
Exercise 5
Consider a language of concatenated instructions. Instructions can be blocks or other kind
of instructions. A block consists of a declaration of variables, which can be of type
integer or real, followed by a sequence of instructions.

Define a Syntax Directed Translation Scheme suitable for being implemented during top-
down parsing that computes, for each instruction, an attribute depth and an attribute
occupation. The depth is the number of blocks in which the instruction is enclosed and
the occupation, for a block, is the maximum number of bytes needed to store all the
variables declared in the block and in its sub-blocks. The space used for a sub-block S
can be reused by another sub-block S’ when the block S is closed. Integer variables
occupy two bytes, real variables occupy four bytes and other kind of instructions
occupies zero bytes.

For example, in the following case:

begin
 var a,b,c: integer;
 S;
 begin
 var d: real;
 S'
 end;
 begin
 var e: integer;
 S";
 S'"
 end;
end;

supposing that instructions S, S', S" and S''' are not blocks, the expected value of the
attributes are: external block: depth = 0, occupation = 10; instruction S: depth = 1,
occupation = 0; first internal block: 1, 4; instruction S': 2, 0; second internal block: 1, 2;
S" and S''': 2, 0.

The use of global data structures is forbidden.

Hints

Proceeds in the following order:

1. Define an LL(1) grammar and check its correctness
2. The requested analyses can be conducted independently from each others:

a. Define two synthesised attributes for the computation of the memory
occupation

b. Define one synthesised attribute and one inherited attribute to compute the
number of sub-block nesting

Solution

Let’s use the following grammar (verify that it is LL(1)):

 Program::= Block
 B::= begin Declaration ; Command Rest_of_program end
 R::= ; C R
 R::= ε
 C::= Block
 C::= Statement
 D::= var id List_of_identifiers : Type
 L ::= , id L
 L::= ε
 T ::= real
 T ::= int

The following attributes are used:

• M for B, D, R, C, T is a synthesized attribute containing a number of bytes
o in case of B: the bytes required for the declaration and the maximum

number of bytes for the blocks occurring in the body of B
o in case of D: the bytes required for the variables in D
o in case of R, C: bytes required by the associated blocks or statements
o in case of T: bytes for one integer or one real

• n for L is a synthesised attribute containing the number of variables for
computing the level of scoping (depth)

• in for B, C, R is an inherited attribute containing the level at which the associated
structure is nested

• H for B, C is a synthesised attribute containing the depth of the associated
structure

P::= {B.in:=0}
 B
B::= begin
 D; {C.in:= B.in +1}
 C {R.in:= B.in +1}
 R end {B.M:= D.M + max(C.M, R.M); B.H:=
B.in +1}

R 1::= ; {C.in:= R1.in}
 C {R2.in:= R1.in}
 R 2 {R1.M:= max(C.M, R2.M)}
R::= ε {R.M:= 0}
C::= {B.in:= C.in}
 B {C.M:= B.M; C.H:= C.in}
C::=
 S {C.M:= 0; C.H:= C.in}
D::= var id
 L :
 T {D.M:= (1+L.n) * T.M}
L 1 ::= , id
 L 2{L1.n:= 1 + L2.n}
L::= ε {L.n:= 0}
T ::= real {T.M:= 4}
T ::= int {T.M:= 2}

