
Formal Modelling of
Software Intensive Systems

General Info & Introduction

Francesco Tiezzi

University of Camerino
francesco.tiezzi@unicam.it

A.A. 2016/2017

F. Tiezzi (Unicam) FMSIS 1 / 26



Who I am

Prof. Francesco Tiezzi

Associate Professor at University of Camerino

web: http://tiezzi.unicam.it

tel.: +39 0737 402593

e-mail: francesco.tiezzi@unicam.it

address: University of Camerino
School of Science and Technology
Computer Science Division
Palazzo Battibocca
Via del Bastione, 1
62032, Camerino (MC), Italy

F. Tiezzi (Unicam) FMSIS 2 / 26



Schedule

Mon Tue Wed Thu Fri

11-13 15-17

F. Tiezzi (Unicam) FMSIS 3 / 26



Contents

Introductory concepts: concurrent, reactive and
software-intensive systems

Preliminary mathematical concepts

Semantics of the operators of the process algebras CCS, CSP
and ACP

The Maude toolset

Main behavioural equivalences, weak and strong

Hennessy-Milner Logic and ACTL

Software tools for the automatic verification of
software-intensive systems modelled by means of process
algebras: TAPAs and muCRL2

F. Tiezzi (Unicam) FMSIS 4 / 26



Teaching material

Rocco De Nicola. A gentle introduction to Process Algebras.
Notes obtained by the restructuring of two entries (Process Algebras -

Behavioural Equivalences) of Encyclopedia of Parallel Computing, David

A. Padua (Ed.). Springer 2011; pp. 120-127 and pp. 1624-1636

Luca Aceto, Anna Ingolfsdottir, Kim Guldstrand Larsen and
Jiri Srba. Reactive Systems. Modelling, Specification and
Verification. Cambridge University Press, 2007. ISBN: 9780521875462.

Additional material available at book’s site: http://rsbook.cs.aau.dk

Course’s slides

Lecture notes, papers and slides may be given by the teacher
for studying and for exercises

TAPAs documentation http://rap.dsi.unifi.it/tapas/

mCRL2 documentation http://www.mcrl2.org/

Maude documentation http://maude.cs.illinois.edu

F. Tiezzi (Unicam) FMSIS 5 / 26

http://rsbook.cs.aau.dk
http://rap.dsi.unifi.it/tapas/
http://www.mcrl2.org/
http://maude.cs.illinois.edu


Final exam

Written test:

on the exam date a written test takes place, it has a mixed
structure: solution of exercises, and open/close answer
questionnaire
during the course in itinere tests take place; in case they are
evaluated positively, they replace the written test of the exam
date

Realisation of a project with a software tool presented during
the course, or writing of a report; here is an oral discussion

F. Tiezzi (Unicam) FMSIS 6 / 26



The Hard Life of Programmers (and Students)

Questions?

F. Tiezzi (Unicam) FMSIS 7 / 26



Software-Intensive Systems

Software-Intensive Systems

Are those complex systems where software contributes essential
influences to the design, construction, deployment and evolution of
the system as a whole [IEEE Standard 1471]

Software-Intensive Distributed Systems (SIDS)

large-scale, decentralised, heterogeneous, highly-dynamic,
open-ended, adaptive, . . .

SIDS feature complex interactions among components

SIDS may interact with other systems, devices, sensors,
people, . . .

F. Tiezzi (Unicam) FMSIS 8 / 26



Software-Intensive Systems Everywhere

F. Tiezzi (Unicam) FMSIS 9 / 26



Process algebraic approach

Process Algebraic Approach to Software Intensive Systems Design

Process algebra: theory that underpins the semantics of
concurrent programming and the understanding of concurrent,
distributed, and mobile systems

It provides a natural approach to the design of those systems
structuring them into a set of autonomous components that
can evolve independently of each other and from time to time
can communicate or simply synchronize

compositionality: ability to build complex distributed
systems by combining simpler systems

abstraction: ability to neglect certain parts of a model

Tools assist modeling and analysis of the various functional
and non-functional aspects of those systems

F. Tiezzi (Unicam) FMSIS 10 / 26



SIDS as Concurrent Systems

Multiple processes (or threads) working together to achieve a
common goal

A sequential program has a single thread of control

A concurrent program has multiple threads of control allowing
it to perform multiple computations in parallel and to control
multiple external activities occurring at the same time

