Formal Modelling of Software Intensive Systems

Formal Semantics of Regular Expressions

Francesco Tiezzi

University of Camerino francesco.tiezzi@unicam.it

A.A. 2017/2018

Formal semantics

Three main approaches to formal semantics of programming languages:

- Operational Semantics (How a program computes) [Plotkin, Kahn]:
 Sets of computations resulting from the execution of programs by an abstract machine
- Denotational Semantics (What a program computes) [Strachey, Scott]:
 An input/output function that denotes the effect of executing the program
- Axiomatic Semantics (What a program modifies) [Floyd, Hoare]:
 Pairs of observable properties that hold before and after program execution

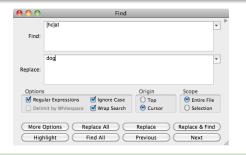
Different purposes, complementary use

A motivating example: regular expressions

Regular expressions

Commonly used for:

searching and manipulating text based on patterns



Example

Regular expression: [hc] at \Rightarrow (h+c); a; t

Text: the cat eats the bat's hat rather than the rat

Matches: cat, hat

A motivating example: regular expressions

Regular expressions

Commonly used for:

- searching and manipulating text based on patterns
- representing regular languages in a compact form
- describing sequences of actions that a system can execute
- Regular expressions as a simple programming language
 - Programming constructs: sequence, choice, iteration, stop
- We define the semantics of regular expressions by applying the three approaches
- We show that the three semantics are consistent

A motivating example: regular expressions

Regular expressions

Commonly used for:

- searching and manipulating text based on patterns
- representing regular languages in a compact form
- describing sequences of actions that a system can execute
- Regular expressions as a simple programming language
 - Programming constructs: sequence, choice, iteration, stop
- We define the semantics of regular expressions by applying the three approaches
- We show that the three semantics are consistent

Abstract syntax

$$E ::= 0 \mid 1 \mid a \mid E + E \mid E; E \mid E^*$$

Operators precedence

 * binds more than + and ; ; binds more than +

- 0 is the empty event
- 1 is the terminal event
- a is an event (or atomic action) where $a \in A$, with A finite alphabet
- E + F can be either E or F (choice operator)
- *E*; *F* is the expression *E* followed by *F* (sequencing)
- E^* is an *n*-length sequence of E with $n \ge 0$ (Kleene star)

Abstract syntax

$$E := 0 \mid 1 \mid a \mid E + E \mid E; E \mid E^*$$

Operators precedence

* binds more than + and ; ; binds more than +

- 0 is the empty event
- 1 is the terminal event
- a is an event (or atomic action) where $a \in A$, with A finite alphabet
- E + F can be either E or F (choice operator)
- *E*; *F* is the expression *E* followed by *F* (sequencing)
- E^* is an *n*-length sequence of E with $n \ge 0$ (Kleene star)

Abstract syntax

$$E := 0 \mid 1 \mid a \mid E + E \mid E; E \mid E^*$$

Operators precedence

 * binds more than + and ; ; binds more than +

- 0 is the empty event
- 1 is the terminal event
- a is an event (or atomic action) where $a \in A$, with A finite alphabet
- E + F can be either E or F (choice operator)
- *E*; *F* is the expression *E* followed by *F* (sequencing)
- E^* is an n-length sequence of E with $n \ge 0$ (Kleene star)

Abstract syntax

$$E ::= 0 \mid 1 \mid a \mid E + E \mid E; E \mid E^*$$

Operators precedence

* binds more than + and ; ; binds more than +

- 0 is the empty event
- 1 is the terminal event
- a is an event (or atomic action) where $a \in A$, with A finite alphabet
- E + F can be either E or F (choice operator)
- *E*; *F* is the expression *E* followed by *F* (sequencing)
- E^* is an *n*-length sequence of E with $n \ge 0$ (Kleene star)

Abstract syntax

$$E ::= 0 \mid 1 \mid a \mid E + E \mid E; E \mid E^*$$

Operators precedence

* binds more than + and ; ; binds more than +

- 0 is the empty event
- 1 is the terminal event
- a is an event (or atomic action) where $a \in A$, with A finite alphabet
- E + F can be either E or F (choice operator)
- *E*; *F* is the expression *E* followed by *F* (sequencing)
- E^* is an *n*-length sequence of E with $n \ge 0$ (Kleene star)

Abstract syntax

$$E ::= 0 \mid 1 \mid a \mid E + E \mid E; E \mid E^*$$

Operators precedence

* binds more than + and ; ; binds more than +

- 0 is the empty event
- 1 is the terminal event
- a is an event (or atomic action) where $a \in A$, with A finite alphabet
- E + F can be either E or F (choice operator)
- *E*; *F* is the expression *E* followed by *F* (sequencing)
- E^* is an *n*-length sequence of E with $n \ge 0$ (Kleene star)

Abstract syntax

$$E := 0 \mid 1 \mid a \mid E + E \mid E; E \mid E^*$$

Operators precedence

 * binds more than + and ; ; binds more than +

- 0 is the empty event
- 1 is the terminal event
- a is an event (or atomic action) where $a \in A$, with A finite alphabet
- E + F can be either E or F (choice operator)
- E; F is the expression E followed by F (sequencing)
- E^* is an *n*-length sequence of E with $n \ge 0$ (Kleene star)

With an informal semantics the meaning of composite expressions may be not clear

Example

$$(a+b)^*$$
 $(a^*+b^*)^*$

- They are syntactically different
- What about their meaning?

With an informal semantics the meaning of composite expressions may be not clear

Example

$$(a+b)^*$$
 $(a^*+b^*)^*$

- They are syntactically different
- What about their meaning?

With an informal semantics the meaning of composite expressions may be not clear

Example

$$(a+b)^*$$
 $(a^*+b^*)^*$

- They are syntactically different
- What about their meaning?

With an informal semantics the meaning of composite expressions may be not clear

Example

$$(a+b)^*$$
 $(a^*+b^*)^*$

- They are syntactically different
- What about their meaning?

We introduce an abstract machine for executing regular expressions

Transition relation

- Is a ternary relation $E \xrightarrow{\mu} F$, where $\mu \in A \cup \{\varepsilon\}$ (ε empty action)
- Is defined by an inference system
- Describes, by induction on the structure of the expressions, the behaviour of a machine that takes as input a regular expression and executes it

For a generic operator op we shall have one or more rules like:

$$\frac{E_{i_1} \xrightarrow{\alpha_1} E'_{i_1} \cdots E_{i_m} \xrightarrow{\alpha_m} E'_{i_m}}{op(E_1, \cdots, E_n) \xrightarrow{\alpha} op(E'_1, \cdots, E'_n)}$$

where $\{i_1, \cdots, i_m\} \subseteq \{1, \cdots, n\}$.

