarrow letter_(letter_|digit)*
- *expnot* \rightarrow *digit*(.*digit*⁺*E*(+|-)*digit*⁺)? (Exponential Notation)

Exercise

Write regular definitions for the following languages:

- All strings of lowercase letters that contains the five vowels in order
- All strings of lowercase letters in which the letters are in ascending lexicographic order
- All strings of digits with no repeated digits
- All strings with an even number of a's and and an odd number of b's

B + 4 B +

< 6 b

How does the lexical analyser work?

Suppose we are given a regular definition $R = \{d_1, \ldots, d_m\}$

- Let the input be $x_0 \cdots x_n \in \Sigma^*$ For $0 \le i \le n$ check if $x_0 \cdots x_i \in \mathcal{L}(d_j)$ for some $j \in \{1, \ldots, m\}$
- **2** if success then we know that $x_0 \cdots x_i \in \mathscr{L}(d_j)$ for some *j*
- **o** remove $x_0 \cdots x_i$ from input and go to 1

3

Suppose that at the same time for $i < j, i, j \in \{0, ..., n\}$:

• $x_0 \cdots x_i \in \mathscr{L}(d_k)$ for some k

• $x_0 \cdots x_i \cdots x_j \in \mathcal{L}(d_k)$ or $x_0 \cdots x_i \cdots x_j \in \mathcal{L}(d_h)$ for some $h \neq k$ Which is the match to consider?

longest match rule

Suppose that at the same time for $i \in \{0, ..., n\}$ and $k \neq h$, $k, h \in \{1, ..., m\}$:

- $x_0 \cdots x_i \in \mathscr{L}(d_k)$
- $x_0 \cdots x_i \in \mathscr{L}(d_h)$

Which is the match to consider?

first one listed rule, i.e., dk

Errors: to manage errors put as last match in the list a regexp for all lexemes not in the language

(Formal Languages and Compilers)

2. Lexical Analysis

Regular Expressions

LA matching rules

Suppose that at the same time for $i < j, i, j \in \{0, ..., n\}$:

• $x_0 \cdots x_i \in \mathscr{L}(d_k)$ for some k

• $x_0 \cdots x_i \cdots x_j \in \mathscr{L}(d_k)$ or $x_0 \cdots x_i \cdots x_j \in \mathscr{L}(d_h)$ for some $h \neq k$ Which is the match to consider?

longest match rule

Suppose that at the same time for $i \in \{0, ..., n\}$ and $k \neq h$, $k, h \in \{1, ..., m\}$:

- $x_0 \cdots x_i \in \mathscr{L}(d_k)$
- $x_0 \cdots x_i \in \mathscr{L}(d_h)$

Which is the match to consider?

first one listed rule, i.e., dk

Errors: to manage errors put as last match in the list a regexp for all lexemes not in the language

(Formal Languages and Compilers)

2. Lexical Analysis

Regular Expressions

LA matching rules

Suppose that at the same time for $i < j, i, j \in \{0, ..., n\}$:

• $x_0 \cdots x_i \in \mathscr{L}(d_k)$ for some k

• $x_0 \cdots x_i \cdots x_j \in \mathscr{L}(d_k)$ or $x_0 \cdots x_i \cdots x_j \in \mathscr{L}(d_h)$ for some $h \neq k$ Which is the match to consider?

longest match rule

Suppose that at the same time for $i \in \{0, ..., n\}$ and $k \neq h$, $k, h \in \{1, ..., m\}$:

- $x_0 \cdots x_i \in \mathscr{L}(\mathbf{d}_k)$
- $x_0 \cdots x_i \in \mathscr{L}(d_h)$

Which is the match to consider?

first one listed rule, i.e., dk

Errors: to manage errors put as last match in the list a regexp for all lexemes not in the language

(Formal Languages and Compilers)

2. Lexical Analysis

Suppose that at the same time for $i < j, i, j \in \{0, ..., n\}$:

