Formal Languages and Compilers - Exercises I with Solutions

MSc in Computer Science, University of Camerino prof. Luca Tesei

Note Regular expressions are written with the usual precedence order: operator * has precedence on concatenation, which has precedence on |. Moreover, the usual shorthands ${ }^{+}$and ? may be used.

Exercise 1

Write a regular expression denoting the language accepted by the following automaton:

Solution

The expression is $(a \mid b)^{+} c^{*}$.

Exercise 2

Use Thompson algorithm to construct an NFA accepting the language denoted by $(a b \mid a c)^{*} d$.

Solution

The syntax tree of the regexp is a concatenation between a star and a d, then the star is of a union between two concatenations. Following the inductive definitions of the Thomposon algorithm the following NFA is obtained:

Exercise 3
Write a minimal automaton for the language $(a \mid b)^{*} \mid(b \mid c)^{*} d$.

Solution

Let us first use non-determinism to easily define an NFA for the language:

Now we can use the subset construction algorithm to find an equivalent DFA. The move table of the obtained DFA is the following one where accepting states are $\{A, B, C, E\}$:

State	a	b	c	d
$A=\{0,1,2\}$	B	C	D	E
$B=\{1\}$	B	B		
$C=\{1,2\}$	B	C	D	E
$D=\{2\}$		D	D	E
$E=\{3\}$				

It is quite clear from the table that state A and state C are equivalent, while the rest of the states behave differently. However, for the sake of completeness, let us apply the minimisation algorithm.

First, let us complete the DFA by adding a dead state F to which we create a transition for every empty entry in the table.

The first partition to consider is $(A B C E),(D F)$. Consider the group $(D F)$; we have that $\operatorname{move}(D, d)=E$ and $\operatorname{move}(F, d)=F$. We conclude that the two states are not equivalent because the input d sends the two states in different groups. Thus, the new partition to consider is $(A B C E),(D),(F)$.

The only group that can be refined is $(A B C E)$. We have move $(A, d)=E$, $\operatorname{move}(B, d)=F, \operatorname{move}(C, d)=E, \operatorname{move}(E, d)=F$. Thus, the new partition is $(A C),(B E),(D),(F)$.

We have already observed that there are no differences between A and C. Let us then consider B and E. We have that $\operatorname{move}(B, a)=B$ and $\operatorname{move}(E, a)=F$. Thus they must be distinguished. We obtain the following automaton, which is minimal for the language and in which the dead state F is not represented:

Exercise 4

Consider the following grammar:

$$
\begin{aligned}
& S \rightarrow a S b|A d| B c \\
& A \rightarrow A a \mid c \\
& B \rightarrow a d A \mid d C \\
& C \rightarrow a c
\end{aligned}
$$

1. Formalise the language generated by the grammar
2. Is the grammar $L L(k)$ for some k ?
3. Construct the table of a top-down non-recursive predictive parser for the language.

Solution

1) The language can be formalised as follows:

$$
\left\{a^{n} c a^{*} d b^{n} \mid n \geq 0\right\} \cup\left\{a^{n} d a c c b^{n} \mid n \geq 0\right\} \cup\left\{a^{n} d d c a^{*} c b^{n} \mid n \geq 0\right\}
$$

2) The grammar is not $L L(k)$ for any k because it has an immediate left recursion in the production: $A \rightarrow A a$.
3) Let us eliminate the left recursion and also factorise the productions of B. We obtain the following grammar:

$$
\begin{aligned}
& S \rightarrow a S b|A d| B c \\
& A \rightarrow c A^{\prime} \\
& A^{\prime} \rightarrow a A^{\prime} \mid \epsilon \\
& B \rightarrow d B^{\prime} \\
& B^{\prime} \rightarrow d A \mid C \\
& C \rightarrow a c
\end{aligned}
$$

We have $\operatorname{FOLLOW}(S)=\{\$, b\}, \operatorname{FOLLOW}(A)=\{d, c\}=\operatorname{FOLLOW}\left(A^{\prime}\right)$, $\operatorname{FOLLOW}(B)=\{c\}=\operatorname{FOLLOW}\left(B^{\prime}\right)=\operatorname{FOLLOW}(C)$.