We introduce an abstract machine for executing regular expressions

Transition relation

- Is a ternary relation $E \xrightarrow{\mu} F$, where $\mu \in A \cup \{\varepsilon\}$ (ε empty action)
- Is defined by an inference system
- Describes, by induction on the structure of the expressions, the behaviour of a machine that takes as input a regular expression and executes it

For a generic operator op we shall have one or more rules like:

$$\frac{E_{i_1} \xrightarrow{\alpha_1} E'_{i_1} \cdots E_{i_m} \xrightarrow{\alpha_m} E'_{i_m}}{op(E_1, \cdots, E_n) \xrightarrow{\alpha} op(E'_1, \cdots, E'_n)} \quad \text{where } \{i_1, \cdots, i_m\} \subseteq \{1, \cdots, n\}.$$

We introduce an abstract machine for executing regular expressions

Transition relation

- Is a ternary relation $E \xrightarrow{\mu} F$, where $\mu \in A \cup \{\varepsilon\}$ (ε empty action)
- Is defined by an inference system
- Describes, by induction on the structure of the expressions, the behaviour of a machine that takes as input a regular expression and executes it

For a generic operator op we shall have one or more rules like:

$$\frac{E_{i_1} \xrightarrow{\alpha_1} E'_{i_1} \cdots E_{i_m} \xrightarrow{\alpha_m} E'_{i_m}}{op(E_1, \cdots, E_n) \xrightarrow{\alpha} op(E'_1, \cdots, E'_n)} \quad \text{where } \{i_1, \cdots, i_m\} \subseteq \{1, \cdots, n\}.$$

F. Tiezzi (Unicam) FMSIS 7 / 31

Transition relation rules

$$(\mathsf{Tic}) \qquad \frac{}{1 \overset{\varepsilon}{\longrightarrow} 1} \qquad (\mathsf{Atom}) \qquad \frac{}{a \overset{a}{\longrightarrow} 1} \quad a \in A$$

$$(Sum_1) \quad \frac{E \xrightarrow{\mu} E'}{E + F \xrightarrow{\mu} E'} \qquad (Sum_2) \quad \frac{F \xrightarrow{\mu} F'}{E + F \xrightarrow{\mu} F'}$$

$$(\mathsf{Seq}_1) \qquad \frac{E \overset{a}{\longrightarrow} E'}{E; F \overset{a}{\longrightarrow} E'; F} \qquad \qquad (\mathsf{Seq}_2) \qquad \frac{E \overset{\varepsilon}{\longrightarrow} 1}{E; F \overset{\varepsilon}{\longrightarrow} F}$$

$$(\mathsf{Star}_1) \quad \frac{E \overset{\mu}{\longrightarrow} E'}{E^* \overset{\omega}{\longrightarrow} E'; E^*}$$

Structural Operational Semantics (SOS [Plotkin])

Transition relation is the least relation satisfying the above rules

Transition relation rules

(Sum₁)
$$\frac{E \xrightarrow{\mu} E'}{E + F \xrightarrow{\mu} E'}$$
 (Sum₂) $\frac{F \xrightarrow{\mu} F'}{E + F \xrightarrow{\mu} F'}$ (Seq₁) $\frac{E \xrightarrow{a} E'}{E; F \xrightarrow{a} E'; F}$ (Star₁) $\frac{E \xrightarrow{\mu} E'}{E^* \xrightarrow{\mu} F'}$ (Star₂) $\frac{E \xrightarrow{\mu} E'}{E^* \xrightarrow{\mu} E'}$

1 indicates the terminal state: the machine has completed the execution and loops by executing the empty action

Transition relation rules

(Tic)
$$\frac{1}{1 \xrightarrow{\varepsilon} 1} \qquad (Atom) \qquad \frac{a \xrightarrow{a} 1}{a \xrightarrow{a} 1} \quad a \in A$$

$$(Sum_1) \quad \frac{E \xrightarrow{\mu} E'}{E + F \xrightarrow{\mu} E'} \qquad (Sum_2) \quad \frac{F \xrightarrow{\mu} F'}{E + F \xrightarrow{\mu} F'}$$

$$(\mathsf{Seq}_1) \qquad \frac{E \overset{a}{\longrightarrow} E'}{E; F \overset{a}{\longrightarrow} E'; F} \qquad \qquad (\mathsf{Seq}_2) \qquad \frac{E \overset{\varepsilon}{\longrightarrow} 1}{E; F \overset{\varepsilon}{\longrightarrow} F}$$

$$(\mathsf{Star}_1) \quad \frac{E \stackrel{\mu}{\longrightarrow} E'}{E^* \stackrel{\varepsilon}{\longrightarrow} 1} \qquad (\mathsf{Star}_2) \quad \frac{E \stackrel{\mu}{\longrightarrow} E'}{E^* \stackrel{\mu}{\longrightarrow} E'; E^*}$$

Expression a executes action a and stops

Transition relation rules

$$(Tic) \qquad \frac{1 \xrightarrow{\varepsilon} 1}{1 \xrightarrow{\varepsilon} 1} \qquad (Atom) \qquad \frac{a \xrightarrow{a} 1}{a \xrightarrow{a} 1} \stackrel{a \in A}{\longrightarrow} 1$$

$$(Sum_1) \qquad \frac{E \xrightarrow{\mu} E'}{E + F \xrightarrow{\mu} E'} \qquad (Sum_2) \qquad \frac{F \xrightarrow{\mu} F'}{E + F \xrightarrow{\mu} F'}$$

$$(Seq_1) \qquad \frac{E \xrightarrow{a} E'}{E; F \xrightarrow{a} E'; F} \qquad (Seq_2) \qquad \frac{E \xrightarrow{\varepsilon} 1}{E; F \xrightarrow{\varepsilon} F}$$

$$(Star_1) \qquad \frac{E \xrightarrow{\mu} E'}{E^* \xrightarrow{\mu} E'; E^*}$$

E+F can behave either as E or as F: if E evolves to E' by performing action μ then E+F can evolve to E' by performing μ ; similarly for F

Transition relation rules

$$(Tic) \qquad \frac{1}{1 \xrightarrow{\varepsilon} 1} \qquad (Atom) \qquad \frac{a \xrightarrow{a} 1}{a \xrightarrow{a} 1} \quad a \in A$$

$$(Sum_1) \qquad \frac{E \xrightarrow{\mu} E'}{E + F \xrightarrow{\mu} E'} \qquad (Sum_2) \qquad \frac{F \xrightarrow{\mu} F'}{E + F \xrightarrow{\mu} F'}$$

$$(\mathsf{Seq}_1) \qquad \frac{E \overset{a}{\longrightarrow} E'}{E; F \overset{a}{\longrightarrow} E'; F} \qquad \qquad (\mathsf{Seq}_2) \qquad \frac{E \overset{\varepsilon}{\longrightarrow} 1}{E; F \overset{\varepsilon}{\longrightarrow} F}$$

$$(\mathsf{Star}_1) \quad \frac{E \stackrel{\mu}{\longrightarrow} E'}{E^* \stackrel{\varepsilon}{\longrightarrow} 1} \qquad (\mathsf{Star}_2) \quad \frac{E \stackrel{\mu}{\longrightarrow} E'}{E^* \stackrel{\mu}{\longrightarrow} E'; E^*}$$

