
Syntax Analysis: solutions Bottom-Up Parsing

Towards more powerful parsers

Viable prefix
A Viable prefix is a prefix of a right-sentential form that can appear on
the stack of a shift-reduce parser.
We say item A ! �1 · �2 is valid for a viable prefix ↵�1 if there is a
derivation S)⇤ ↵Aw) ↵�1�2w .

(Formal Languages and Compilers) 3. Syntax Analysis CS@UNICAM 61 / 69

Syntax Analysis: solutions Bottom-Up Parsing

LR parsers with lookahead

In order to enlarge the class of grammars that can be parsed we need
to consider more powerful parsing strategies. In particular we will
study:

I LR(1) parsers
I LALR parsers

(Formal Languages and Compilers) 3. Syntax Analysis CS@UNICAM 62 / 69

Syntax Analysis: solutions Bottom-Up Parsing

LR(1) items

LR(1) items structure
The very general idea is to encapsulate more information in the items
of an automaton to decide when to reduce. The solution is to
differentiate items on the base of lookaheads. As a result a general
item follows now the template [A ! ↵ · �, a]

LR(1) items and reductions
Given the new form on an item, the parser will call for a reduction
A ! ↵ only for item sets including the item [A ! ↵·, a] and only for
symbol a

(Formal Languages and Compilers) 3. Syntax Analysis CS@UNICAM 63 / 69

Syntax Analysis: solutions Bottom-Up Parsing

LR(1) CLOSURE and GOTO functions

Closure of an item
If [A ! ↵ · B�, a] is in I then for each production B ! � and for each
terminal b in FIRST(�a) add the item [B ! ·�, b]

GOTO(I,X)
Let J initially empty. For each item [A ! ↵ · X�, a] in I add item
[A ! ↵X · �, a] to set J. Then compute CLOSURE(J)

Consider the starting item as the closure of the item [S0 ! S, $].

Exercise
Compute the LR(1) item sets for the following grammar:
S ! CC C ! cC|d

(Formal Languages and Compilers) 3. Syntax Analysis CS@UNICAM 64 / 69

Syntax Analysis: solutions Bottom-Up Parsing

LR(1) parsing table

How to build the LR(1) parsing table
1 build the collection of sets of LR(1) items for the grammar
2 Parsing actions for state i are:

1 if [A ! ↵ · a�, b] is in Ii and GOTO(Ii , a)= Ij then set ACTION[i , a] to
shift J.

2 if [A ! ↵·, a] is in Ii A 6= S0 then set ACTION[i , a] to reduce(A ! ↵)
3 if [S0 ! S·, $] is in Ii then set ACTION[i , $] to accept

3 if GOTO(Ii ,A)= Ij then GOTO[i ,A]= j

4 All entries not defined so far are mare "error"
5 The initial state of the parse is the one constructed from the set of

items containing [S0 ! ·S, $]

Consider the following grammar and derive the LR(1) parsing table:
S ! L = R|R L ! ⇤R|id R ! L

(Formal Languages and Compilers) 3. Syntax Analysis CS@UNICAM 65 / 69

Syntax Analysis: solutions Bottom-Up Parsing

LR(1) parsing

Consider the following grammar and discuss applicability of LR(1)
parsing:
S ! aSa | a

Which is the language generated?
Propose an alternative grammar parsable using an LR(1) parser

(Formal Languages and Compilers) 3. Syntax Analysis CS@UNICAM 66 / 69

Syntax Analysis: solutions Bottom-Up Parsing

LR(1) parsing

Consider the following grammar and discuss applicability of LR(1)
parsing:
S ! aSa | a

Which is the language generated?
Propose an alternative grammar parsable using an LR(1) parser

(Formal Languages and Compilers) 3. Syntax Analysis CS@UNICAM 66 / 69

Syntax Analysis: solutions Bottom-Up Parsing

LALR parsing

I LR(1) for a real language a SLR parser has several hundred
states. For the same language an LR(1) parser has several
thousand states

I Can we produce a parser with power similar to LR(1) and table
dimension similar to SLR?

(Formal Languages and Compilers) 3. Syntax Analysis CS@UNICAM 67 / 69

Syntax Analysis: solutions Bottom-Up Parsing

LALR parsing
Let’s consider the LR(1) automaton for the grammar
S ! CC C ! cC|d

LALR table can be built from LR(1) automaton merging “similar” item sets.

(Formal Languages and Compilers) 3. Syntax Analysis CS@UNICAM 68 / 69

Syntax Analysis: solutions Bottom-Up Parsing

LALR parsing
Let’s consider the LR(1) automaton for the grammar
S ! CC C ! cC|d

LALR table can be built from LR(1) automaton merging “similar” item sets.

(Formal Languages and Compilers) 3. Syntax Analysis CS@UNICAM 68 / 69

Syntax Analysis: solutions Bottom-Up Parsing

Exercises

Consider the grammar:
S ! Aa|bAc|dc|bda A ! d

show that is LALR(1) but not SLR(1)

Consider the grammar:
S ! Aa|bAc|Bc|bBa A ! d B ! d

show that is LR(1) but not LALR(1)

(Formal Languages and Compilers) 3. Syntax Analysis CS@UNICAM 69 / 69

Syntax Analysis: solutions Bottom-Up Parsing

Exercises

Consider the grammar:
S ! Aa|bAc|dc|bda A ! d

show that is LALR(1) but not SLR(1)

Consider the grammar:
S ! Aa|bAc|Bc|bBa A ! d B ! d

show that is LR(1) but not LALR(1)

(Formal Languages and Compilers) 3. Syntax Analysis CS@UNICAM 69 / 69

	Syntax Analysis: the problem
	Theoretical Background
	Syntax Analysis: solutions
	Top-Down parsing
	Bottom-Up Parsing

