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Exercise 1
Consider the following grammar:

S → aSb | Ad | Bc
A → Aa | c
B → ddA | dC
C → ac

1. Formalise the language generated by the grammar

2. Is the grammar LL(k) for some k?

3. Construct the table of a top-down non-recursive predictive parser for
the language.

Solution
1) The language can be formalised as follows:

{an c a∗ d bn | n ≥ 0} ∪ {an d a c c bn | n ≥ 0} ∪ {an d d c a∗ c bn | n ≥ 0}

2) The grammar is not LL(k) for any k because it has an immediate left
recursion in the production: A→ Aa.

3) Let us eliminate the left recursion and also factorise the productions of
B. We obtain the following grammar:
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S → aSb | Ad | Bc
A → cA′

A′ → aA′ | ε
B → dB′

B′ → dA | C
C → ac

We have FOLLOW(S) = {$, b}, FOLLOW(A) = {d, c} = FOLLOW(A′),
FOLLOW(B) = {c} = FOLLOW(B′) = FOLLOW(C).

This modified grammar is LL(1) and the parsing table is the following:

a b c d $

S S → aSb S → Ad S → Bc
A A→ cA′

A′ A′ → aA′ A′ → ε A′ → ε
B B → dB′

B′ B′ → C B′ → dA
C C → ac

Exercise 2
Consider the following grammar:

S → A | Bbb
A → aB
B → aAb | b

1. Formalise the language generated by the grammar

2. Is the grammar LR(1)?

3. Is the string aaAb a viable prefix? If the answer is yes, enumerate the
valid LR(0) items for this prefix.

Solution
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1) The language is

{a2n+1 bn+1 | n ≥ 0} ∪ {a2n bn+3 | n ≥ 0}

2) Let us first construct the collection of LR(0) items. If there are no
conflicts then the grammar is SLR(1) and so also LR(1). Let us augment
the grammar, as usual, with the production S ′ → S.

I0 =

S ′ → ·S
S → ·A
S → ·Bbb
A→ ·aB
B → ·aAb
B → ·b

I1 = goto(I0, S) = S ′ → S·

I2 = goto(I0, A) = S → A· I3 = goto(I0, B) = S → B · bb

I4 = goto(I0, a) =

A→ a ·B
A→ a · Ab
B → ·aAb
B → ·b
A→ ·aB

I5 = goto(I0, b) = B → b·

I6 = goto(I3, b) = B → Bb · b I7 = goto(I4, B) = A→ aB·
I8 = goto(I4, A) = A→ aA · b I9 = goto(I6, b) = B → Bbb·

I10 = goto(I8, b) = B → aAb· goto(I4, a) = I4
goto(I4, b) = I5

We have that FOLLOW(S ′) = FOLLOW(S) = {$}. And also FOLLOW(A) =
FOLLOW(B) = {b, $}.
There are no conflicts in the states, thus the grammar is SLR(1).

3) We can use the fact that the construction of the collection of the LR(0)
items corresponds to the definition of a DFA starting in state I0. All the
states are accepting and this automaton recognises all the viable prefixes.
Thus, we can test if the string aaAb is accepted. A labelled path for the

string on the automaton is 0
a−→ 4

a−→ 4
A−→ 8

b−→ 10. This means that the
string is a viable prefix.
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The theory also tells us that the LR(0) items contained in the final state
reached with the viable prefix are exactly all the items that are valid for it.
Looking at the state I10, the only valid item for the viable prefix is B → aAb·.
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