E; F executes the actions of E and, afterwards, the actions of F

Transition relation rules

(Tic)
$$\frac{1}{1 \xrightarrow{\varepsilon} 1} \qquad (Atom) \qquad \frac{a \xrightarrow{a} 1}{a \xrightarrow{a} 1} \quad a \in A$$

$$(Sum_1) \quad \frac{E \xrightarrow{\mu} E'}{E + F \xrightarrow{\mu} E'} \qquad (Sum_2) \quad \frac{F \xrightarrow{\mu} F'}{E + F \xrightarrow{\mu} F'}$$

$$(\mathsf{Seq}_1) \qquad \frac{E \overset{a}{\longrightarrow} E'}{E; F \overset{a}{\longrightarrow} E'; F} \qquad \qquad (\mathsf{Seq}_2) \qquad \frac{E \overset{\varepsilon}{\longrightarrow} 1}{E; F \overset{\varepsilon}{\longrightarrow} F}$$

$$(\mathsf{Star}_1) \quad \frac{E \stackrel{\mu}{\longrightarrow} E'}{E^* \stackrel{\varepsilon}{\longrightarrow} 1} \qquad (\mathsf{Star}_2) \quad \frac{E \stackrel{\mu}{\longrightarrow} E'}{E^* \stackrel{\mu}{\longrightarrow} E'; E^*}$$

E; F executes the actions of E and, afterwards, the actions of F

Transition relation rules

$$(Tic) \qquad \frac{1 \xrightarrow{\varepsilon} 1}{1 \xrightarrow{\omega} 1} \qquad (Atom) \qquad \frac{a \xrightarrow{a} 1}{a \xrightarrow{a} 1} \quad a \in A$$

$$(Sum_1) \qquad \frac{E \xrightarrow{\mu} E'}{E + F \xrightarrow{\mu} E'} \qquad (Sum_2) \qquad \frac{F \xrightarrow{\mu} F'}{E + F \xrightarrow{\mu} F'}$$

$$(\mathsf{Seq}_1) \qquad \frac{E \overset{a}{\longrightarrow} E'}{E; F \overset{a}{\longrightarrow} E'; F} \qquad \qquad (\mathsf{Seq}_2) \qquad \frac{E \overset{\varepsilon}{\longrightarrow} 1}{E; F \overset{\varepsilon}{\longrightarrow} F}$$

$$(\mathsf{Star}_1) \quad \frac{E \stackrel{\mu}{\longrightarrow} E'}{E^* \stackrel{\varepsilon}{\longrightarrow} 1} \qquad \qquad (\mathsf{Star}_2) \quad \frac{E \stackrel{\mu}{\longrightarrow} E'}{E^* \stackrel{\mu}{\longrightarrow} E'; E^*}$$

E; F executes the actions of E and, afterwards, the actions of F

Transition relation rules

$$(Tic) \qquad \frac{1 \xrightarrow{\varepsilon} 1}{1 \xrightarrow{\varepsilon} 1} \qquad (Atom) \qquad \frac{a \xrightarrow{a} 1}{a \xrightarrow{a} 1} a \in A$$

$$(Sum_1) \qquad \frac{E \xrightarrow{\mu} E'}{E + F \xrightarrow{\mu} E'} \qquad (Sum_2) \qquad \frac{F \xrightarrow{\mu} F'}{E + F \xrightarrow{\mu} F'}$$

$$(Seq_1) \qquad \frac{E \xrightarrow{a} E'}{E; F \xrightarrow{a} E'; F} \qquad (Seq_2) \qquad \frac{E \xrightarrow{\varepsilon} 1}{E; F \xrightarrow{\varepsilon} F}$$

$$(Star_1) \qquad \frac{E \xrightarrow{\mu} E'}{E^* \xrightarrow{\mu} E'; E^*}$$

 E^* can either directly evolve to 1 or evolve to E'; E^* if E evolves to E'

Transition relation rules

$$(Tic) \qquad \frac{1 \xrightarrow{\varepsilon} 1}{1 \xrightarrow{\varepsilon} 1} \qquad (Atom) \qquad \frac{a \xrightarrow{a} 1}{a \xrightarrow{a} 1} \quad a \in A$$

$$(Sum_1) \qquad \frac{E \xrightarrow{\mu} E'}{E + F \xrightarrow{\mu} E'} \qquad (Sum_2) \qquad \frac{F \xrightarrow{\mu} F'}{E + F \xrightarrow{\mu} F'}$$

$$(Seq_1) \qquad \frac{E \xrightarrow{a} E'}{E; F \xrightarrow{a} E'; F} \qquad (Seq_2) \qquad \frac{E \xrightarrow{\varepsilon} 1}{E; F \xrightarrow{\varepsilon} F}$$

$$(Star_1) \qquad \frac{E \xrightarrow{\mu} E'}{E^* \xrightarrow{\mu} E'; E^*}$$

 E^* can either directly evolve to 1 or evolve to E'; E^* if E evolves to E'

Transition relation rules

$$(Sum_1) \quad \frac{E \xrightarrow{\mu} E'}{E + F \xrightarrow{\mu} E'} \qquad (Atom) \quad \frac{a \xrightarrow{a} 1}{a \xrightarrow{a} 1} \quad a \in A$$

$$(Sum_2) \quad \frac{F \xrightarrow{\mu} F'}{E + F \xrightarrow{\mu} F'}$$

$$E \xrightarrow{a} E' \qquad E \xrightarrow{\varepsilon} 1$$

$$(\mathsf{Seq}_1) \quad \frac{E \overset{a}{\longrightarrow} E'}{E; F \overset{a}{\longrightarrow} E'; F} \qquad (\mathsf{Seq}_2) \quad \frac{E \overset{\varepsilon}{\longrightarrow} 1}{E; F \overset{\varepsilon}{\longrightarrow} F}$$

(Star₁)
$$\frac{E \xrightarrow{\mu} E'}{E^* \xrightarrow{\mu} E'; E^*}$$

 E^* can either directly evolve to 1 or evolve to E'; E^* if E evolves to E'

Transition relation rules

 $(Star_1)$

$$(Tic) \qquad \frac{1 \stackrel{\varepsilon}{\longrightarrow} 1}{1 \stackrel{\varepsilon}{\longrightarrow} 1} \qquad (Atom) \qquad \frac{a \stackrel{a}{\longrightarrow} 1}{a \stackrel{a}{\longrightarrow} 1} \qquad a \in A$$

$$(Sum_1) \qquad \frac{E \stackrel{\mu}{\longrightarrow} E'}{E + F \stackrel{\mu}{\longrightarrow} E'} \qquad (Sum_2) \qquad \frac{F \stackrel{\mu}{\longrightarrow} F'}{E + F \stackrel{\mu}{\longrightarrow} F'}$$

$$(Seq_1) \qquad \frac{E \stackrel{a}{\longrightarrow} E'}{E; F \stackrel{a}{\longrightarrow} E'; F} \qquad (Seq_2) \qquad \frac{E \stackrel{\varepsilon}{\longrightarrow} 1}{E; F \stackrel{\varepsilon}{\longrightarrow} F}$$

$$(Star_1) \qquad \frac{E \stackrel{\psi}{\longrightarrow} E'}{F^* \stackrel{\omega}{\longrightarrow} F'; F^*}$$

 $F^* \stackrel{\varepsilon}{\longrightarrow} 1$

F. Tiezzi (Unicam) **FMSIS** 8 / 31

The automaton associated to a regular expression

The SOS inference rules implicitly defines a particular automaton for each regular expression E (essentially a fragment of the whole LTS):

- the initial state is E (we shall often omit to mark it)
- the set of labels is A
- the set of states consists of all regular expressions that can be reached starting from *E* via a sequence of transitions
- the transition relation is the one induced from the SOS rules
- the only final state is 1 (we shall often omit to mark it)

Other "similar" automata might have less (or more) ε transitions.