Communication

The concurrent threads exchange information via

indirect communication: the execution of concurrent processes
proceeds on one or more processors all of which access a
shared memory; care is required to deal with shared variables

direct communication: concurrent processes are executed by
running them on separate processors, threads communicate by
exchanging messages

F. Tiezzi (Unicam) FMSIS 11 / 26



Why Concurrent Systems

1 Performance: To gain from multiprocessing hardware
(parallelism)

2 Distribution: Some problems require a distributed solution,
e.g. client-server systems on one machine and the database
on a central server machine

3 Ease of programming: Some problems are more naturally
solved by concurrent programs

4 Increased application throughput: an I/O call need only to
block one thread

5 Increased application responsiveness: High priority threads for
user requests

6 More appropriate structure: For programs which interact with
the environment, control multiple activities and handle
multiple events

F. Tiezzi (Unicam) FMSIS 12 / 26



Examples of multi-threaded programs

1 windowing systems on PCs

2 embedded real-time systems, electronics, cars, telecom

3 web servers, database servers . . .

4 operating system kernel

F. Tiezzi (Unicam) FMSIS 13 / 26



Do I need to know about concurrent programming?

Concurrency is error prone

Soviet nuclear false alarm incident (1983)
[fault in sw for missile detections]

Therac-25 radiation overdose (1985-1987)
[sw interlock fault due to a race condition]

MIM-104 Patriot Missile Clock Drift (1991)
[a sw fault in the system’s clock]

Explosion of the Ariane 5 (1996)
[self-destruction was triggered by an overflow error]

North America blackout (2003)
[race condition caused an alarm system failure]

Mars Rover problems (2004)
[interaction among concurrent tasks caused periodic sw resets]

. . . for sure you have experienced deadlock on your machine
and pressed restart (even if you have a Mac)

F. Tiezzi (Unicam) FMSIS 14 / 26



Do I need to know about concurrent programming?

Concurrency is error prone

Soviet nuclear false alarm incident (1983)
[fault in sw for missile detections]

Therac-25 radiation overdose (1985-1987)
[sw interlock fault due to a race condition]

MIM-104 Patriot Missile Clock Drift (1991)
[a sw fault in the system’s clock]

Explosion of the Ariane 5 (1996)
[self-destruction was triggered by an overflow error]

North America blackout (2003)
[race condition caused an alarm system failure]

Mars Rover problems (2004)
[interaction among concurrent tasks caused periodic sw resets]

. . . for sure you have experienced deadlock on your machine
and pressed restart (even if you have a Mac)

F. Tiezzi (Unicam) FMSIS 14 / 26



Sequential Programming vs Concurrent
Programming

Sequential Programming

Denotational semantics: the meaning of a program is a partial
function from states to states

Nontermination is bad!

In case of termination, the result is unique

Concurrent - Interactive - Reactive Programming

Denotational semantics is very complicate due to
nondeterminism

Nontermination might be good!

In case of termination, the result might not be unique

F. Tiezzi (Unicam) FMSIS 15 / 26



Sequential Programming vs Concurrent
Programming

Sequential Programming

Denotational semantics: the meaning of a program is a partial
function from states to states

Nontermination is bad!

In case of termination, the result is unique

Concurrent - Interactive - Reactive Programming

Denotational semantics is very complicate due to
nondeterminism

Nontermination might be good!

In case of termination, the result might not be unique

F. Tiezzi (Unicam) FMSIS 15 / 26



Sequential Programming vs Concurrent
Programming

Sequential Programming

Denotational semantics: the meaning of a program is a partial
function from states to states

Nontermination is bad!

In case of termination, the result is unique

Concurrent - Interactive - Reactive Programming

Denotational semantics is very complicate due to
nondeterminism

Nontermination might be good!

In case of termination, the result might not be unique

F. Tiezzi (Unicam) FMSIS 15 / 26



Sequential Programming vs Concurrent
Programming

Sequential Programming

Denotational semantics: the meaning of a program is a partial
function from states to states

Nontermination is bad!

In case of termination, the result is unique

Concurrent - Interactive - Reactive Programming

Denotational semantics is very complicate due to
nondeterminism

Nontermination might be good!

