
Exercise 3
Consider the language of sequences of symbols on the alphabet {&, A, B, C}. The
character '&' is used as a quote character to indicate that the next symbol, if different
from '&', must be interpreted as a command. The sequence '&&' is used to denote the
symbol '&' itself.

Reply to the following questions:

1. Give a grammar for the language
2. Give a Syntax Directed Translation Scheme, suitable for being implemented

during top-down parsing, that computes as an attribute of the start symbol the
sequence that is obtained resolving the commands and the quoting. For instance,
for the input sequence &&&A&&B the computed attribute must be:
&Cmd(A)&B where Cmd is the operator to encapsulate commands.

3. Give a Syntax Directed Translation Scheme, suitable for being implemented
during bottom-up parsing, that computes the same attribute of step 2)

4. Observe that the sequences of the language should not end with a dangling '&',
i.e., a '&' symbol that was not preceded by another '&' symbol. Discuss the
solution of step 3) when this constraint is imposed.

Use the operator “_” for constructing strings and the operator + to concatenate two
strings.

Hints

Exercise 3.1

We can give a simple grammar using a linear recursion. It is better to start with a
grammar that is LL(1), i.e., using a linear right recursion. This is suitable for the top-
down parsing. Later, another grammar that is LR(1) will be given for the bottom-up
parsing.

Esercizio3.2

The chosen grammar permits to parse only one symbol at each step through the
production S1::= L S2. This imposes that S must record the symbol previously read, thus
requiring a boolean inherited attribute cmd that is true iff the last symbol read was a '&'.
A synthesised attribute string can be used to compute the resulting string using the value
of cmd.

Exercise 3.3

The solution given in 3.2 uses an inherited attribute cmd. The figure below shows in the
left part the dependency graph of this attribute for the parsing of a string of the language
of length 5. Markers could be used with the same grammar by transforming the inherited
attribute into a synthesised one of the markers and by expressing the actions as functions
with side-effect. Another alternative solution is to change the grammar in such a way that

the parse tree looks like the one on the right part of the figure. This form permits to treat
the former inherited attribute as a synthesised.

Exercise 3.4

The grammar must be modified and the SDT adapted. The new grammar must permit to
read the input looking at two adjacent symbols in the same step. The solution can be
given as an instance of a static analysis, i.e., the defined attributes are used to control that
the analysed string belongs to the described sub-language.

Solutions

Exercise 3.1

 S::= L S
 S::= ε
 L::= &
 L::= A
 L::= B
 L::= C

The grammar is LL(1) suitable for top-down parsing.
Another grammar, which is LR(1), i.e. suitable for bottom-up parsing, is the following:

 S::= & L S
 S::= T L S
 S::= L
 S::= ε
 L::= T
 L::= &
 T::= A
 T::= B
 T::= C

This second grammar has the advantage of permitting to look at two adjacent symbols in
the same step.

Exercise 3.2

We use three attributes:

• cmd for S: inherited, contains true if the last symbol read before the derivation of
S is '&'

• string for S: synthesised, contains the sequence of traversed symbols resolved
with respect to the quoting symbol '&'

• val for L: synthesised, contains the string of the traversed symbol.

We need to modify the grammar by introducing a fake start symbol S’ to initialize the
inherited attribute.

S'::= {S.cmd:= false}
 S
 {S'.string:= S.string}
S 1::= L
 {S2.cmd:= (not S1.cmd) and (L.val = "&")}
 S 2
 {S1.string:= if (S2.cmd) then S2.string
 else if (S1.cmd) and (L.val <>
"&") then "Cmd("+L.val+")"+S2.string
 else L.val+S2.string}
S::= ε{S.string:= if (S.cmd) then "&" else ""}
L::= &{L.val:= "&"}
L::= A {L.val:= "A"}
L::= B {L.val:= "B"}
L::= C {L.val:= "C"}

Exercise 3.3

Solution with the markers.

1. Let’s start with the solution for top-down parsing given in 3.2
2. Let’s insert the markers and the epsilon-productions.

The following is the solution

S'::= M 1
 S
 {S'.string:= S.string}
S 1::= L
 M2
 S 2
 {S1.string:= if (M2.cmd) then S2.string
 else if (S1.cmd) and (L.val <>
"&") then "cmd("+L.val+")"+S2.string
 else L.val+S2.string}
S::= ε{S.string:= if (S.cmd) then "&" else ""}
L::= &{L.val:= "&"}
L::= A {L.val:= "A"}
L::= B {L.val:= "B"}
L::= C {L.val:= "C"}
M 1::= ε {M1.cmd:= false}
M2::= ε {M2.cmd:= (not S1.cmd) and (L.val = "&")}

3. Let’s resolve the references to the attributes through references on the stack and
actions with side-effects. We suppose the following invariant: “each handle
A::=B1,...,Bk, has synthesises attributes of Bj in Top\j”.

S'::= M 1
 S
 {temp:= Top; pop(2); push(temp)}
S 1::= L
 M 2
 S 2
 {temp:= if (Top\1) then Top
 else if (Top\3) and (Top\2 <>
"&") then "cmd("+Top\2+")"+Top
 else Top\2+Top;
 pop(3);
 push(temp)}
S::= ε {if (Top) then push("&") else push("")}
L::= &{push("&")}
L::= A {push("A")}
L::= B {push("B")}
L::= C {push("C")}

M 1::= ε {push(false)}
M 2::= ε {push((not Top\1) and (Top = "&"))}

The actions pop and push maintain the invariant. This solution is completely automatic
and is the solution adopted in the tools of Cornell Syntetizer

Alternative solution

Let’s write a new grammar in such a way that the inherited attribute is no longer needed.

S 1::= S 2
 L
 {S1.cmd:= (not S2.cmd) and (L.val = "&")
 S1.string:= if ((not S2.cmd) and (L.val = "&"))
then S2.string
 else if (S2.cmd) and (L.val <>
"&") then S2.string + "cmd("+L.val+")"
 else S2.string+L.val}
S::= ε{S.cmd:=false;
 S.string:= ""}
L::= &{L.val:= "&"}
L::= A {L.val:= "A"}
L::= B {L.val:= "B"}
L::= C {L.val:= "C"}

Exercise 3.4

The following grammar corresponds to the one in 3.1 but excludes strings ending with
'X&' where X can be A, B or C.

 S::= T S
 S::= & L S
 S::= ε
 L::= &
 L::= T
 T::= A
 T::= B
 T::= C

 The SDT is modified as follows.

S'::= M 1

 S
 {temp:= Top; pop(2); push(temp)}
S 1::=T
 M 2
 S 2
 {temp:= if (Top\3) then "cmd("+Top\2+")"+Top
 else Top\2+Top;
 pop(3);
 push(temp)}
S 1::= &
 L
 M 3
 S 2
 {temp:= if (Top\1) then "&"+Top
 else if (Top\2 <> "&") then
"cmd("+Top\2+")"+Top
 else Top\2+Top;
 pop(3);
 push(temp)}
S::= ε {if (Top) then push("&") else push("")}
L::= &{push("&")}
L::= T{} ******note: we should copy T, remove it
from top and push the copied value ******
T::= A {push("A")}
T::= B {push("B")}
T::= C {push("C")}
M 1::= ε {push(false)}
M 2::= ε {push(false)}
M 3::= ε {push((Top\1) and (Top = "&"))}

As an alternative solution let’s extend the grammar of 3.1 using a synthesised attribute ok
that tells if the string belongs to the required sub-language

S 1::= S 2
 L
 {S1.cmd:= (not S2.cmd) and (L.val = "&")
 S1.string:= if ((not S2.cmd) and (L.val = "&"))
then S2.string
 else if (S2.cmd) and (L.val <>
"&") then S2.string + "cmd("+L.val+")"

 else S2.string+L.val
 S1.ok:= (L.val <> "&") or (S2.cmd)}
S::= ε{S.cmd:=false;
 S.string:= ""
 S.ok:=true}
L::= &{L.val:= "&"}
L::= A {L.val:= "A"}
L::= B {L.val:= "B"}
L::= C {L.val:= "C"}