Semantic correspondence

Given any regular expression E, the automaton generated by the SOS rules has the property of recognizing exactly the language $\mathcal{L}[\![E]\!]$, but it is not the unique automaton satisfying such property.

F. Tiezzi (Unicam) FMSIS 9 / 31

A few examples for Regular Expressions

$$(a+b)^* \stackrel{a}{\longrightarrow} 1; (a+b)^*$$

$$\frac{a \stackrel{a}{\longrightarrow} 1}{(a+b)^* \stackrel{a}{\longrightarrow} 1} (Sum_1)$$

$$\frac{a+b \stackrel{a}{\longrightarrow} 1}{(a+b)^* \stackrel{a}{\longrightarrow} 1; (a+b)^*} (Star_2)$$

$$1; (a+b)^* \xrightarrow{\varepsilon} (a+b)^*$$

$$\frac{1 \xrightarrow{\varepsilon} 1}{1; (a+b)^* \xrightarrow{\varepsilon} (a+b)^*} (Seq_2)$$

A few examples for Regular Expressions

$$(a+b)^* \stackrel{a}{\longrightarrow} 1; (a+b)^*$$

$$\frac{a \stackrel{a}{\longrightarrow} 1}{(a+b)^* \stackrel{a}{\longrightarrow} 1} (Sum_1)$$

$$\frac{a+b \stackrel{a}{\longrightarrow} 1}{(a+b)^* \stackrel{a}{\longrightarrow} 1; (a+b)^*} (Star_2)$$

$$1; (a+b)^* \stackrel{\varepsilon}{\longrightarrow} (a+b)^*$$

$$\frac{1 \stackrel{\varepsilon}{\longrightarrow} 1}{1; (a+b)^* \stackrel{\varepsilon}{\longrightarrow} (a+b)^*} (Seq_2)$$

Definition (Traces of Regular expressions)

- Let E be a regular expression and $s \in A^*$ be a string, we write $E \stackrel{s}{\Rightarrow} E'$ if there exists $\mu_1, \ldots, \mu_n \in A \cup \{\varepsilon\} \ (n \ge 0)$ s.t.:
 - **1** the string $\mu_1 \dots \mu_n$ coincides with s (up to some occurrence of ε)
 - ② $E \xrightarrow{\mu_1} E_1 \xrightarrow{\mu_2} E_2 \xrightarrow{\mu_3} \dots \xrightarrow{\mu_n} E_n \equiv E'$ (\equiv syntactical equiv.)
- The set of *traces* of *E* is the set of strings

$$\mathsf{Traces}(E) = \{ s \in A^* : E \stackrel{s}{\Rightarrow} 1 \}$$

Definition (Trace equivalence)

Two regular expressions E and F are trace equivalent if

$$Traces(E) = Traces(F)$$

Definition (Traces of Regular expressions)

- Let E be a regular expression and $s \in A^*$ be a string, we write $E \stackrel{s}{\Rightarrow} E'$ if there exists $\mu_1, \ldots, \mu_n \in A \cup \{\varepsilon\} \ (n \ge 0)$ s.t.:
 - **1** the string $\mu_1 \dots \mu_n$ coincides with s (up to some occurrence of ε)
 - ② $E \xrightarrow{\mu_1} E_1 \xrightarrow{\mu_2} E_2 \xrightarrow{\mu_3} \dots \xrightarrow{\mu_n} E_n \equiv E'$ (\equiv syntactical equiv.)
- The set of *traces* of *E* is the set of strings

$$\mathsf{Traces}(E) = \{ s \in A^* : E \stackrel{s}{\Rightarrow} 1 \}$$

Definition (Trace equivalence)

Two regular expressions E and F are trace equivalent if

$$Traces(E) = Traces(F)$$

Example

$$(a+b)^*$$
 $(a^*+b^*)^*$

- They are syntactically different
- Are they semantically equivalent?

We have to show that

• s is a trace of $(a+b)^*$ if and only if s is a trace of $(a^*+b^*)^*$

Example

$$(a+b)^*$$
 $(a^*+b^*)^*$

- They are syntactically different
- Traces($(a+b)^*$) $\stackrel{?}{=}$ Traces($(a^*+b^*)^*$)

We have to show that

• s is a trace of $(a+b)^*$ if and only if s is a trace of $(a^*+b^*)^*$

Example

$$(a+b)^*$$
 $(a^*+b^*)^*$

- They are syntactically different
- Traces($(a+b)^*$) $\stackrel{?}{=}$ Traces($(a^*+b^*)^*$)

We have to show that:

• s is a trace of $(a+b)^*$ if and only if s is a trace of $(a^*+b^*)^*$

if s is a trace of
$$(a + b)^*$$
 then s is a trace of $(a^* + b^*)^*$

- Base step: |s|=0 (i.e., $s=\varepsilon$). Trivial: (Star₁), $(a^*+b^*)^*\stackrel{\varepsilon}{\longrightarrow} 1$
- Inductive step: |s| > 0, then s = as' or s = bs'; w.l.o.g. assume s = as'. The only possible a-transition for $(a + b)^*$ is $(a + b)^* \stackrel{a}{\Rightarrow} (a + b)^*$. This is proved via the following derivations:

$$\frac{\frac{a}{a} \xrightarrow{a} 1}{(a+b)^{*} \xrightarrow{a} 1; (a+b)^{*}} (Sum_{1}) \qquad \frac{1}{a+b} \xrightarrow{\varepsilon} 1 \xrightarrow{(Tic)} \frac{1}{1; (a+b)^{*} \xrightarrow{\varepsilon} (a+b)^{*}} (Seq_{2})$$

if s is a trace of
$$(a + b)^*$$
 then s is a trace of $(a^* + b^*)^*$

- Base step: |s|=0 (i.e., s=arepsilon). Trivial: (Star₁), $(a^*+b^*)^*\stackrel{arepsilon}{\longrightarrow} 1$
- Inductive step: |s| > 0, then s = as' or s = bs'; w.l.o.g. assume s = as'. The only possible a-transition for $(a + b)^*$ is $(a + b)^* \stackrel{a}{\Rightarrow} (a + b)^*$

```
\frac{\frac{a}{a} \xrightarrow{s} \frac{(Atom)}{1}}{\frac{a+b}{a} \xrightarrow{s} 1; (a+b)^{*}} \frac{\frac{1}{s} \xrightarrow{\varepsilon} 1}{(Star_{2})} \frac{(Tic)}{1; (a+b)^{*} \xrightarrow{\varepsilon} (a+b)^{*}} (Seq_{2})
```