In case of termination, the result might not be unique

F. Tiezzi (Unicam) FMSIS 15 / 26



Sequential Programming vs Concurrent
Programming

Sequential Programming

Denotational semantics: the meaning of a program is a partial
function from states to states

Nontermination is bad!

In case of termination, the result is unique

Concurrent - Interactive - Reactive Programming

Denotational semantics is very complicate due to
nondeterminism

Nontermination might be good!

In case of termination, the result might not be unique

F. Tiezzi (Unicam) FMSIS 15 / 26



Sequential Programming vs Concurrent
Programming

Sequential Programming

Denotational semantics: the meaning of a program is a partial
function from states to states

Nontermination is bad!

In case of termination, the result is unique

Concurrent - Interactive - Reactive Programming

Denotational semantics is very complicate due to
nondeterminism

Nontermination might be good!

In case of termination, the result might not be unique

F. Tiezzi (Unicam) FMSIS 15 / 26



SIDS as Reactive Systems

The classical denotational approach is not adequate for modelling
systems such as:

Operating systems

Communication protocols

Mobile phones

Vending machines

The above systems compute by reacting to stimuli from their environment
and are known as Reactive Systems; their distinguishing features are:

Interaction (many parallel communicating processes)

Nondeterminism (results are not necessarily unique)

There may be no visible result (exchange of messages is used to
coordinate progress)

Nontermination is good (systems are expected to run continuously)

F. Tiezzi (Unicam) FMSIS 16 / 26



SIDS as Reactive Systems

The classical denotational approach is not adequate for modelling
systems such as:

Operating systems

Communication protocols

Mobile phones

Vending machines

The above systems compute by reacting to stimuli from their environment
and are known as Reactive Systems; their distinguishing features are:

Interaction (many parallel communicating processes)

Nondeterminism (results are not necessarily unique)

There may be no visible result (exchange of messages is used to
coordinate progress)

Nontermination is good (systems are expected to run continuously)

F. Tiezzi (Unicam) FMSIS 16 / 26



Analysis of Reactive Systems

Even short parallel programs may be hard to analyse, thus we need
to face few questions:

1 How can we develop (design) a system that “works”?

2 How do we analyse (verify) such a system?

We need appropriate theories and formal methods and tools,
otherwise we will experience again:

Intels Pentium-II bug in floating-point division unit

Ariane-5 crash due to a conversion of 64-bit real to 16-bit
integer

. . .

F. Tiezzi (Unicam) FMSIS 17 / 26



Analysis of Reactive Systems

Even short parallel programs may be hard to analyse, thus we need
to face few questions:

1 How can we develop (design) a system that “works”?

2 How do we analyse (verify) such a system?

We need appropriate theories and formal methods and tools,
otherwise we will experience again:

Intels Pentium-II bug in floating-point division unit

Ariane-5 crash due to a conversion of 64-bit real to 16-bit
integer

. . .

F. Tiezzi (Unicam) FMSIS 17 / 26



Analysis of Reactive Systems

Even short parallel programs may be hard to analyse, thus we need
to face few questions:

1 How can we develop (design) a system that “works”?

2 How do we analyse (verify) such a system?

We need appropriate theories and formal methods and tools,
otherwise we will experience again:

Intels Pentium-II bug in floating-point division unit

Ariane-5 crash due to a conversion of 64-bit real to 16-bit
integer

. . .

F. Tiezzi (Unicam) FMSIS 17 / 26



Analysis of Reactive Systems

Even short parallel programs may be hard to analyse, thus we need
to face few questions:

1 How can we develop (design) a system that “works”?

2 How do we analyse (verify) such a system?

We need appropriate theories and formal methods and tools,
otherwise we will experience again:

Intels Pentium-II bug in floating-point division unit

Ariane-5 crash due to a conversion of 64-bit real to 16-bit
integer

. . .

F. Tiezzi (Unicam) FMSIS 17 / 26



Why formal methods?

Understanding the overall behaviour resulting from system
interactions can be tricky and error-prone

Simple motivating example

Consider the code: x = 1; y = x++ + x++;

What is the value of x and y after its execution?

Consider the code: g(x)=g(x-1) with f(x)=1;

What is the value of f(g(42)) after its execution?