• $x_0 \cdots x_i \in \mathscr{L}(d_k)$ for some k

• $x_0 \cdots x_i \cdots x_j \in \mathscr{L}(d_k)$ or $x_0 \cdots x_i \cdots x_j \in \mathscr{L}(d_h)$ for some $h \neq k$ Which is the match to consider?

longest match rule

Suppose that at the same time for $i \in \{0, ..., n\}$ and $k \neq h$, $k, h \in \{1, ..., m\}$:

- $x_0 \cdots x_i \in \mathscr{L}(d_k)$
- $x_0 \cdots x_i \in \mathscr{L}(d_h)$

Which is the match to consider?

first one listed rule, i.e., d_k

Errors: to manage errors put as last match in the list a regexp for all lexemes not in the language

(Formal Languages and Compilers)

2. Lexical Analysis

Suppose that at the same time for $i < j, i, j \in \{0, ..., n\}$:

• $x_0 \cdots x_i \in \mathscr{L}(d_k)$ for some k

• $x_0 \cdots x_i \cdots x_j \in \mathscr{L}(d_k)$ or $x_0 \cdots x_i \cdots x_j \in \mathscr{L}(d_h)$ for some $h \neq k$ Which is the match to consider?

longest match rule

Suppose that at the same time for $i \in \{0, ..., n\}$ and $k \neq h$, $k, h \in \{1, ..., m\}$:

- $x_0 \cdots x_i \in \mathscr{L}(d_k)$
- $x_0 \cdots x_i \in \mathscr{L}(d_h)$

Which is the match to consider?

first one listed rule, i.e., *d*_k

Errors: to manage errors put as last match in the list a regexp for all lexemes not in the language

(Formal Languages and Compilers)

2. Lexical Analysis

Suppose that at the same time for $i < j, i, j \in \{0, ..., n\}$:

• $x_0 \cdots x_i \in \mathscr{L}(d_k)$ for some k

• $x_0 \cdots x_i \cdots x_j \in \mathscr{L}(d_k)$ or $x_0 \cdots x_i \cdots x_j \in \mathscr{L}(d_h)$ for some $h \neq k$ Which is the match to consider?

longest match rule

Suppose that at the same time for $i \in \{0, ..., n\}$ and $k \neq h$, $k, h \in \{1, ..., m\}$:

- $x_0 \cdots x_i \in \mathscr{L}(d_k)$
- $x_0 \cdots x_i \in \mathscr{L}(d_h)$

Which is the match to consider?

first one listed rule, i.e., d_k

Errors: to manage errors put as last match in the list a regexp for all lexemes not in the language

(Formal Languages and Compilers)

2. Lexical Analysis

Suppose that at the same time for $i < j, i, j \in \{0, ..., n\}$:

• $x_0 \cdots x_i \in \mathscr{L}(d_k)$ for some k

• $x_0 \cdots x_i \cdots x_j \in \mathscr{L}(d_k)$ or $x_0 \cdots x_i \cdots x_j \in \mathscr{L}(d_h)$ for some $h \neq k$ Which is the match to consider?

longest match rule

Suppose that at the same time for $i \in \{0, ..., n\}$ and $k \neq h$, $k, h \in \{1, ..., m\}$:

- $x_0 \cdots x_i \in \mathscr{L}(d_k)$
- $x_0 \cdots x_i \in \mathscr{L}(d_h)$

Which is the match to consider?

first one listed rule, i.e., d_k

Errors: to manage errors put as last match in the list a regexp for all lexemes not in the language

(Formal Languages and Compilers)

2. Lexical Analysis

Finite State Automata

Finite Automata

- Regular Expressions = specification of tokens
- Finite Automata = recognition of tokens

Finite Automaton

A Finite Automaton \mathcal{A} is a tuple $\langle \mathcal{S}, \Sigma, \delta, s_0, \mathcal{F} \rangle$ where:

- S represents the set of states
- Σ represents a set of symbols (alphabet)
- δ represents the transition function ($\delta : S \times \Sigma \to \ldots$)
- s_0 represents the start state ($s_0 \in S$)
- \mathcal{F} represents the set of accepting states ($\mathcal{F} \subseteq \mathcal{S}$)

In two flavours: Deterministic Finite Automata (DFA) and Non-Deterministic Finite Automata (NFA)

Finite Automata

- Regular Expressions = specification of tokens
- Finite Automata = recognition of tokens

Finite Automaton

A Finite Automaton \mathcal{A} is a tuple $\langle \mathcal{S}, \Sigma, \delta, s_0, \mathcal{F} \rangle$ where:

- S represents the set of states
- Σ represents a set of symbols (alphabet)
- δ represents the transition function ($\delta : S \times \Sigma \rightarrow ...$)
- s_0 represents the start state ($s_0 \in S$)
- \mathcal{F} represents the set of accepting states ($\mathcal{F} \subseteq \mathcal{S}$)

In two flavours: Deterministic Finite Automata (DFA) and Non-Deterministic Finite Automata (NFA)

(Formal Languages and Compilers)

2. Lexical Analysis

Finite Automata

DFA vs. NFA

Depending on the definition of δ we distinguish between:

- ► Deterministic Finite Automata (DFA) $\delta : S \times \Sigma \rightarrow S$
- ► Nondeterministic Finite Automata (NFA) $\delta : S \times \Sigma \rightarrow \mathscr{P}(S)$

The transition relation δ can be represented in a table (transition table)

 $\mathscr{P}(\mathcal{S}) = 2^{\mathcal{S}}$ is the powerset of the set \mathcal{S} of states, i.e., the set of all the subsets of \mathcal{S}

Overview of the graphical notation circle and edges (arrows)

Finite Automata

DFA vs. NFA

Depending on the definition of δ we distinguish between:

- ► Deterministic Finite Automata (DFA) $\delta : S \times \Sigma \rightarrow S$
- ► Nondeterministic Finite Automata (NFA) $\delta : S \times \Sigma \rightarrow \mathscr{P}(S)$

The transition relation δ can be represented in a table (transition table)

 $\mathscr{P}(\mathcal{S}) = 2^{\mathcal{S}}$ is the powerset of the set \mathcal{S} of states, i.e., the set of all the subsets of \mathcal{S}

Overview of the graphical notation circle and edges (arrows)

Acceptance of Strings for DFAs

Moves of a DFA

A DFA "consumes" an input character *c* going from a state *s* to a state *s'* if $\delta(s,c) = s'$, written $s \xrightarrow{c} s'$ A DFA "consumes" a string $\mathbf{a} = a_1 a_2 \cdots a_n$ going from a state s_i to a state s_j if there is a sequence of states $s_{i+1}, \ldots, s_{i+n-1}, s_{i+n} = s_j$ s.t. $\forall k \in \{1, \ldots, n\} . \delta(s_{i+k-1}, a_k) = s_{i+k}$, written $s_i \xrightarrow{\mathbf{a}} s_j$

Acceptance of Strings

A DFA accepts a string **a** if and only if it consumes **a** from the initial state s_0 to a final state s_i , i.e., $s_0 \xrightarrow{a} s_i$ and $s_i \in \mathcal{F}$

Accepted Language

The language accepted by a DFA is the set of all the strings **a** such that $s_0 \stackrel{u}{\longrightarrow} s_i$ and $s_i \in \mathcal{F}$

(Formal Languages and Compilers)