if s is a trace of $(a + b)^*$ then s is a trace of $(a^* + b^*)^*$

- Base step: |s| = 0 (i.e., $s = \varepsilon$). Trivial: (Star₁), $(a^* + b^*)^* \stackrel{\varepsilon}{\longrightarrow} 1$
- Inductive step: |s| > 0, then s = as' or s = bs'; w.l.o.g. assume s = as'. The only possible a-transition for $(a + b)^*$ is $(a + b)^* \stackrel{a}{\Rightarrow} (a + b)^*$. This is proved via the following derivations:

$$\frac{\frac{-a}{a \xrightarrow{a} 1} (Atom)}{\frac{-a+b \xrightarrow{a} 1}{(a+b)^*} (Star_2)} \frac{\frac{1}{a+b} \frac{\varepsilon}{1} (Tic)}{\frac{1}{a+b} \frac{\varepsilon}{1} (a+b)^*} (Seq_2)$$

if s is a trace of $(a + b)^*$ then s is a trace of $(a^* + b^*)^*$

- Base step: |s|=0 (i.e., $s=\varepsilon$). Trivial: (Star₁), $(a^*+b^*)^*\stackrel{\varepsilon}{\longrightarrow} 1$
- Inductive step: |s| > 0, then s = as' or s = bs'; w.l.o.g. assume s = as'. The only possible a-transition for $(a + b)^*$ is $(a + b)^* \stackrel{a}{\Rightarrow} (a + b)^*$. This is proved via the following derivations:

$$\frac{\frac{-a}{a \xrightarrow{a} 1} (Atom)}{\frac{a+b \xrightarrow{a} 1}{(a+b)^*} (Sum_1)} \frac{\frac{1}{1 \xrightarrow{\varepsilon} 1} (Tic)}{\frac{1}{1;(a+b)^* \xrightarrow{\varepsilon} (a+b)^*} (Seq_2)}$$

if s is a trace of
$$(a + b)^*$$
 then s is a trace of $(a^* + b^*)^*$

Induction on the length of s.

- Base step: |s|=0 (i.e., $s=\varepsilon$). Trivial: (Star₁), $(a^*+b^*)^*\stackrel{\varepsilon}{\longrightarrow} 1$
- Inductive step: |s| > 0, then s = as' or s = bs'; w.l.o.g. assume s = as'. The only possible a-transition for $(a + b)^*$ is $(a + b)^* \stackrel{a}{\Rightarrow} (a + b)^*$ By hypothesis, $(a + b)^* \stackrel{as'}{\Longrightarrow} 1$, thus $(a + b)^* \stackrel{s'}{\Longrightarrow} 1$.

By induction, we have $(a^* + b^*)^* \stackrel{s}{\Longrightarrow} 1$, thus it is sufficient to prove $(a^* + b^*)^* \stackrel{a}{\Longrightarrow} (a^* + b^*)^*$ to conclude that $(a^* + b^*)^* \stackrel{s}{\Longrightarrow} 1$.

if s is a trace of
$$(a + b)^*$$
 then s is a trace of $(a^* + b^*)^*$

- Base step: |s|=0 (i.e., $s=\varepsilon$). Trivial: (Star₁), $(a^*+b^*)^*\stackrel{\varepsilon}{\longrightarrow} 1$
- Inductive step: |s| > 0, then s = as' or s = bs'; w.l.o.g. assume s = as'. The only possible a-transition for $(a+b)^*$ is $(a+b)^* \stackrel{a}{\Rightarrow} (a+b)^*$ By hypothesis, $(a+b)^* \stackrel{as'}{\Rightarrow} 1$, thus $(a+b)^* \stackrel{s'}{\Rightarrow} 1$. By induction, we have $(a^*+b^*)^* \stackrel{s'}{\Rightarrow} 1$, thus it is sufficient to prove $(a^*+b^*)^* \stackrel{a}{\Rightarrow} (a^*+b^*)^*$ to conclude that $(a^*+b^*)^* \stackrel{s}{\Rightarrow} 1$.

if s is a trace of
$$(a + b)^*$$
 then s is a trace of $(a^* + b^*)^*$

- Base step: |s|=0 (i.e., $s=\varepsilon$). Trivial: (Star₁), $(a^*+b^*)^*\stackrel{\varepsilon}{\longrightarrow} 1$
- Inductive step: |s| > 0, then s = as' or s = bs'; w.l.o.g. assume s = as'. The only possible a-transition for $(a+b)^*$ is $(a+b)^* \stackrel{a}{\Rightarrow} (a+b)^*$ By hypothesis, $(a+b)^* \stackrel{as'}{\Rightarrow} 1$, thus $(a+b)^* \stackrel{s'}{\Rightarrow} 1$. By induction, we have $(a^*+b^*)^* \stackrel{s'}{\Rightarrow} 1$, thus it is sufficient to prove $(a^*+b^*)^* \stackrel{a}{\Rightarrow} (a^*+b^*)^*$ to conclude that $(a^*+b^*)^* \stackrel{s}{\Rightarrow} 1$.

if s is a trace of $(a + b)^*$ then s is a trace of $(a^* + b^*)^*$

- Base step: |s| = 0 (i.e., $s = \varepsilon$). Trivial: (Star₁), $(a^* + b^*)^* \stackrel{\varepsilon}{\longrightarrow} 1$
- Inductive step: |s| > 0, then s = as' or s = bs'; w.l.o.g. assume s = as'. $(a^* + b^*)^* \stackrel{a}{\Rightarrow} (a^* + b^*)^*$:

$$rac{-a}{a ouldeta 1} (Atom) \ rac{a ouldeta 1}{a^* ouldeta 1; a^*} (Star_2) \ rac{-a}{a^* + b^* ouldeta 1; a^*} (Sum_1) \ rac{-a}{(a^* + b^*)^* ouldeta 1; a^*} (Star_2) \ rac{1 ouldeta 1}{1; a^*; (a^* + b^*)^* ouldeta a^*; (a^* + b^*)} (Star_2)$$

$$\frac{\overline{a^* \stackrel{\varepsilon}{\longrightarrow} 1} (\mathit{Star}_1)}{a^* \colon (a^* + b^*)^* \stackrel{\varepsilon}{\longrightarrow} (a^* + b^*)^*} (\mathit{Seq}_2)$$

The abstract machine that describes the execution of a regular expression is a *finite state automaton*

Definition (Regular expressions as finite state automata)

Let E be a reg. expr., the finite state automaton associated to E is

$$M_E = (Q_E, A, \rightarrow_E, E, \{1\})$$

- States: $Q_E = \{F \mid \exists s \in A^*. E \stackrel{s}{\Rightarrow} F\}$ (expressions from E)
- Actions: A (alphabet of E)
- Transition relation: \rightarrow_E s.t. $F \xrightarrow{\mu}_E F'$ if $F \xrightarrow{\mu} F'$ with $\mu \in A \cup \{\varepsilon\}$
- Initial state: expression E
- Accepting states: expression 1

The abstract machine that describes the execution of a regular expression is a *finite state automaton*