It is even more critical when concurrency and interactions
enter the game. . .
Solid mathematical foundations lay the basis for formal
reasoning on systems behavior

The programmer can avoid operator ++, but
we cannot afford to stop building complex systems

we need to build trustworthy systems

F. Tiezzi (Unicam) FMSIS 18 / 26



Why formal methods?

Understanding the overall behaviour resulting from system
interactions can be tricky and error-prone

Simple motivating example

Consider the code: x = 1; y = x++ + x++;

What is the value of x and y after its execution?

Consider the code: g(x)=g(x-1) with f(x)=1;

What is the value of f(g(42)) after its execution?

It is even more critical when concurrency and interactions
enter the game. . .
Solid mathematical foundations lay the basis for formal
reasoning on systems behavior

The programmer can avoid operator ++, but
we cannot afford to stop building complex systems

we need to build trustworthy systems

F. Tiezzi (Unicam) FMSIS 18 / 26



Why formal methods?

Understanding the overall behaviour resulting from system
interactions can be tricky and error-prone

Simple motivating example

Consider the code: x = 1; y = x++ + x++;

What is the value of x and y after its execution?

Consider the code: g(x)=g(x-1) with f(x)=1;

What is the value of f(g(42)) after its execution?

It is even more critical when concurrency and interactions
enter the game. . .
Solid mathematical foundations lay the basis for formal
reasoning on systems behavior

The programmer can avoid operator ++, but
we cannot afford to stop building complex systems

we need to build trustworthy systems

F. Tiezzi (Unicam) FMSIS 18 / 26



Why formal methods?

Understanding the overall behaviour resulting from system
interactions can be tricky and error-prone

Simple motivating example

Consider the code: x = 1; y = x++ + x++;

What is the value of x and y after its execution?

Consider the code: g(x)=g(x-1) with f(x)=1;

What is the value of f(g(42)) after its execution?

It is even more critical when concurrency and interactions
enter the game. . .
Solid mathematical foundations lay the basis for formal
reasoning on systems behavior

The programmer can avoid operator ++, but
we cannot afford to stop building complex systems

we need to build trustworthy systems

F. Tiezzi (Unicam) FMSIS 18 / 26



Why formal methods?

Understanding the overall behaviour resulting from system
interactions can be tricky and error-prone

Simple motivating example

Consider the code: x = 1; y = x++ + x++;

What is the value of x and y after its execution?

Consider the code: g(x)=g(x-1) with f(x)=1;

What is the value of f(g(42)) after its execution?

It is even more critical when concurrency and interactions
enter the game. . .
Solid mathematical foundations lay the basis for formal
reasoning on systems behavior

The programmer can avoid operator ++, but
we cannot afford to stop building complex systems

we need to build trustworthy systems

F. Tiezzi (Unicam) FMSIS 18 / 26



Why formal methods?

Understanding the overall behaviour resulting from system
interactions can be tricky and error-prone

Simple motivating example

Consider the code: x = 1; y = x++ + x++;

What is the value of x and y after its execution?

Consider the code: g(x)=g(x-1) with f(x)=1;

What is the value of f(g(42)) after its execution?

It is even more critical when concurrency and interactions
enter the game. . .
Solid mathematical foundations lay the basis for formal
reasoning on systems behavior

The programmer can avoid operator ++, but
we cannot afford to stop building complex systems

we need to build trustworthy systems

F. Tiezzi (Unicam) FMSIS 18 / 26



Why formal methods?

Understanding the overall behaviour resulting from system
interactions can be tricky and error-prone

Simple motivating example

Consider the code: x = 1; y = x++ + x++;

What is the value of x and y after its execution?

Consider the code: g(x)=g(x-1) with f(x)=1;

What is the value of f(g(42)) after its execution?

It is even more critical when concurrency and interactions
enter the game. . .
Solid mathematical foundations lay the basis for formal
reasoning on systems behavior

The programmer can avoid operator ++, but
we cannot afford to stop building complex systems

we need to build trustworthy systems

F. Tiezzi (Unicam) FMSIS 18 / 26



Formal Methods for Reactive Systems

To deal with reactive systems and guarantee their correct
behaviour in all possible environments, we need:

1 To study mathematical models for the formal description and
analysis of concurrent programs

2 To devise formal languages for the specification of the possible
behaviour of parallel and reactive systems

Each language comes equipped with syntax & semantics
Syntax: defines legal programs (grammar based)
Semantics: defines meaning, behavior, errors (formally)