2. Lexical Analysis

CS@UNICAM 37 / 52

・ロン ・雪 とく ほどく ほく

Acceptance of Strings for DFAs

Moves of a DFA

A DFA "consumes" an input character *c* going from a state *s* to a state *s'* if $\delta(s,c) = s'$, written $s \xrightarrow{c} s'$ A DFA "consumes" a string $\mathbf{a} = a_1 a_2 \cdots a_n$ going from a state s_i to a state s_j if there is a sequence of states $s_{i+1}, \ldots, s_{i+n-1}, s_{i+n} = s_j$ s.t. $\forall k \in \{1, \ldots, n\} . \delta(s_{i+k-1}, a_k) = s_{i+k}$, written $s_i \xrightarrow{\mathbf{a}} s_j$

Acceptance of Strings

A DFA accepts a string **a** if and only if it consumes **a** from the initial state s_0 to a final state s_i , i.e., $s_0 \xrightarrow{a} s_i$ and $s_i \in \mathcal{F}$

Accepted Language

The language accepted by a DFA is the set of all the strings **a** such that $s_0 \stackrel{\sim}{\longrightarrow} s_i$ and $s_i \in \mathcal{F}$

(Formal Languages and Compilers)

2. Lexical Analysis

CS@UNICAM 37 / 52

ヘロン 人間 とくさとくさとう ほう

Acceptance of Strings for DFAs

Moves of a DFA

A DFA "consumes" an input character *c* going from a state *s* to a state *s'* if $\delta(s,c) = s'$, written $s \xrightarrow{c} s'$ A DFA "consumes" a string $\mathbf{a} = a_1 a_2 \cdots a_n$ going from a state s_i to a state s_j if there is a sequence of states $s_{i+1}, \ldots, s_{i+n-1}, s_{i+n} = s_j$ s.t. $\forall k \in \{1, \ldots, n\} . \delta(s_{i+k-1}, a_k) = s_{i+k}$, written $s_i \xrightarrow{\mathbf{a}} s_j$

Acceptance of Strings

A DFA accepts a string **a** if and only if it consumes **a** from the initial state s_0 to a final state s_i , i.e., $s_0 \xrightarrow{a} s_i$ and $s_i \in \mathcal{F}$

Accepted Language

The language accepted by a DFA is the set of all the strings **a** such that $s_0 \xrightarrow{a} s_i$ and $s_i \in \mathcal{F}$

(Formal Languages and Compilers)

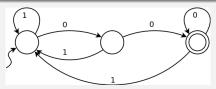
2. Lexical Analysis

Exercise

Define the following automata:

- DFA for a single 1
- DFA for accepting any number of 1's followed by a single 0
- DFA for any sequence of a or b (possibly empty) followed by 'abb'

Exercise



Which regular expression corresponds to the automaton?

- (0|1)*
 (1*|0)(1|0)
 1*|(01)*|(001)*|(000*1)*
- ④ (0|1)*00

Finite State Automata

ϵ -moves

DFA, NFA and ϵ -moves

- DFA
 - at most one transition for one input in a given state
 - no ϵ -moves
- NFA
 - can have multiple transitions for one input in a given state
 - can have ϵ -moves, i.e., $\delta : S \times (\Sigma \cup \{\epsilon\}) \to \mathscr{P}(S)$
 - smaller (exponentially)

Acceptance of Strings for NFAs

Moves of an NFA

An NFA "consumes" an input character *c* going from a state *s* to a state *s'* if $s' \in \delta(s, c)$, written $s \xrightarrow{c} s'$ An NFA can move from a state *s* to a state *s'* without consuming any input character, written $s \xrightarrow{\epsilon} s'$ An NFA "consumes" a string $\mathbf{a} = a_1 a_2 \cdots a_n$ going from a state s_i to a state s_j if there is a sequence of moves $s_i \xrightarrow{x_0} s_{i+1} \xrightarrow{x_1} \dots s_{i+m-1} \xrightarrow{x_{m-1}} s_{i+m} = s_j$ s.t. $\forall k \in \{0, \dots, m-1\}.s_{i+k} \in \delta(s_{i+k}, x_k)$ and $x_0 x_1 \cdots x_{m-1} = \mathbf{a}$, written $s_i \xrightarrow{\mathbf{a}} s_j$