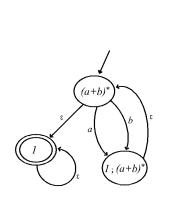
Definition (Regular expressions as finite state automata)

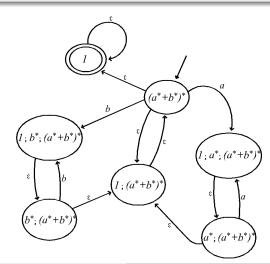
Let E be a reg. expr., the finite state automaton associated to E is

$$M_E = \left(Q_E, A, \rightarrow_E, E, \{1\}\right)$$

- States: $Q_E = \{F \mid \exists s \in A^*. E \stackrel{s}{\Rightarrow} F\}$ (expressions from E)
- Actions: A (alphabet of E)
- Transition relation: \rightarrow_E s.t. $F \xrightarrow{\mu}_E F'$ if $F \xrightarrow{\mu} F'$ with $\mu \in A \cup \{\varepsilon\}$
- Initial state: expression E
- Accepting states: expression 1

Automata associated to $(a + b)^*$ and $(a^* + b^*)^*$





Theorem

Let E be a regular expression and M_E the associated automaton, then

$$Traces(E) = L(M_E)$$

where $L(M_E) = \{s \in A^* : E \stackrel{s}{\Longrightarrow}_E 1\}$ (language accepted by M_E)

Proof (sketch). Two cases

- \subseteq If $w \in \text{Traces}(E)$, then $E \stackrel{w}{\Longrightarrow} 1$. The proof that $w \in L(M_E)$ proceeds by induction on the length of w.
- ⊇ Given $w \in L(M_E)$, we prove by induction on the length of w that $w \in \text{Traces}(E)$.

Theorem

Let E be a regular expression and M_E the associated automaton, then

$$Traces(E) = L(M_E)$$

where $L(M_E) = \{s \in A^* : E \stackrel{s}{\Longrightarrow}_E 1\}$ (language accepted by M_E)

Proof (sketch). Two cases:

- \subseteq If $w \in \text{Traces}(E)$, then $E \stackrel{w}{\Longrightarrow} 1$. The proof that $w \in L(M_E)$ proceeds by induction on the length of w.
- ⊇ Given $w \in L(M_E)$, we prove by induction on the length of w that $w \in \text{Traces}(E)$.

Denotational Semantics (What a program computes)

- an input/sympetation that denotes the effect of executing the program
- associate to each program a mathematical object, called denotation, that represents its meaning

Operators on Languages

To define semantics interpretation function for regular expressions, we need some operators on languages. If L, L_1 and L_2 are sets of strings:

- $L_1 \cdot L_2 = \{xy : x \in L_1 \text{ and } y \in L_2\}$
- $L^* = \bigcup_{n>0} L^n$ where
 - $L^0 = \{\varepsilon\}$
 - $\bullet L^{n+1} = L \cdot L^n$

We have: $\emptyset \cdot L = L \cdot \emptyset = \emptyset$ (Why?)

Semantic function $\mathcal L$ for regular expressions

The denotational semantics is inductively defined by the rules below and associates a subset of A^* to each regular expressions:

$$\mathcal{L}[\![]\!]: R.E. \rightarrow 2^{A^*}$$

$$\mathcal{L}[\![0]\!] = \emptyset$$

$$\mathcal{L}[\![1]\!] = \{\varepsilon\}$$

$$\mathcal{L}[\![a]\!] = \{a\} \quad (\text{for } a \in A)$$

$$\mathcal{L}[\![E + F]\!] = \mathcal{L}[\![E]\!] \cup \mathcal{L}[\![F]\!]$$

$$\mathcal{L}[\![E \, ; F]\!] = \mathcal{L}[\![E]\!] \cdot \mathcal{L}[\![F]\!]$$

$$\mathcal{L}[\![E^*]\!] = (\mathcal{L}[\![E]\!])^*$$

Example

$$(a+b)^*$$
 $(a^*+b^*)^*$

- They are syntactically different
- Are they semantically equivalent?

We have to show that:

- $\mathcal{L}[(a+b)^*] \subseteq \mathcal{L}[(a^*+b^*)^*]$
- vice versa

Example

$$(a+b)^*$$
 $(a^*+b^*)^*$

- They are syntactically different
- $\mathcal{L}[(a+b)^*]$ $\stackrel{?}{=}$ $\mathcal{L}[(a^*+b^*)^*]$

We have to show that:

- $\bullet \ \mathcal{L}\llbracket (a+b)^* \rrbracket \subseteq \mathcal{L}\llbracket (a^*+b^*)^* \rrbracket$
- vice versa

Example

$$(a+b)^*$$
 $(a^*+b^*)^*$

- They are syntactically different
- $\mathcal{L}[(a+b)^*]$? $\mathcal{L}[(a^*+b^*)^*]$

We have to show that:

- $\mathcal{L}[(a+b)^*] \subseteq \mathcal{L}[(a^*+b^*)^*]$
- vice versa

$$\mathcal{L}\llbracket (a+b)^* \rrbracket \subseteq \mathcal{L}\llbracket (a^*+b^*)^* \rrbracket$$

We have:

$$\mathcal{L}\llbracket (a+b)^* \rrbracket = \left(\mathcal{L}\llbracket (a+b) \rrbracket \right)^*$$

$$= \left(\mathcal{L}\llbracket a \rrbracket \cup \mathcal{L}\llbracket b \rrbracket \right)^*$$

$$\subseteq \left(\mathcal{L}\llbracket a \rrbracket^* \cup \mathcal{L}\llbracket b \rrbracket^* \right)^*$$

$$= \left(\mathcal{L}\llbracket a^* \rrbracket \cup \mathcal{L}\llbracket b^* \rrbracket \right)^*$$

$$= \left(\mathcal{L}\llbracket a^* + b^* \rrbracket \right)^*$$

$$= \mathcal{L}\llbracket (a^* + b^*)^* \rrbracket$$

$$\mathcal{L}\llbracket (a+b)^* \rrbracket \subseteq \mathcal{L}\llbracket (a^*+b^*)^* \rrbracket$$

We have:

$$\mathcal{L}[\![(a+b)^*]\!] = (\mathcal{L}[\![(a+b)]\!])^*$$

$$= (\mathcal{L}[\![a]\!] \cup \mathcal{L}[\![b]\!])^*$$

$$\subseteq (\mathcal{L}[\![a]\!]^* \cup \mathcal{L}[\![b]\!]^*)^*$$

$$= (\mathcal{L}[\![a^*]\!] \cup \mathcal{L}[\![b^*]\!])^*$$

$$= (\mathcal{L}[\![a^* + b^*]\!])^*$$

$$= \mathcal{L}[\![(a^* + b^*)^*]\!]$$

$$\mathcal{L}\llbracket (a^*+b^*)^*\rrbracket \subseteq \mathcal{L}\llbracket (a+b)^*\rrbracket$$

We have to prove:

$$\left(\mathcal{L}\llbracket a
bracket^* \cup \mathcal{L}\llbracket b
bracket^*\right)^* \subseteq \left(\mathcal{L}\llbracket a
bracket^* \cup \mathcal{L}\llbracket b
bracket^*\right)^*$$

We exploit

$$ig(\mathcal{L}\llbracket a
rbracket \cup \mathcal{L}\llbracket b
rbracketig)^* = ig(ig(\mathcal{L}\llbracket a
rbracket \cup \mathcal{L}\llbracket b
rbracketig)^*ig)^*$$

Thus, we have just to prove that

$$\left(\mathcal{L}\llbracket a
bracket^* \cup \mathcal{L}\llbracket b
bracket^*
ight)^* \subseteq \left(\left(\mathcal{L}\llbracket a
bracket^* \cup \mathcal{L}\llbracket b
bracket^*
ight)^*
ight)^*$$

Let $s \in (\mathcal{L}[\![a]\!]^* \cup \mathcal{L}[\![b]\!]^*)^*$. Therefore, for some $n \geq 0$, we have $s = s_1 s_2 \cdots s_n$ and either $s_i \in \mathcal{L}[\![a]\!]^*$ or $s_i \in \mathcal{L}[\![b]\!]^*$, for all $0 \leq i \leq n$.

Thus, $s_i \in \left(\mathcal{L}\llbracket a \rrbracket \cup \mathcal{L}\llbracket b \rrbracket \right)^*$, for all $0 \leq i \leq n$, hence $s \in \left(\left(\mathcal{L}\llbracket a \rrbracket \cup \mathcal{L}\llbracket b \rrbracket \right)^*\right)^*$.

$$\mathcal{L}\llbracket (a^*+b^*)^*\rrbracket\subseteq \mathcal{L}\llbracket (a+b)^*\rrbracket$$

We have to prove:

$$\big(\mathcal{L} \llbracket a \rrbracket^* \cup \mathcal{L} \llbracket b \rrbracket^* \big)^* \subseteq \big(\mathcal{L} \llbracket a \rrbracket \cup \mathcal{L} \llbracket b \rrbracket \big)^*$$

We exploit

$$\left(\mathcal{L}\llbracket a\rrbracket \cup \mathcal{L}\llbracket b\rrbracket\right)^* = \left(\left(\mathcal{L}\llbracket a\rrbracket \cup \mathcal{L}\llbracket b\rrbracket\right)^*\right)^*$$

Thus, we have just to prove that:

$$\left(\mathcal{L}\llbracket a\rrbracket^* \cup \mathcal{L}\llbracket b\rrbracket^*\right)^* \subseteq \left(\left(\mathcal{L}\llbracket a\rrbracket \cup \mathcal{L}\llbracket b\rrbracket\right)^*\right)^*$$

Let $s \in (\mathcal{L}[\![a]\!]^* \cup \mathcal{L}[\![b]\!]^*)^*$. Therefore, for some $n \geq 0$, we have $s = s_1 s_2 \cdots s_n$ and either $s_i \in \mathcal{L}[\![a]\!]^*$ or $s_i \in \mathcal{L}[\![b]\!]^*$, for all $0 \leq i \leq n$.

Thus, $s_i \in \left(\mathcal{L}\llbracket a \rrbracket \cup \mathcal{L}\llbracket b \rrbracket \right)^*$, for all $0 \leq i \leq n$, hence $s \in \left(\left(\mathcal{L}\llbracket a \rrbracket \cup \mathcal{L}\llbracket b \rrbracket \right)^*\right)^*$.

$$\mathcal{L}\llbracket (a^*+b^*)^*\rrbracket \subseteq \mathcal{L}\llbracket (a+b)^*\rrbracket$$

We have to prove:

$$\big(\mathcal{L}\llbracket a\rrbracket^* \cup \mathcal{L}\llbracket b\rrbracket^*\big)^* \subseteq \big(\mathcal{L}\llbracket a\rrbracket \cup \mathcal{L}\llbracket b\rrbracket\big)^*$$

We exploit:

$$\big(\mathcal{L} \llbracket a \rrbracket \cup \mathcal{L} \llbracket b \rrbracket \big)^* = \big(\big(\mathcal{L} \llbracket a \rrbracket \cup \mathcal{L} \llbracket b \rrbracket \big)^* \big)^*$$

Thus, we have just to prove that:

$$\left(\mathcal{L}\llbracket a\rrbracket^* \cup \mathcal{L}\llbracket b\rrbracket^*\right)^* \subseteq \left(\left(\mathcal{L}\llbracket a\rrbracket \cup \mathcal{L}\llbracket b\rrbracket\right)^*\right)^*$$

Let $s \in (\mathcal{L}[\![a]\!]^* \cup \mathcal{L}[\![b]\!]^*)^*$. Therefore, for some $n \geq 0$, we have $s = s_1 s_2 \cdots s_n$ and either $s_i \in \mathcal{L}[\![a]\!]^*$ or $s_i \in \mathcal{L}[\![b]\!]^*$, for all $0 \leq i \leq n$.

Thus, $s_i \in \left(\mathcal{L}\llbracket a \rrbracket \cup \mathcal{L}\llbracket b \rrbracket \right)^*$, for all $0 \leq i \leq n$, hence $s \in \left(\left(\mathcal{L}\llbracket a \rrbracket \cup \mathcal{L}\llbracket b \rrbracket \right)^*\right)^*$.

$$\mathcal{L}\llbracket (a^*+b^*)^*\rrbracket \subseteq \mathcal{L}\llbracket (a+b)^*\rrbracket$$

We have to prove:

$$\big(\mathcal{L} \llbracket \mathbf{a} \rrbracket^* \cup \mathcal{L} \llbracket \mathbf{b} \rrbracket^* \big)^* \subseteq \big(\mathcal{L} \llbracket \mathbf{a} \rrbracket \cup \mathcal{L} \llbracket \mathbf{b} \rrbracket \big)^*$$

We exploit:

$$ig(\mathcal{L} \llbracket extbf{a}
rbracket \cup \mathcal{L} \llbracket extbf{b}
rbracket ig)^* = ig(ig(\mathcal{L} \llbracket extbf{a}
rbracket \cup \mathcal{L} \llbracket extbf{b}
rbracket ig)^*ig)^*$$

Thus, we have just to prove that:

$$\big(\mathcal{L}\llbracket a\rrbracket^* \cup \mathcal{L}\llbracket b\rrbracket^*\big)^* \subseteq \big(\big(\mathcal{L}\llbracket a\rrbracket \cup \mathcal{L}\llbracket b\rrbracket\big)^*\big)^*$$

Let $s \in (\mathcal{L}[\![a]\!]^* \cup \mathcal{L}[\![b]\!]^*)^*$. Therefore, for some $n \geq 0$, we have $s = s_1 s_2 \cdots s_n$ and either $s_i \in \mathcal{L}[\![a]\!]^*$ or $s_i \in \mathcal{L}[\![b]\!]^*$, for all $0 \leq i \leq n$.