3 To develop verification tools and implementation techniques
underlying them

F. Tiezzi (Unicam) FMSIS 19 / 26



Process Algebras Approach

The chosen abstraction for reactive systems is the notion of
processes

Systems evolution is based on process transformation:
a process performs an action and becomes another process

Everything is (or can be viewed as) a process: buffers, shared
memory, tuple spaces, senders, receivers, . . . are all processes

Labelled Transition Systems (LTSs) describe processes
behaviour, and permit modelling directly systems interaction

F. Tiezzi (Unicam) FMSIS 20 / 26



Process Algebras Approach

The chosen abstraction for reactive systems is the notion of
processes

Systems evolution is based on process transformation:
a process performs an action and becomes another process

Everything is (or can be viewed as) a process: buffers, shared
memory, tuple spaces, senders, receivers, . . . are all processes

Labelled Transition Systems (LTSs) describe processes
behaviour, and permit modelling directly systems interaction

F. Tiezzi (Unicam) FMSIS 20 / 26



Internal and External Actions

Labelled Transition Systems

Transition Labelled Graph: a transition between states is labelled
by the action inducing the transition from one state to another

Actions

An elementary action represents the atomic (non-interruptible)
abstract step of a computation that is performed by a system

Actions represent various activities of concurrent systems:

Sending a message

Receiving a message

Updating values

Synchronizing with other processes . . .

We have two main types of atomic actions:

Visible Actions

Internal Actions (τ)

F. Tiezzi (Unicam) FMSIS 21 / 26



Internal and External Actions

Labelled Transition Systems

Transition Labelled Graph: a transition between states is labelled
by the action inducing the transition from one state to another

Actions

An elementary action represents the atomic (non-interruptible)
abstract step of a computation that is performed by a system

Actions represent various activities of concurrent systems:

Sending a message

Receiving a message

Updating values

Synchronizing with other processes . . .

We have two main types of atomic actions:

Visible Actions

Internal Actions (τ)

F. Tiezzi (Unicam) FMSIS 21 / 26



Internal and External Actions

Labelled Transition Systems

Transition Labelled Graph: a transition between states is labelled
by the action inducing the transition from one state to another

Actions

An elementary action represents the atomic (non-interruptible)
abstract step of a computation that is performed by a system

Actions represent various activities of concurrent systems:

Sending a message

Receiving a message

Updating values

Synchronizing with other processes . . .

We have two main types of atomic actions:

Visible Actions

Internal Actions (τ)

F. Tiezzi (Unicam) FMSIS 21 / 26



Why operators for describing systems

How can we describe very large automata or LTSs?

As a table?

Rows and columns are labelled by states, entries are either empty or
marked with a set of actions

As a listing of triples?

→ = {(q0, a, q1), (q0, a, q2), (q1, b, q3), (q1, c , q4), (q2, τ, q3), (q2, τ, q4)}

As a more compact listing of triples?

→ = {(q0, a, {q1, q2}), (q1, b, q3), (q1, c , q4), (q2, τ, {q3, q4})}

As XML?

<lts><ar><st>q0</st><lab>a</lab><st>q1</st></ar>...</lts>

F. Tiezzi (Unicam) FMSIS 22 / 26



Why operators for describing systems

How can we describe very large automata or LTSs?

As a table?

Rows and columns are labelled by states, entries are either empty or
marked with a set of actions

As a listing of triples?

→ = {(q0, a, q1), (q0, a, q2), (q1, b, q3), (q1, c , q4), (q2, τ, q3), (q2, τ, q4)}

As a more compact listing of triples?

→ = {(q0, a, {q1, q2}), (q1, b, q3), (q1, c , q4), (q2, τ, {q3, q4})}

As XML?

<lts><ar><st>q0</st><lab>a</lab><st>q1</st></ar>...</lts>

F. Tiezzi (Unicam) FMSIS 22 / 26



Why operators for describing systems

How can we describe very large automata or LTSs?

As a table?

Rows and columns are labelled by states, entries are either empty or
marked with a set of actions

As a listing of triples?

→ = {(q0, a, q1), (q0, a, q2), (q1, b, q3), (q1, c , q4), (q2, τ, q3), (q2, τ, q4)}

As a more compact listing of triples?