Acceptance of Strings

An NFA accepts a string **a** if and only if there exists at least one sequence of moves from the initial state s_0 to a state s_i such that s_i is a final state, i.e., $\exists s_i \in \mathcal{F} \colon s_0 \stackrel{a}{\Longrightarrow} s_i$

Accepted Language

The language accepted by an NFA is the set of all the strings **a** such that $\exists s_i \in \mathcal{F} : s_0 \stackrel{a}{\Longrightarrow} s_i$

(Formal Languages and Compilers)

Acceptance of Strings for NFAs

Moves of an NFA

An NFA "consumes" an input character *c* going from a state *s* to a state *s'* if $s' \in \delta(s, c)$, written $s \xrightarrow{c} s'$ An NFA can move from a state *s* to a state *s'* without consuming any input character, written $s \xrightarrow{\epsilon} s'$ An NFA "consumes" a string $\mathbf{a} = a_1 a_2 \cdots a_n$ going from a state s_i to a state s_j if there is a sequence of moves $s_i \xrightarrow{x_0} s_{i+1} \xrightarrow{x_1} \dots s_{i+m-1} \xrightarrow{x_{m-1}} s_{i+m} = s_j$ s.t. $\forall k \in \{0, \dots, m-1\}.s_{i+k} \in \delta(s_{i+k}, x_k)$ and $x_0 x_1 \cdots x_{m-1} = \mathbf{a}$, written $s_i \xrightarrow{\mathbf{a}} s_j$

Acceptance of Strings

An NFA accepts a string **a** if and only if there exists at least one sequence of moves from the initial state s_0 to a state s_i such that s_i is a final state, i.e., $\exists s_i \in \mathcal{F} \colon s_0 \stackrel{a}{\Longrightarrow} s_i$

Accepted Language

The language accepted by an NFA is the set of all the strings **a** such that

(Formal Languages and Compilers

Acceptance of Strings for NFAs

Moves of an NFA

An NFA "consumes" an input character *c* going from a state *s* to a state *s'* if $s' \in \delta(s, c)$, written $s \xrightarrow{c} s'$ An NFA can move from a state *s* to a state *s'* without consuming any input character, written $s \xrightarrow{\epsilon} s'$ An NFA "consumes" a string $\mathbf{a} = a_1 a_2 \cdots a_n$ going from a state s_i to a state s_j if there is a sequence of moves $s_i \xrightarrow{x_0} s_{i+1} \xrightarrow{x_1} \dots s_{i+m-1} \xrightarrow{x_{m-1}} s_{i+m} = s_j$ s.t. $\forall k \in \{0, \dots, m-1\}.s_{i+k} \in \delta(s_{i+k}, x_k)$ and $x_0 x_1 \cdots x_{m-1} = \mathbf{a}$, written $s_i \xrightarrow{\mathbf{a}} s_j$

Acceptance of Strings

An NFA accepts a string **a** if and only if there exists at least one sequence of moves from the initial state s_0 to a state s_i such that s_i is a final state, i.e., $\exists s_i \in \mathcal{F} \colon s_0 \stackrel{a}{\Longrightarrow} s_i$

Accepted Language

The language accepted by an NFA is the set of all the strings **a** such that $\exists s_i \in \mathcal{F} \colon s_0 \stackrel{a}{\Longrightarrow} s_i$

(Formal Languages and Compilers)

2. Lexical Analysis

From regexp to NFA

Equivalent NFA for a regexp

The Thompson's algorithm permits to automatically derive an NFA from the specification of a regexp. It defines basic NFAs for basic regexps and rules to compose them:

- 1 for ϵ
- Ifor 'c'
- Ifor ab
- Ifor a + b
- for a*

Now consider the regexp for $(1|0)^*1$

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >