
Exercise 9
Give an SDT suitable to be implemented during top-down parsing for the language of all
regular expressions on the alphabet A = {a, b, c} that, given a regular expression,
construct the associated syntax tree assuming the following axioms:

 (x*)* = x* for x in {a, b, c}

 ((e)*)* = (e)* for e regular expression

In other words, for (x*)* the syntax tree that should be generated is the same tree of x*
and for ((e)*)* the syntax tree that should be generated is the same tree of (e)*. For the
regular expression corresponding to “epsilon” you can use the symbol “_”. For the or
operation use the symbol “|” and for the concatenation operation use the symbol “.”.

Hints
Choose an LL(1) grammar that also reflects a given precedence and associativity for the
operators. Then, you should define the operations to be used to construct the syntax tree
together with the attributes needed to solve the problem of the axioms. Since the
grammar must be LL(1), it is likely that inherited attributes are needed. In particular, a
flag that records whether or not the last constructed tree has the operator * at the root may
be useful.

Solution
Let’s use the following grammar, that should be checked to be LL(1). It is inspired to the
version of the grammar for aritmetic expressions that is LL(1) and expresses precedence
and associativity. Kleene star has precedence over “.”, which has precedence over “|”.

E::= F E
E::= “|” F E
E::= “_”
F::= H F
F::= . H F
F::= “_”
H::= (E) M

M::= “*”
M::= “_”
H::= "_"
H::= “a”
H::= “b”
H::= “c”

For constructing the syntax tree we define the following operations:

• MkT _ _: string x forest -> tree // construct a tree with root labelled with string
and forest of children forest.

• MKE : -> forest // construct an empty forest
• Add _ _ : tree x forest -> forest // add tree as first tree of the forest forest

For the SDT we use the following attributes:

• in for E, F, M; it is inherited and contains the representation of the first operand
(already traversed but not visible directly to the symbols E, F, M).

• instar for E, F, M; it is inherited and contains a boolean on/off set on whenever
the first operand is a Kleene star

• tree for all non-terminals; it is synthesised and contains the pointer to the syntax
tree for the expression associated to the symbol

• star for all non-terminals; it is synthesised and contains a boolean on/off set on
whenever the expression associated to the symbol is Kleene starred

E::= F {E.in:= F.tree; E.instar:= F.star;}
 E{E.tree:= E.tree; E.star:= E.star}
E 1::= "|" F {E2.in:= MkT("|", Add(E1.in, Add(F.tree, MKE()))); E2.instar:=
"off"}
 E 2 {E1.tree:= E2.tree; E1.star:= "off"}
E::= “_” {E.tree:= E.in; E.star:= E.instar; }
F::= H {F.in:= H.tree; F.instar:= H.star}
 F{F.tree:= F.tree; F.star:= F.star}
F 1::= .H {F2.in:= MkT(".", Add(F1.in, Add(H.tree, MKE()))); F2.instar:=
"off"}
 F 2 {F1.tree:= F2.tree; F1.star:= F2.star}
F ::= “_” {F.tree = F.in; F.star = F.instar}
H::= (E {M.in:= E.tree; M.instar:= E.star}
) M {H.tree:= M.tree, H.star:= M.star}
M::= * {M.tree:= if (M.instar="on") then M.in else MkT("*",
Add(M.in,MKE())); M.star:="on"}
M::= “_” {M.tree:= M.in; M.star:= M.instar}
H::= a {H.tree:= MkT("a",MKE()); H.star:= "off"}
H::= b {H.tree:= MkT("b",MKE()); H.star:= "off"}
H::= c {H.tree:= MkT("c",MKE()); H.star:= "off"}

