
Formal Languages and Compilers
Exercises on Syntax Analysis II with Solutions

MSc in Computer Science, University of Camerino
prof. Luca Tesei

Exercise 1

Consider the language of expressions formed by identifiers (tokens), parentheses
and two binary operators ⊕ and ⊗. Define, illustrating all the steps, a context-free
grammar that generates the expressions of this language and that encapsulates the
following precedence and associativity assumptions:

• Operator ⊕ has precedence over ⊗

• Operator ⊕ is right-associative

• Operator ⊗ is left-associative

Then, draw a derivation tree for the string id⊕ id⊕ id⊗ id⊗ id according to the
defined grammar and explain the structure of the expression according to the rules
of precedence and associativity.

Solution

Let’s create a non-terminal symbol for each precedence level: F for the higher level,
which encompasses the operands and the parenthesised expressions, T for the level
of ⊕ and E for the level of lowest precedence, that is the one of operator ⊗. E is
the starting symbol. Regarding the associativity, it is sufficient to use left recursion
for left associativity and right recursion for right associativity. The grammar is the
following:

E → E ⊗ T | T
T → F ⊕ T | F
F → id | (E)

The derivation tree for the given string is the following:

1

E T

E

E T

T F

F

id

id
F T

F T

F

id

id

id

The structure of the string according to the rules and reflected in the derivation tree
can be explicitly represented using square brackets as follows:

[[id⊕ [id⊕ id]]⊗ id]⊗ id

Exercise 2

Consider the following language:

{an u bk−1 v cm | n, k,m > 0 e m = n+ k}

1. Define a context-free grammar for the language.

2. Is the language LR? Justify your answer illustrating all the steps.

3. If the language is LR then give a parsing table for a bottom-up shift-reduce
parser.

Solution
The language can be equivalently expressed as {an u bk v c ck cn | n > 0, k ≥ 0}.
Using this formulation it is easy to obtain a grammar using two left-right recursion
schemes:

S → aSc | auBc
B → bBc | vc

Let’s check if this grammar is SLR. If this is the case, it follows that the grammar is
also LR(1). If the grammar is LR(1) then also the language is LR(1) because there
exists an LR(1) grammar for it.
The collection of LR(0) items is the following:

2

I0 =
S ′ → ·S
S → ·aSc
S → ·auBc

I1 = goto(I0, S) = S ′ → S·

I2 = goto(I0, a) =

S → a · Sc
S → a · uBc
S → ·aSc
S → ·auBc

I3 = goto(I2, S) = S → aS · c

I4 = goto(I2, u) =
S → au ·Bc
B → ·bBc
B → ·vc

goto(I2, a) = I2

I5 = goto(I3, a) = S → aSc· I6 = goto(I4, B) = S → auB · c

I7 = goto(I4, b) =
B → b ·Bc
B → ·bBc
B → ·vc

I8 = goto(I4, v) = B → v · c

I9 = goto(I6, c) = S → auBc· I10 = goto(I7, B) = B → bB · c
goto(I7, b) = I7 goto(I7, v) = I8
I11 = goto(I8, c) = B → vc· I12 = goto(I10, c) = B → bBc·

There are no conflicts in the states, thus the grammar is SLR.
Let’s calculate FOLLOW(S ′) = {$}, FOLLOW(S) = {c, $} e FOLLOW(B) = {c}.
The parsing table is the following (the productions are numbered starting from 0):

c a b u v $ S B
0 s2 1
1 acc
2 s2 s4 3
3 s5
4 s7 s8 6
5 r1 r1
6 s9
7 s7 s8 10
8 s11
9 r2 r2
10 s12
11 r4
12 r3

Exercise 3

Consider the language:

{an b c | n > 0} ∪ {bn c b | n ≥ 0} ∪ {c an | n > 0}
3

1. Define a context-free grammar for the language.

2. Is the language LL(1)? Justify your answer illustrating all the steps.

3. If the language is LL(1) give a table for a top-down predictive parser and
execute the parsing of the strings cb and caa.

Solution

Let’s try to write directly an LL(1) grammar. We can follow the structure of the
language that presents naturally three different cases (the three sets in union). An
approach could be that of choosing a different non-terminal symbol for each case.
Following this idea we notice that strings starting with c could belong to both the
second and the third case. However, after this first c, by looking at the following
character we can resolve the ambiguity: if the following character is a b then the
string belongs to case 2, while if the following character is an a then the string
belongs to case 3. The resulting grammar is the following:

S → aA | bB | cC
A → aA | bc
B → bB | cb
C → b | aD
D → aD | ε

The FIRST sets of S,A,B,C are all disjoint and by calculating FOLLOW(D) = {$}
we see that also for D there are no conflicts. We can conclude that the grammar is
LL(1) and thus also the language is LL(1).
The table for the predictive parser is the following one:

a b c $
S S → aA S → bB S → cC
A A→ aA A→ bc
B B → bB B → cb
C C → aD C → b
D D → aD D → ε

Let’s parse cb and caa:

4

STACK INPUT ACTION
$S cb$ S → cC
$Cc cb$ match
$C b$ C → b
$b b$ match
$ $ accept

STACK INPUT ACTION
$S caa$ S → cC
$Cc caa$ match
$C aa$ C → aD
$Da aa$ match
$D a$ D → aD
$Da a$ match
$D $ D → ε
$ $ accept

5

