
Syntax Analysis: solutions Bottom-Up Parsing

Use of the LR(0) automaton

The LR(0) automaton can be used for deriving a parsing table, which has a number of
states equal to the states of the LR(0) automaton and the actions are dependent from
the action of the automaton itself. The parsing table will have two different sections,
one named ACTION and the other GOTO:

Parsing table

1 The ACTION table has a row for each state of the LR(0) automaton and a column
for each terminal symbol. The value of ACTION[i ,a] can have one of for forms:

1 Shift j where j is a state (generally abbreviated as Sj).
2 Reduce A ! �. The action of the parser reduces � to A in the stack

(generally abbreviated as R(A ! �))
3 Accept
4 Error

2 The GOTO table has a row for each state of the LR(0) automaton and a column
for each nonterminal. The value of GOTO[Ii ,A] = Ij if the GOTO function maps
set of items accordingly on the LR(0) automaton
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LR(0) table construction

LR(0) table

The LR(0) table is built according to the following rules, where “i” is the considered
state and “a” a symbol in the input alphabet:

1 ACTION[i ,a] shift j

if [A! ↵ · a�] is in state i and GOTO(i ,a) = j – (generally represented as Sj)
2 ACTION[i ,⇤] reduce(A! �)

if state i includes the item (A! �·) – (generally represented as R(A! �))
3 ACTION[i ,⇤] accept

if the state includes the item S
0 ! S·

4 ACTION[i ,⇤] error
in all the other situations
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LR(0) table construction

Consider the following grammars and sentences:
S ! CC C ! cC|d sentence: “ccd” and “ddd”
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LR(0) table construction

Consider the following grammars and sentences:
S ! aS|Ba B ! Ba|b sentence: “aaba”
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Use of the LR(0) automaton

Consider the string id*id and parse it

STACK SYMBOLS INPUT ACTION
0 $ id*id$ · · ·
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LR Parsing algorithm

General LR parsing program
The initial state of the parser is s0 for the state and w (the whole string) on the input
buffer.

Let a be the first symbol of w$;
while true do

let s be the state on top of the stack;
if (ACTION[s,a] = shift t) then

push t onto the stack;
let a be the next input symbol;

else if (ACTION[s,a] = reduce A! �) then
pop |�| off the stack;
let state t now be on top of the stack;
push GOTO[t ,A] onto the stack;
output the production A! �;

else if (ACTION[s,a] = accept) then break;
else call error-recovery routine;
end if

end while
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SLR table construction

SLR(1) table

The LR(0) table is built according to the following rules, where “i” is the considered
state and “a” a symbol in the input alphabet:

1 ACTION[i ,a] shift j

if [A! ↵ · a�] is in state i and GOTO(i ,a) = j

2 ACTION[i ,a] reduce(A! �)
forall a in FOLLOW(A) and if state i includes the item (A! �·)

3 ACTION[i ,$] accept
if the state includes the item S

0 ! S·
4 ACTION[i ,⇤] error

in all the other situations
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SLR table construction

Consider the following grammars and sentences:
S ! aS|Ba B ! Ba|b sentence: “aaba”
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LR(0) vs. SLR parsing

Consider the usual expression grammar:
E

0 ! E E ! E + T |T T ! T ⇤ F |F F ! (E)|id
build LR(0) and SLR tables for the grammar, and then parse the sentence:

id⇤id+id
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http://smlweb.cpsc.ucalgary.ca/start.html
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LL(1) vs. SLR(1)

Consider the following grammars:
I S ! AaAb|BbBa A! ✏ B ! ✏

I S ! SA|A A! a

Build parsing tables for LL(1) and SLR(1)
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Towards more powerful parsers

Consider the following grammar and derive the SLR parsing table:
S ! L = R|R L ! ⇤R|id R ! L
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