
Formal Languages and Compilers - Exercises I with Solutions

MSc in Computer Science, University of Camerino
prof. Luca Tesei

Note Regular expressions are written with the usual precedence order: operator ∗

has precedence on concatenation, which has precedence on |. Moreover, the usual

shorthands + and ? may be used.

Exercise 1
Write a regular expression denoting the language accepted by the following
automaton:
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Solution
The expression is (a|b)+c∗.

Exercise 2
Use Thompson algorithm to construct an NFA accepting the language de-
noted by (ab|ac)∗d.
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Solution
The syntax tree of the regexp is a concatenation between a star and a d, then
the star is of a union between two concatenations. Following the inductive
definitions of the Thomposon algorithm the following NFA is obtained:
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Exercise 3
Write a minimal automaton for the language (a|b)∗ | (b|c)∗d.

Solution
Let us first use non-determinism to easily define an NFA for the language:
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Now we can use the subset construction algorithm to find an equivalent
DFA. The move table of the obtained DFA is the following one where ac-
cepting states are {A,B,C,E}:

State a b c d

A = {0, 1, 2} B C D E
B = {1} B B
C = {1, 2} B C D E
D = {2} D D E
E = {3}

It is quite clear from the table that state A and state C are equivalent,
while the rest of the states behave differently. However, for the sake of
completeness, let us apply the minimisation algorithm.

First, let us complete the DFA by adding a dead state F to which we
create a transition for every empty entry in the table.

The first partition to consider is (ABCE), (DF ). Consider the group
(DF ); we have that move(D, d) = E and move(F, d) = F . We conclude that
the two states are not equivalent because the input d sends the two states in
different groups. Thus, the new partition to consider is (ABCE), (D), (F ).

The only group that can be refined is (ABCE). We have move(A, d) = E,
move(B, d) = F , move(C, d) = E, move(E, d) = F . Thus, the new partition
is (AC), (BE), (D), (F ).
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We have already observed that there are no differences between A and
C. Let us then consider B and E. We have that move(B, a) = B and
move(E, a) = F . Thus they must be distinguished. We obtain the following
automaton, which is minimal for the language and in which the dead state
F is not represented:
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Exercise 4
Consider the following grammar:

S → aSb | Ad | Bc
A → Aa | c
B → ddA | dC
C → ac

1. Formalise the language generated by the grammar

2. Is the grammar LL(k) for some k?

3. Construct the table of a top-down non-recursive predictive parser for
the language.

Solution
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1) The language can be formalised as follows:

{an c a∗ d bn | n ≥ 0} ∪ {an d a c c bn | n ≥ 0} ∪ {an d d c a∗ c bn | n ≥ 0}

2) The grammar is not LL(k) for any k because it has an immediate left
recursion in the production: A→ Aa.

3) Let us eliminate the left recursion and also factorise the productions of
B. We obtain the following grammar:

S → aSb | Ad | Bc
A → cA′

A′ → aA′ | ε
B → dB′

B′ → dA | C
C → ac

We have FOLLOW(S) = {$, b}, FOLLOW(A) = {d, c} = FOLLOW(A′),
FOLLOW(B) = {c} = FOLLOW(B′) = FOLLOW(C).

This modified grammar is LL(1) and the parsing table is the following:

a b c d $

S S → aSb S → Ad S → Bc
A A→ cA′

A′ A′ → aA′ A′ → ε A′ → ε
B B → dB′

B′ B′ → C B′ → dA
C C → ac

Exercise 5
Consider the following grammar:

S → A | Bbb
A → aB
B → aAb | b
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1. Formalise the language generated by the grammar

2. Is the grammar LR(1)?

3. Is the string aaAb a viable prefix? If the answer is yes, enumerate the
valid LR(0) items for this prefix.

Solution
1) The language is

{a2n+1 bn+1 | n ≥ 0} ∪ {a2n bn+3 | n ≥ 0}

2) Let us first construct the collection of LR(0) items. If there are no
conflicts then the grammar is SLR(1) and so also LR(1). Let us augment
the grammar, as usual, with the production S ′ → S.

I0 =

S ′ → ·S
S → ·A
S → ·Bbb
A→ ·aB
B → ·aAb
B → ·b

I1 = goto(I0, S) = S ′ → S·

I2 = goto(I0, A) = S → A· I3 = goto(I0, B) = S → B · bb

I4 = goto(I0, a) =

A→ a ·B
A→ a · Ab
B → ·aAb
B → ·b
A→ ·aB

I5 = goto(I0, b) = B → b·

I6 = goto(I3, b) = B → Bb · b I7 = goto(I4, B) = A→ aB·
I8 = goto(I4, A) = A→ aA · b I9 = goto(I6, b) = B → Bbb·

I10 = goto(I8, b) = B → aAb· goto(I4, a) = I4
goto(I4, b) = I5

We have that FOLLOW(S ′) = FOLLOW(S) = {$}. And also FOLLOW(A) =
FOLLOW(B) = {b, $}.

6



There are no conflicts in the states, thus the grammar is SLR(1).

3) We can use the fact that the construction of the collection of the LR(0)
items corresponds to the definition of a DFA starting in state I0. All the
states are accepting and this automaton recognises all the viable prefixes.
Thus, we can test if the string aaAb is accepted. A labelled path for the

string on the automaton is 0
a−→ 4

a−→ 4
A−→ 8

b−→ 10. This means that the
string is a viable prefix.

The theory also tells us that the LR(0) items contained in the final state
reached with the viable prefix are exactly all the items that are valid for it.
Looking at the state I10, the only valid item for the viable prefix is B → aAb·.
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