
Exercise 1
Consider the language of forests of labelled trees represented as parenthesized lists of
trees separated by commas. Each tree that is not just a leaf is represented by a pair of
elements, separated by comma and enclosed in square brackets. The first of these
elements is the label of the root; the second element is the forest of trees that are the
children of the root. Trees that are composed of only one node (leaf) are represented by
just the label of the node. The alphabet of the labels is {A, B, C, D, E}.
An example of a sentence belonging to the language is

([A,(B,[C,(D)]], [D,(A,E,B,C)])

which represents the following forest

Your tasks are:

1. Give a grammar for the language
2. Give an Syntax Directed Definition suitable to be implemented during top-down

parsing that computes, for each non-leaf node, an attribute that is the parse tree
derived from the node. For the construction of the tree the following operations
can be used:

1. MkT:: Label x TreeList -> Tree /* MkT(a,f) creates a tree with a root
labelled “a” and whose children are the trees in “f”, in the order in which
they occur */

2. MkE:: -> TreeList /* creates an empty list of trees */
3. Add:: Tree x TreeList -> TreeList /* Add(t,f) adds the tree “t” to “f” as

first element */
3. Give an SDD suitable to be implemented during top-down parsing that computes,

as an attribute of the start symbol, the derived forest of trees. Use the operations
above; in particular use list of trees for forests.

4. Give an SDD suitable to be implemented during top-down parsing that computes,
as an attribute of the start symbol, the depth of the forest represented by the
parsed string (i.e., the maximum height of the trees in the forest).

5. Give an SDD suitable to be implemented during top-down parsing that computes,
as an attribute of the start symbol, the width of the forest represented by the
parsed string (i.e., the maximum number of children of a node in the trees of the
forest).

6. Give an SDD suitable to be implemented during top-down parsing that computes,
as an attribute of the start symbol, the number of nodes in the forest that are
labelled with “A”.

7. Give an SDD suitable to be implemented during top-down parsing that computes,
as an attribute of the start symbol, the maximum depth of the trees (and subtrees)
in the forest whose root is labelled with “A”.

8. Give an SDD suitable to be implemented during top-down parsing that computes,
as an attribute of the start symbol, the maximum width of the trees (and subtrees)
in the forest whose root is labelled with “A”.

Hints
Exercise 1.1

Among the different options, it is convenient to give an LL(1) grammar because the
analyses requested in the next steps all require that kind of grammar.

Exercise 1.2

It is sufficient to use a synthesised attribute tree. During parsing, for each non-leaf node
P, the attribute P.tree will be assigned with the corresponding parse-tree constructed with
the given operations.

Exercise 1.3

Introduce three synthesised attributes:

• forest for S and F: contains the list of trees coming from the traversal of the
derivation tree for S and F, respectively

• tree for T: contains the tree derived during the traversal of the derivation tree of T
• label for L: contains the label of L

Exercise 1.4

Introduce a synthesised attribute depth for S, F, T. It contains the number of edges of the
longer path contained in the forest or tree associated to S, F or T.

Exercise 1.5

Introduce two synthesised attributes:

• outd for S, F, T: contains the maximum number of children of the nodes in the
forest or tree associated to S, F or T

• length for F: contains the number of trees (that is the length of the list of children)
in the forest associated to F

Exercise 1.6

Introduce a synthesised attribute A for S, F, T, L that contains the number of nodes
labelled with “A” in the forest or tree associated to the symbol.

Exercise 1.7

Introduce three synthesised attributes:

• DepthA for S, F, T: contains the maximum depth of the trees labelled with “A” in
the forest or tree associated to the symbol

• depth for S, F, T as in 1.4
• label for L as in 1.3

Exercise 1.8

Introduce four synthesised attributes:

• OutdA for S, F, T: contains the maximum number of children for trees with root
labelled with “A” in the forest or tree associated to the

• outd for F, T as in 1.5
• length for F as in 1.5
• label for L as in 1.3

 Solutions

Exercise 1.1

S::= (T F
T::= L
T::= [L , S]
F::= , T F
F::=)
L::= A
L::= B
L::= C
L::= D
L::= E

Esercizio1.2

S::= (TF S.tree:= MkT("S", Add(MkT("(",MkE()), Add(T.tree, Add(F.tree,
MkE()))))

