Formal Languages and Compilers Exercises on Syntax Analysis I with Solutions

MSc in Computer Science, University of Camerino prof. Luca Tesei

Exercise 1

Consider the following grammar:

$$
\begin{aligned}
& S \rightarrow a S b|A d| B c \\
& A \rightarrow A a \mid c \\
& B \rightarrow d d A \mid d C \\
& C \rightarrow a c
\end{aligned}
$$

1. Formalise the language generated by the grammar
2. Is the grammar $L L(k)$ for some k ?
3. Construct the table of a top-down non-recursive predictive parser for the language.

Solution

1) The language can be formalised as follows:
$\left\{a^{n} c a^{*} d b^{n} \mid n \geq 0\right\} \cup\left\{a^{n} d a c c b^{n} \mid n \geq 0\right\} \cup\left\{a^{n} d d c a^{*} c b^{n} \mid n \geq 0\right\}$
2) The grammar is not $L L(k)$ for any k because it has an immediate left recursion in the production: $A \rightarrow A a$.
3) Let us eliminate the left recursion and also factorise the productions of B. We obtain the following grammar:

$$
\begin{aligned}
& S \rightarrow a S b|A d| B c \\
& A \rightarrow c A^{\prime} \\
& A^{\prime} \rightarrow a A^{\prime} \mid \epsilon \\
& B \rightarrow d B^{\prime} \\
& B^{\prime} \rightarrow d A \mid C \\
& C \rightarrow a c
\end{aligned}
$$

We have $\operatorname{FOLLOW}(S)=\{\$, b\}, \operatorname{FOLLOW}(A)=\{d, c\}=\operatorname{FOLLOW}\left(A^{\prime}\right)$, $\operatorname{FOLLOW}(B)=\{c\}=\operatorname{FOLLOW}\left(B^{\prime}\right)=\operatorname{FOLLOW}(C)$.

This modified grammar is $L L(1)$ and the parsing table is the following:

	a	b	c	d	$\$$
S	$S \rightarrow a S b$		$S \rightarrow A d$	$S \rightarrow B c$	
A			$A \rightarrow c A^{\prime}$		
A^{\prime}	$A^{\prime} \rightarrow a A^{\prime}$		$A^{\prime} \rightarrow \epsilon$	$A^{\prime} \rightarrow \epsilon$	
B				$B \rightarrow d B^{\prime}$	
B^{\prime}	$B^{\prime} \rightarrow C$			$B^{\prime} \rightarrow d A$	
C	$C \rightarrow a c$				

Exercise 2

Consider the following grammar:

$$
\begin{aligned}
& S \rightarrow A \mid B b b \\
& A \rightarrow a B \\
& B \rightarrow a A b \mid b
\end{aligned}
$$

1. Formalise the language generated by the grammar
2. Is the grammar $\operatorname{LR}(1)$?
3. Is the string $a a A b$ a viable prefix? If the answer is yes, enumerate the valid $L R(0)$ items for this prefix.

Solution

1) The language is

$$
\left\{a^{2 n+1} b^{n+1} \mid n \geq 0\right\} \cup\left\{a^{2 n} b^{n+3} \mid n \geq 0\right\}
$$

2) Let us first construct the collection of $\operatorname{LR}(0)$ items. If there are no conflicts then the grammar is $S L R(1)$ and so also $L R(1)$. Let us augment the grammar, as usual, with the production $S^{\prime} \rightarrow S$.

$I_{0}=\quad$$S^{\prime} \rightarrow \cdot S$ $S \rightarrow \cdot A$ $S \rightarrow \cdot B b b$ $A \rightarrow \cdot a B$ $B \rightarrow \cdot a A b$ $B \rightarrow \cdot b$	$I_{1}=\operatorname{goto}\left(I_{0}, S\right)=S^{\prime} \rightarrow S$.
$I_{2}=\operatorname{goto}\left(I_{0}, A\right)=S \rightarrow A$.	$I_{3}=\operatorname{goto}\left(I_{0}, B\right)=S \rightarrow B \cdot b b$
$I_{4}=\operatorname{goto}\left(I_{0}, a\right)=$$A \rightarrow a \cdot B$ $A \rightarrow a \cdot A b$ $B \rightarrow \cdot a A b$ $B \rightarrow \cdot b$ $A \rightarrow \cdot a B$	$I_{5}=\operatorname{goto}\left(I_{0}, b\right)=B \rightarrow b$.
$I_{6}=\operatorname{goto}\left(I_{3}, b\right)=B \rightarrow B b \cdot b$	$I_{7}=\operatorname{goto}\left(I_{4}, B\right)=A \rightarrow a B$.
$I_{8}=\operatorname{goto}\left(I_{4}, A\right)=A \rightarrow a A \cdot b$	$I_{9}=\operatorname{goto}\left(I_{6}, b\right)=B \rightarrow B b b$.
$I_{10}=\operatorname{goto}\left(I_{8}, b\right)=B \rightarrow a A b$.	$\begin{aligned} & \operatorname{goto}\left(I_{4}, a\right)=I_{4} \\ & \operatorname{goto}\left(I_{4}, b\right)=I_{5} \end{aligned}$

We have that $\operatorname{FOLLOW}\left(S^{\prime}\right)=\operatorname{FOLLOW}(S)=\{\$\}$. And also $\operatorname{FOLLOW}(A)=$ $\operatorname{FOLLOW}(B)=\{b, \$\}$.
There are no conflicts in the states, thus the grammar is $S L R(1)$.
3) We can use the fact that the construction of the collection of the $L R(0)$ items corresponds to the definition of a DFA starting in state I_{0}. All the states are accepting and this automaton recognises all the viable prefixes. Thus, we can test if the string $a a A b$ is accepted. A labelled path for the string on the automaton is $0 \xrightarrow{a} 4 \xrightarrow{a} 4 \xrightarrow{A} 8 \xrightarrow{b} 10$. This means that the string is a viable prefix.

The theory also tells us that the $L R(0)$ items contained in the final state reached with the viable prefix are exactly all the items that are valid for it. Looking at the state I_{10}, the only valid item for the viable prefix is $B \rightarrow a A b$.