→ = {(q0, a, {q1, q2}), (q1, b, q3), (q1, c , q4), (q2, τ, {q3, q4})}

As XML?

<lts><ar><st>q0</st><lab>a</lab><st>q1</st></ar>...</lts>

F. Tiezzi (Unicam) FMSIS 22 / 26



Why operators for describing systems

How can we describe very large automata or LTSs?

As a table?

Rows and columns are labelled by states, entries are either empty or
marked with a set of actions

As a listing of triples?

→ = {(q0, a, q1), (q0, a, q2), (q1, b, q3), (q1, c , q4), (q2, τ, q3), (q2, τ, q4)}

As a more compact listing of triples?

→ = {(q0, a, {q1, q2}), (q1, b, q3), (q1, c , q4), (q2, τ, {q3, q4})}

As XML?

<lts><ar><st>q0</st><lab>a</lab><st>q1</st></ar>...</lts>

F. Tiezzi (Unicam) FMSIS 22 / 26



Why operators for describing systems

How can we describe very large automata or LTSs?

As a table?

Rows and columns are labelled by states, entries are either empty or
marked with a set of actions

As a listing of triples?

→ = {(q0, a, q1), (q0, a, q2), (q1, b, q3), (q1, c , q4), (q2, τ, q3), (q2, τ, q4)}

As a more compact listing of triples?

→ = {(q0, a, {q1, q2}), (q1, b, q3), (q1, c , q4), (q2, τ, {q3, q4})}

As XML?

<lts><ar><st>q0</st><lab>a</lab><st>q1</st></ar>...</lts>

F. Tiezzi (Unicam) FMSIS 22 / 26



Why operators for describing systems

Linguistic aspects are important!

The previous solutions are ok for machines . . . not for humans

Are prefix and sum operators sufficient?

They are ok to describe small finite systems

p = a.b.(c+d)

q = a.(b.c+b.d)

r = a.b.c+a.c.d

But additional operators are needed

to design systems in a structured way (e.g. p | q)

to model systems interaction

to abstract from details

to represent infinite systems

F. Tiezzi (Unicam) FMSIS 23 / 26



Why operators for describing systems

Linguistic aspects are important!

The previous solutions are ok for machines . . . not for humans

Are prefix and sum operators sufficient?

They are ok to describe small finite systems

p = a.b.(c+d)

q = a.(b.c+b.d)

r = a.b.c+a.c.d

But additional operators are needed

to design systems in a structured way (e.g. p | q)

to model systems interaction

to abstract from details

to represent infinite systems

F. Tiezzi (Unicam) FMSIS 23 / 26



Why operators for describing systems

Linguistic aspects are important!

The previous solutions are ok for machines . . . not for humans

Are prefix and sum operators sufficient?

They are ok to describe small finite systems

p = a.b.(c+d)

q = a.(b.c+b.d)

r = a.b.c+a.c.d

But additional operators are needed

to design systems in a structured way (e.g. p | q)

to model systems interaction

to abstract from details

to represent infinite systems

F. Tiezzi (Unicam) FMSIS 23 / 26



A motivating example: regular expressions

Commonly used for searching and manipulating text based on
patterns

Example

Regular expression: [hc]at ⇒ (h + c); a; t
Text: the cat eats the bat’s hat rather than the rat

Matches: cat, hat

F. Tiezzi (Unicam) FMSIS 24 / 26



A motivating example: regular expressions

Regular expressions

Commonly used for:

searching and manipulating text based on patterns

representing regular languages in a compact form

describing sequences of actions that a system can execute

Regular expressions as a simple programming language

Programming constructs: sequence, choice, iteration, stop

We define the semantics of regular expressions by means of
the Structural Operational Semantics approach

F. Tiezzi (Unicam) FMSIS 25 / 26



A motivating example: regular expressions

Regular expressions

Commonly used for:

searching and manipulating text based on patterns

representing regular languages in a compact form

describing sequences of actions that a system can execute

Regular expressions as a simple programming language

Programming constructs: sequence, choice, iteration, stop

We define the semantics of regular expressions by means of
the Structural Operational Semantics approach

F. Tiezzi (Unicam) FMSIS 25 / 26



Before syntax and semantics. . .

. . . a few preliminaries

F. Tiezzi (Unicam) FMSIS 26 / 26


