
Formal Languages and Compilers

(A.Y. 2015/2016)

2h30m

July 26th, 2016

First name: Last name:

Matriculation n.: e-mail:

Lexical Analysis

Exercise 1 – 5pt

Consider the following deterministic finite automata on the alphabet Σ (with :

• A1 =< Q1,Σ, δ1,F1, q10 > accepting the regular language L1

• A2 =< Q2,Σ, δ2,F2, q20 > accepting the regular language L2

The language L− on alphabet Σ includes all the strings in Σ∗ that belong to L1

but not to L2, i.e. L− = {s ∈ Σ∗|s ∈ L1 ∧ s /∈ L2}. Is L− a regular language?
If not, why? if yes, provide a definition for the elements of automaton A−

accepting L−.

In defining an answer to the exercise maybe can be useful to consider that the language L1∪L2
is a regular language for which an accepting deterministic finite automaton can be derived
transforming in a DFA the following NDFA:

• Q∨ = Q1 ∪Q2 ∪ {q∨0 }
• Σ∨ = Σ ∪ ε

• δ∨(q, a) =

 {δ1(q, a)} : q ∈ Q1

{δ2(q, a)} : q ∈ Q2

{q10 , q20} : q = q∨0 ∧ a = ε

• F∨ =

{
F1 ∪ F2 : ε /∈ L1 ∪ L2
F1 ∪ F2 ∪ {q∨0 } : ε ∈ L1 ∪ L2

Moreover, given that the complementary language of a regular language is still a regular

language for which an accepting automaton can be easily defined starting from the automaton

for the original language, it could be an idea to define an intersection in term of union and

complement of regular languages.

1

Exercise 2 – 4pt

In the definition of a regular expression real languages generally includes the not
operator (in addition to the traditional symbols defining regular expressions).
The operator permits to identify the set of strings that do not match the regular
expression pattern, given an alphabet Σ. So, given a regular expression r on Σ,
the strings matching ¬r on Σ are those not matching r. If useful the operator
can be included in the definition of the regular expressions for the following
languages:

• The language L including strings over the alphabet Σ = {a, b} containing
at least one occurrence of the character “a”
(e.g. ε, b, bbb /∈ L, while ε, a, ab, aaa, ba ∈ L)

• The language L on the alphabet Σ = {a, b, c, <,>} representing all the
possible couples of strings on {a, b, c} ending with the same symbol.
(e.g. < a, aba >, < abb, cb >, < cca, ba > ∈ L, < a, b >, < ab, ac >, < aa, c > /∈ L)

Syntax Analysis

Exercise 3 – 10pts

Let’s G the grammar defined by the following productions:

S −→ aSa | bSb | A A −→ aBc B −→ bAc | bc | ε (1)

1. Discuss the applicability of parser LR(0) and SLR for the original grammar
G.

2. show the steps of the parser SLR in the acceptance or rejection of the
string ababccba

Semantic Analysis

Exercise 4 – 14pts

Consider the following excerpt from a grammar for a complex programming
language:

S → alternate t times S1 and S2 (2)

The command permits to define a cycle in which at each successive iteration
a different branch is executed. So entering the cycle the first time statement
S1 will be executed, and then if t has not be reached S2 will be executed. In
conclusion the two statements in the command will be executed alternatively
till the number of execution of the two statement is equal to t.

2

• Provide an L-attributed SDD for the command that permits to translate
it in a three-address code program that behaves as expected1

• Show the parse tree and derive the three address code program for the
code snippet below. In doing this refer to the translation schemes for
expressions and commands which have been introduced during the course.
It is not necessary to check the type of the expressions, and it can be
assumed that variables have been declared somewhere before reaching the
statement.

. . .

alternate t times

i = v + 1

and

v = i - 2

1For your convenience I recall that the function top.get(id.lexeme) permits to retrieve the
address of the specified id, while the function gen(. . .) is used to generate three-address
code in the right format for the different istructions, and finally new Temp() and new Label()
permit to generate a new temporary address and a new label, respectively.

3

