Syntax Analysis - Exercise 1

Consider the following language:

$$
\mathrm{L}=\left\{\left(\mathrm{ra} \mathrm{a}^{*} \mathrm{i}^{*}\right)^{\mathrm{n}}\left(\mathrm{t} \mathrm{i}^{*}\right)^{\mathrm{n}} \mid \mathrm{n}>=0\right\}
$$

where the alphabet is $\mathrm{A}=\{\mathrm{r}, \mathrm{a}, \mathrm{i}, \mathrm{t}\}$.

1. Define an unambiguous context-free grammar for the language
2. Define an LR grammar for the language and give a table for the bottom-up parser
3. Define an LL grammar for the language and give the corresponding table for the top-down parser

Solution

Exercise 1.1

The following is a non-ambiguous grammar for the language L .
S: := r A IStII ε
A ::=aAl ε
I ::=iIl ε

Exercise 1.2

Let's augment the same grammar and check if it is $\operatorname{SLR}(1)$:

$$
\begin{aligned}
& \mathrm{S}^{\prime}::=\mathrm{S} \\
& \mathrm{~S}::=\mathrm{r} \mathrm{~A} \mathrm{I} \mathrm{~S} \mathrm{t} \mathrm{I} \\
& \mathrm{~A}::=\mathrm{a} \mathrm{~A} \mathrm{I} \varepsilon \\
& \mathrm{I}::=\mathrm{iII} \varepsilon
\end{aligned}
$$

The following is the collection of the items $\operatorname{LR}(0)$:

$\mathrm{I} 0=\mathrm{Clos}\left(\mathrm{S}^{\prime}->. \mathrm{S}\right)$	\{S'->.S, S->.rAIStI, S-> .\}
$\mathrm{I} 1=\mathrm{G}(0, \mathrm{~S})$	\{ $\left.\mathrm{S}^{\prime}->\mathrm{S}.\right\}$
$\mathrm{I} 2=\mathrm{G}(0, \mathrm{r})=\mathrm{G}(5, \mathrm{r})$	\{S->r.AIStI, A->.aA, A->.\}
$\mathrm{I} 3=\mathrm{G}(2, \mathrm{~A})$	\{S->rA.IStI, I->.iI, I->.\}
$\mathrm{I} 4=\mathrm{G}(2, \mathrm{a})=\mathrm{G}(4, \mathrm{a})$	\{A->a.A, A->.aA, A->.\}
I5 $=\mathrm{G}(3, \mathrm{I})$	\{S->rAI.StI, S->.rAIStI, S-> .\}
$\mathrm{I} 6=\mathrm{G}(3, \mathrm{i})=\mathrm{G}(6, \mathrm{i})=\mathrm{G}(10, \mathrm{i})$	\{I->i.I, I->.iI, I->.\}
I7 $=\mathrm{G}(4, \mathrm{~A})$	\{A->aA.\}
$\mathrm{I} 8=\mathrm{G}(5, \mathrm{~S})$	\{S->rAIS.tI \}

$\mathrm{I} 9=\mathrm{G}(6, \mathrm{I})$	$\{\mathrm{I}->\mathrm{II}\}$.
$\mathrm{I} 10=\mathrm{G}(8, \mathrm{t})$	$\{$ S->rAISt.I, I->.II, I->.\}
$\mathrm{I} 11=\mathrm{G}(10, \mathrm{I})$	$\{\mathrm{S}->$ rAIStI. $\}$

We should check now the presence of conflicts. The states in which possible conflicts can arise are the following: I2 (check follow(A)), I3 (check follow(I)), I4 (check follow(A)), I6 (check follow(I)), I10 (check follow(I)):

Follow	S	$\{\$, \mathrm{t}\}$
A $\{\mathrm{i}, \mathrm{r} \mathrm{t}\}$ I $\{\mathrm{r}, \$, \mathrm{t}\}$		

There are no conflicts. The following is the table SLR(1) (productions are numbered from 1 to 6):

Action	r	t	a	i	\$	Goto	S	A	I
IO	$\mathrm{S} / 2$	R/2	---	---	R/2		I1	--	---
I1	---	---	---	---	accept		--	--	---
I2	R/4	---	S/4	R/4	---		--	I3	---
I3	R/6	R/6	---	S/6	R/6		--	--	I5
I4	R/4	---	S/4	R/4	---		--	17	---
15	$\mathrm{S} / 2$	R/2	---	---	R/2		I8	--	---
I6	R/6	R/6	---	S/6	R/6		--	--	I9
I7	R/3	---	---	R/3	---		--	--	---
I8	---	S/10	---	---	---		--	--	---
19	R/5	$\mathrm{R} / 5$	---	---	R/5			--	---
I10	R/6	R/6	---	S/6	R/6		--	--	I11
I11	---	R/1	-	---	R/1		-	-	---

Exercise 1.3

Let's check if the original grammar is also LL(1):
S::=rAIStII ε
$A::=\mathrm{a} A \mid \varepsilon$
I::= i I \| ε

FIRST \& FOLLOW

FIRST rAIStI $\{\mathbf{r}\}$ FOLLOW S $\{\mathrm{t}, \$\}$ aA $\{\mathrm{a}\}$ A $\{\mathrm{i}, \mathrm{r}, \mathrm{t}\}$ an ε $\{\varepsilon\}$ I $\{\mathrm{r}, \mathrm{t}, \$\}$ iI $\{\mathrm{i}\}$

Table:

	r	t	a	i	\$
S	0	1	--	---	1
A	3	3	2	3	---
I	5	5	--	4	5

The table is not multiply-defined thus the grammar is LL(1).