This modified grammar is $L L(1)$ and the parsing table is the following:

	a	b	c	d	$\$$
S	$S \rightarrow a S b$		$S \rightarrow A d$	$S \rightarrow B c$	
A			$A \rightarrow c A^{\prime}$		
A^{\prime}	$A^{\prime} \rightarrow a A^{\prime}$		$A^{\prime} \rightarrow \epsilon$	$A^{\prime} \rightarrow \epsilon$	
B				$B \rightarrow d B^{\prime}$	
B^{\prime}	$B^{\prime} \rightarrow C$			$B^{\prime} \rightarrow d A$	
C	$C \rightarrow a c$				

Exercise 5

Consider the following grammar:

$$
\begin{aligned}
& S \rightarrow A \mid B b b \\
& A \rightarrow a B \\
& B \rightarrow a A b \mid b
\end{aligned}
$$

1. Formalise the language generated by the grammar
2. Is the grammar $\operatorname{LR}(1)$?
3. Is the string $a a A b$ a viable prefix? If the answer is yes, enumerate the valid $L R(0)$ items for this prefix.

Solution

1) The language is

$$
\left\{a^{2 n+1} b^{n+1} \mid n \geq 0\right\} \cup\left\{a^{2 n} b^{n+3} \mid n \geq 0\right\}
$$

2) Let us first construct the collection of $\operatorname{LR}(0)$ items. If there are no conflicts then the grammar is $S L R(1)$ and so also $L R(1)$. Let us augment the grammar, as usual, with the production $S^{\prime} \rightarrow S$.

$I_{0}=\quad$$S^{\prime} \rightarrow \cdot S$ $S \rightarrow \cdot A$ $S \rightarrow \cdot B b b$ $A \rightarrow \cdot a B$ $B \rightarrow \cdot a A b$ $B \rightarrow \cdot b$	$I_{1}=\operatorname{goto}\left(I_{0}, S\right)=S^{\prime} \rightarrow S$.
$I_{2}=\operatorname{goto}\left(I_{0}, A\right)=S \rightarrow A$.	$I_{3}=\operatorname{goto}\left(I_{0}, B\right)=S \rightarrow B \cdot b b$
$I_{4}=\operatorname{goto}\left(I_{0}, a\right)=\begin{aligned} & A \rightarrow a \cdot B \\ & A \rightarrow a \cdot A b \\ & B \rightarrow a A b \\ & B \rightarrow \cdot b \\ & A \rightarrow \cdot a B \end{aligned}$	$I_{5}=\operatorname{goto}\left(I_{0}, b\right)=B \rightarrow b$.
$I_{6}=\operatorname{goto}\left(I_{3}, b\right)=B \rightarrow B b \cdot b$	$I_{7}=\operatorname{goto}\left(I_{4}, B\right)=A \rightarrow a B$.
$I_{8}=\operatorname{goto}\left(I_{4}, A\right)=A \rightarrow a A \cdot b$	$I_{9}=\operatorname{goto}\left(I_{6}, b\right)=B \rightarrow B b b$.
$I_{10}=\operatorname{goto}\left(I_{8}, b\right)=B \rightarrow a A b$.	$\begin{aligned} & \operatorname{goto}\left(I_{4}, a\right)=I_{4} \\ & \operatorname{goto}\left(I_{4}, b\right)=I_{5} \end{aligned}$

We have that $\operatorname{FOLLOW}\left(S^{\prime}\right)=\operatorname{FOLLOW}(S)=\{\$\}$. And also $\operatorname{FOLLOW}(A)=$ $\operatorname{FOLLOW}(B)=\{b, \$\}$.

There are no conflicts in the states, thus the grammar is $S L R(1)$.
3) We can use the fact that the construction of the collection of the $L R(0)$ items corresponds to the definition of a DFA starting in state I_{0}. All the states are accepting and this automaton recognises all the viable prefixes. Thus, we can test if the string $a a A b$ is accepted. A labelled path for the string on the automaton is $0 \xrightarrow{a} 4 \xrightarrow{a} 4 \xrightarrow{A} 8 \xrightarrow{b} 10$. This means that the string is a viable prefix.

The theory also tells us that the $L R(0)$ items contained in the final state reached with the viable prefix are exactly all the items that are valid for it. Looking at the state I_{10}, the only valid item for the viable prefix is $B \rightarrow a A b$.

