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N
CCS Basics

Sequential Fragment
@ Nil process (the only atomic process)
@ action prefixing (a.P)

0 o_ong A
@ names and recursive definitions (=)

@ nondeterministic choice (+)
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CCS Basics

Sequential Fragment
@ Nil process (the only atomic process)
@ action prefixing (a.P)
L

@ names and recursive definitions (=)

@ nondeterministic choice (+)

Any finite LTS can be described (up to isomorphism) by using the
operations above

Parallelism and Renaming

@ parallel composition (|) (synchronous communication between
two components = handshake synchronization)

@ restriction (P ~\ L)
e relabelling (P[f])
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Definition of CCS: channels, actions, process names

Let

o A be a set of channel names (e.g. tea, coffee are channel
names)

o £L =AU A be a set of labels where
o A= {3|aec A} o
(elements of A are called names and those of A are called
co-names)
e by convention 3 = a

o Act = LU {7} is the set of actions where
e 7 is the internal or silent action

(e.g. 7, tea, coffee are actions)

e I is a set of process names (constants) (e.g. CM).
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|
Definition of CCS (expressions)

P:= K ] process constants (K € K)
a.P | prefixing (o € Act)
Yicr Pl summation (/ is an arbitrary index set)
|
|

P1| Py parallel composition

P~ L restriction (L C A)

P[f] relabelling (f : Act — Act) such that
o f(r)=r1
o f(3) =f(a)

The set of all terms generated by the abstract syntax is the set of
CCS process expressions (and is denoted by P)

Notation
Pr+ P2 =3 icr12y Pi Nil =3 icq Pi
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Precedence

Precedence
@ restriction and relabelling (tightest binding)
@ action prefixing

© parallel composition

© summation

Example: R+ a.P|b.Q ~ L means R+ ((a.P)|(b.(Q \ L)))
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|
Definition of CCS (defining equations)

CCS program

A collection of defining equations of the form
K=P

where K € K is a process constant and P € P is a CCS process
expression.

@ Only one defining equation per process constant.

@ Recursion is allowed: e.g. A2 3.A| A
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|
Structural Operational Semantics for CCS

Structural Operational Semantics (SOS)—G. Plotkin 1981

Small-step operational semantics where the behaviour of a system
is inferred using syntax driven rules

Given a collection of CCS defining equations, we define the
following LTS (Proc, Act, {-2+| a € Act}):

@ Proc =P  (the set of all CCS process expressions)
e Act = LU{7} (the set of all CCS actions including )

@ transition relation is given by SOS rules of the form:

premises .
RULE ———— conditions
conclusion
FMSIS
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SOS rules for CCS
(o € Act, a € L)

Pji>P{ ]
ACT ——— SUM; 51— jel
a.P— P Ziel P, — PJ
« a ’
COM1 P7—P, COM2 QT>—Q
PIQ — P'|Q P|Q — P|Q’
coms PP Q- @
PIQ — P'|Q
« «
Res —P 2P &gl REL P“%P'
P~L—P L P[f]‘gpl[f]

con P—F gap
K— P
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-
Deriving Transitions in CCS

Let A= a.A. Then
((A|§.Nil) | b.NiI)[c/a] SN ((A | a.Nil) | b.NiI) [c/a].

Why?
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|
LTS of the Process a.Nil | 3. Nil

Nil | 3.Nil
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a.Nil | . Nil

Nil | Nil
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CCS: vending machine example

Examples at the blackboard. ..
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CCS in pseuCo

pseuCo

Web application allowing to create CCS specifications and
interactively explore the resulting transition systems

ST p——

PN

1 petior vouwe | (@

[°[-]

http://pseuco.com
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http://pseuco.com

CCS in pseuCo: regular expressions

(a+ b)*
X := ((a.1 + b.1);X) + 1

// this is the initial process

X v
Y := ((Ya + Yb);Y) + 1
Ya := a. Ya + 1

Yb :=b. Yb + 1

// this is the initial process
Y
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CCS in pseuCo: regular expressions

(a+ b)*
X := ((a.1 + b.1);X) + 1

// this is the initial process

X v
(a* + b*)*

Y := ((Ya + Yb);Y) + 1

Ya := a. Ya + 1

Yb :=b. Yb + 1

// this is the initial process
Y

Demo! J
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Producer-Consumer Example

Alessandro Aldini

A Process Algebraic
Approach to Software

Architecture Design

@ Springer
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Producer-Consumer Example

@ The system is composed of

e a producer
e a finite-capacity buffer
@ a consumer

@ The producer deposits items into the buffer as long as the
buffer capacity is not exceeded

@ Stored items can be withdrawn by the consumer according to
some predefined discipline, like FIFO or LIFO

@ Assumptions:
e The buffer has only two positions
e Items are all identical, so that the specific discipline that has
been adopted for withdrawals is not important from the point
of view of an external observer )
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