
Syntax Analysis: solutions Bottom-Up Parsing

Use of the LR(0) automaton

The LR(0) automaton can be used for deriving a parsing table, which has a number of
states equal to the states of the LR(0) automaton and the actions are dependent from
the action of the automaton itself. The parsing table will have two different sections,
one named ACTION and the other GOTO:

Parsing table

1 The ACTION table has a row for each state of the LR(0) automaton and a column
for each terminal symbol. The value of ACTION[i ,a] can have one of for forms:

1 Shift j where j is a state (generally abbreviated as Sj).
2 Reduce A ! �. The action of the parser reduces � to A in the stack

(generally abbreviated as R(A ! �))
3 Accept
4 Error

2 The GOTO table has a row for each state of the LR(0) automaton and a column
for each nonterminal. The value of GOTO[Ii ,A] = Ij if the GOTO function maps
set of items accordingly on the LR(0) automaton

(Formal Languages and Compilers) 3. Syntax Analysis CS@UNICAM 49 / 69

Syntax Analysis: solutions Bottom-Up Parsing

LR(0) table construction

LR(0) table

The LR(0) table is built according to the following rules, where “i” is the considered
state and “a” a symbol in the input alphabet:

1 ACTION[i ,a] shift j

if [A! ↵ · a�] is in state i and GOTO(i ,a) = j – (generally represented as Sj)
2 ACTION[i ,⇤] reduce(A! �)

if state i includes the item (A! �·) – (generally represented as R(A! �))
3 ACTION[i ,⇤] accept

if the state includes the item S
0 ! S·

4 ACTION[i ,⇤] error
in all the other situations

(Formal Languages and Compilers) 3. Syntax Analysis CS@UNICAM 50 / 69

Syntax Analysis: solutions Bottom-Up Parsing

LR(0) table construction

Consider the following grammars and sentences:
S ! CC C ! cC|d sentence: “ccd” and “ddd”

(Formal Languages and Compilers) 3. Syntax Analysis CS@UNICAM 51 / 69

Syntax Analysis: solutions Bottom-Up Parsing

LR(0) table construction

Consider the following grammars and sentences:
S ! aS|Ba B ! Ba|b sentence: “aaba”

(Formal Languages and Compilers) 3. Syntax Analysis CS@UNICAM 52 / 69

Syntax Analysis: solutions Bottom-Up Parsing

Use of the LR(0) automaton

Consider the string id*id and parse it

STACK SYMBOLS INPUT ACTION
0 $ id*id$ · · ·

(Formal Languages and Compilers) 3. Syntax Analysis CS@UNICAM 53 / 69

Syntax Analysis: solutions Bottom-Up Parsing

LR Parsing algorithm

General LR parsing program
The initial state of the parser is s0 for the state and w (the whole string) on the input
buffer.

Let a be the first symbol of w$;
while true do

let s be the state on top of the stack;
if (ACTION[s,a] = shift t) then

push t onto the stack;
let a be the next input symbol;

else if (ACTION[s,a] = reduce A! �) then
pop |�| off the stack;
let state t now be on top of the stack;
push GOTO[t ,A] onto the stack;
output the production A! �;

else if (ACTION[s,a] = accept) then break;
else call error-recovery routine;
end if

end while

(Formal Languages and Compilers) 3. Syntax Analysis CS@UNICAM 54 / 69

Syntax Analysis: solutions Bottom-Up Parsing

SLR table construction

SLR(1) table

The LR(0) table is built according to the following rules, where “i” is the considered
state and “a” a symbol in the input alphabet:

1 ACTION[i ,a] shift j

if [A! ↵ · a�] is in state i and GOTO(i ,a) = j

2 ACTION[i ,a] reduce(A! �)
forall a in FOLLOW(A) and if state i includes the item (A! �·)

3 ACTION[i ,$] accept
if the state includes the item S

0 ! S·
4 ACTION[i ,⇤] error

in all the other situations

(Formal Languages and Compilers) 3. Syntax Analysis CS@UNICAM 55 / 69

Syntax Analysis: solutions Bottom-Up Parsing

SLR table construction

Consider the following grammars and sentences:
S ! aS|Ba B ! Ba|b sentence: “aaba”

(Formal Languages and Compilers) 3. Syntax Analysis CS@UNICAM 56 / 69

Syntax Analysis: solutions Bottom-Up Parsing

LR(0) vs. SLR parsing

Consider the usual expression grammar:
E

0 ! E E ! E + T |T T ! T ⇤ F |F F ! (E)|id
build LR(0) and SLR tables for the grammar, and then parse the sentence:

id⇤id+id

(Formal Languages and Compilers) 3. Syntax Analysis CS@UNICAM 57 / 69

Syntax Analysis: solutions Bottom-Up Parsing

http://smlweb.cpsc.ucalgary.ca/start.html

(Formal Languages and Compilers) 3. Syntax Analysis CS@UNICAM 58 / 69

http://smlweb.cpsc.ucalgary.ca/start.html

Syntax Analysis: solutions Bottom-Up Parsing

LL(1) vs. SLR(1)

Consider the following grammars:
I S ! AaAb|BbBa A! ✏ B ! ✏

I S ! SA|A A! a

Build parsing tables for LL(1) and SLR(1)

(Formal Languages and Compilers) 3. Syntax Analysis CS@UNICAM 59 / 69

Syntax Analysis: solutions Bottom-Up Parsing

Towards more powerful parsers

Consider the following grammar and derive the SLR parsing table:
S ! L = R|R L ! ⇤R|id R ! L

(Formal Languages and Compilers) 3. Syntax Analysis CS@UNICAM 60 / 69

	Syntax Analysis: the problem
	Theoretical Background
	Syntax Analysis: solutions
	Top-Down parsing
	Bottom-Up Parsing