T::= L T.tree:= MkT("T",Add(L.tree, MkE()))
T::=
[L,S]

T.tree:= MkT("T",Add(MkT("[",MkE()), Add(L.tree, Add(MkT(",",
MkE()),Add(S.tree, Add(MkT("]", MkE()))))))

F1::=,TF2 F1.tree:=MkT("F",Add(MkT(",",MKE()),Add(T.tree,Add(F2.tree,MKE()))))
F::=) F.tree:=MkT("F",Add(MkT(")",MKE()))
L::= A L.tree:=MkT("L",Add(MkT("A",MKE()))
L::= B L.tree:=MkT("L",Add(MkT("B",MKE()))
L::= C L.tree:=MkT("L",Add(MkT("C",MKE()))
L::= D L.tree:=MkT("L",Add(MkT("D",MKE()))
L::= E L.tree:=MkT("L",Add(MkT("E",MKE()))

Exercise 1.3

S::= (TF S.forest:= Add(T.tree, Add(F.forest, MkE()))))
T::= L T.tree:= MkT(L.label,MkE())
T::= [L,S] T.tree:= MkT(L.label, S.forest)
F1::=,TF2 F1.forest:= Add(T.tree, F2.forest)
F::=) F.forest:= MKE()
L::= A L.label:= "A"
L::= B L.label:= "B"
L::= C L.label:= "C"
L::= D L.label:= "D"
L::= E L.label:= "E"

Exercise 1.4

S::= (TF S.depth:= max(T.depth, F.depth)
T::= L T.depth:= 0
T::= [L,S] T.depth:= 1+ S.depth
F1::=,TF2 F1.depth:= max(T.depth, F2.depth)
F::=) F.depth:= 0
L::= A

L::= B
L::= C
L::= D
L::= E

Exercise 1.5

S::= (TF S.length:= 1+F.length; S.outd:= max(T.outd, max
(1+F.length, F.outd))

T::= L T.outd:= 0
T::=
[L,S] T.outd:= max(S.length, S.outd)

F1::=,TF2 F1.length:= 1+ F2.length
F1.outd:= max(T.outd,F2.outd)

F::=) F.length:= 0
F.outd:= 0

L::= A
L::= B
L::= C
L::= D
L::= E

Exercise 1.6

S::= (TF S.A:= T.A+F.A
T::= L T.A:= L.A
T::= [L,S] T.A:= L.A+S.A
F1::=,TF2 F1.A:= T.A+ F2.A
F::=) F.A= 0
L::= A L.A:= 1
L::= B L.A:= 0
L::= C L.A:= 0

L::= D L.A:= 0
L::= E L.A:= 0

Exercise 1.7

S::= (TF S.DepthA:= max(T.DepthA,F.DepthA); S.depth:=
max(T.depth, F.depth)

T::= L T.DepthA:= 0
T.depth:= 0

T::=
[L,S]

T.DepthA:= if (L.label = "A") then 1+S.depth else
S.DepthA
T.depth:= 1+ S.depth

F1::=,TF2 F1.DepthA:= max(T.DepthA, F2.DepthA)
F1.depth:= max(T.depth, F2.depth)

F::=) F.DepthA:= 0
F.depth:= 0

L::= A L.label:= "A"
L::= B L.label:= "B"
L::= C L.label:= "C"
L::= D L.label:= "D"
L::= E L.label:= "E"

Exercise 1.8

S::= (TF
S.OutdA:= max(T.OutdA,F.OutdA);
S.length:= 1+F.length; S.outd:= max(T.outd, max
(1+F.length, F.outd))

T::= L T.OutdA:= 0
T.outd:= 0

T::=
[L,S]

T.OutdA:= if (L.label = "A") then
max(max(S.length, S.outd), S.OutdA) else S.OutdA
T.outd:= max(F.length, F.outd) **nota che
S.OutdA<S.outd sempre: espressione max puo'
essere semplificata

F1::=,TF2 F1.OutdA:= max(T.OutdA, F2.OutdA)

F1.outd:= max(T.outd,F2.outd)
F1.length:= 1+ F2.length

F::=)
F.OutdA:= 0
F.outd:= 0
F.length:= 0

L::= A L.label:= "A"
L::= B L.label:= "B"
L::= C L.label:= "C"
L::= D L.label:= "D"
L::= E L.label:= "E"