Thus, $s_i \in (\mathcal{L}\llbracket a \rrbracket \cup \mathcal{L}\llbracket b \rrbracket)^*$, for all $0 \leq i \leq n$, hence $s \in ((\mathcal{L}\llbracket a \rrbracket \cup \mathcal{L}\llbracket b \rrbracket)^*)^*$.

$$\mathcal{L}\llbracket (a^*+b^*)^*\rrbracket \subseteq \mathcal{L}\llbracket (a+b)^*\rrbracket$$

We have to prove:

$$\big(\mathcal{L}\llbracket a\rrbracket^* \cup \mathcal{L}\llbracket b\rrbracket^*\big)^* \subseteq \big(\mathcal{L}\llbracket a\rrbracket \cup \mathcal{L}\llbracket b\rrbracket\big)^*$$

We exploit:

$$\big(\mathcal{L} \llbracket \textbf{\textit{a}} \rrbracket \cup \mathcal{L} \llbracket \textbf{\textit{b}} \rrbracket \big)^* = \big(\big(\mathcal{L} \llbracket \textbf{\textit{a}} \rrbracket \cup \mathcal{L} \llbracket \textbf{\textit{b}} \rrbracket \big)^* \big)^*$$

Thus, we have just to prove that:

$$\big(\mathcal{L} \llbracket a \rrbracket^* \cup \mathcal{L} \llbracket b \rrbracket^* \big)^* \subseteq \big(\big(\mathcal{L} \llbracket a \rrbracket \cup \mathcal{L} \llbracket b \rrbracket \big)^* \big)^*$$

Let $s \in (\mathcal{L}[\![a]\!]^* \cup \mathcal{L}[\![b]\!]^*)^*$. Therefore, for some $n \geq 0$, we have $s = s_1 s_2 \cdots s_n$ and either $s_i \in \mathcal{L}[\![a]\!]^*$ or $s_i \in \mathcal{L}[\![b]\!]^*$, for all $0 \leq i \leq n$.

Thus, $s_i \in (\mathcal{L}\llbracket a \rrbracket \cup \mathcal{L}\llbracket b \rrbracket)^*$, for all $0 \leq i \leq n$, hence $s \in ((\mathcal{L}\llbracket a \rrbracket \cup \mathcal{L}\llbracket b \rrbracket)^*)^*$.

F. Tiezzi (Unicam)

Theorem (operational and denotational semantics are equivalent)

Let E be a regular expression, it holds that:

$$w \in \operatorname{Traces}(E) \iff w \in \mathcal{L}\llbracket E \rrbracket$$

Proof. Two cases:

- \Rightarrow By induction on the structure of E.
- \leftarrow By induction on the structure of E.

Property

Let E and F regular expressions and s a string

$$E; F \stackrel{s}{\Longrightarrow} 1$$
 implies $\exists x, y \text{ s.t. } s = xy \text{ and } E \stackrel{x}{\Longrightarrow} 1, F \stackrel{y}{\Longrightarrow} 1$

Theorem (operational and denotational semantics are equivalent)

Let E be a regular expression, it holds that:

$$w \in \mathsf{Traces}(E) \iff w \in \mathcal{L}\llbracket E \rrbracket$$

Proof. Two cases:

- \Rightarrow By induction on the structure of E.
- \leftarrow By induction on the structure of E.

Property

Let E and F regular expressions and s a string

$$E; F \stackrel{s}{\Longrightarrow} 1$$
 implies $\exists x, y \text{ s.t. } s = xy \text{ and } E \stackrel{x}{\Longrightarrow} 1, F \stackrel{y}{\Longrightarrow} 1$

Theorem (operational and denotational semantics are equivalent)

Let E be a regular expression, it holds that:

$$w \in \mathsf{Traces}(E) \iff w \in \mathcal{L}\llbracket E \rrbracket$$

Proof. Two cases:

- \Rightarrow By induction on the structure of E.
- \leftarrow By induction on the structure of E.

Property

Let E and F regular expressions and s a string.

$$E; F \stackrel{s}{\Longrightarrow} 1$$
 implies $\exists x, y \text{ s.t. } s = xy \text{ and } E \stackrel{x}{\Longrightarrow} 1, F \stackrel{y}{\Longrightarrow} 1$

Proof (\Rightarrow). By induction on the structure of *E*.

 $E \equiv 0$ Trivial, because Traces $(0) = \emptyset = \mathcal{L}[0]$.

 $E \equiv 1$ Trivial, because Traces $(1) = \{\varepsilon\} = \mathcal{L}[1]$.

 $E \equiv a$ Trivial, because Traces $(a) = \{a\} = \mathcal{L}[a]$.

 $E \equiv E_1 + E_2$ If $w \in \text{Traces}(E_1 + E_2)$, then $\exists \ \mu \in A \cup \{\varepsilon\}$ and $w' \in A^*$ with $w = \mu w'$ and

$$E_1 + E_2 \xrightarrow{\mu} F \xrightarrow{w'} 1$$

where

$$E_1 \xrightarrow{\mu} F \xrightarrow{w'} 1$$
 or $E_2 \xrightarrow{\mu} F \xrightarrow{w'} 1$

By inductive hypothesis

$$w \in \mathcal{L}[\![E_1]\!]$$
 or $w \in \mathcal{L}[\![E_2]\!]$

Thus, $w \in \mathcal{L}[\![E_1]\!] \cup \mathcal{L}[\![E_2]\!] = \mathcal{L}[\![E_1 + E_2]\!].$

 $E \equiv E_1$; E_2 If $w \in \text{Traces}(E_1; E_2)$, by the previous property, $\exists x, y \text{ s.t.}$

$$E_1 \stackrel{x}{\Longrightarrow} 1$$
 and $E_2 \stackrel{y}{\Longrightarrow} 1$

with w = xy. By inductive hypothesis, we have

$$x \in \mathcal{L}[\![E_1]\!]$$
 and $y \in \mathcal{L}[\![E_2]\!]$,

and, hence, $w \in \mathcal{L}\llbracket E_1 \rrbracket \cdot \mathcal{L}\llbracket E_2 \rrbracket = \mathcal{L}\llbracket E_1; E_2 \rrbracket$.

 $E \equiv E_1^*$ Let $S(E_1^*, w)$ be the number of application of $(Star_2)$ in $E_1^* \stackrel{w}{\Longrightarrow} 1$.

We demonstrate by induction on $n = S(E_1^*, w)$ that

$$w \in \mathcal{L}^n \llbracket E_1 \rrbracket. \qquad \qquad (\mathcal{L}^n \llbracket E_1 \rrbracket \text{ stands for } (\mathcal{L} \llbracket E_1 \rrbracket)^n)$$

• • •

$$E \equiv E_1^* \dots$$

If $S(E_1^*, w) = 0$, no $(Star_2)$ but $(Star_1)$ used, thus $w = \varepsilon$. By definition, $\varepsilon \in \mathcal{L}^0 \llbracket E_1 \rrbracket = \{ \varepsilon \}$.

If $S(E_1^*, w) = n + 1$, then $\exists x, y \text{ s.t. } w = xy$ and

$$E_1^* \stackrel{x}{\Longrightarrow} E_1^* \stackrel{y}{\Longrightarrow} E_1^* \stackrel{\varepsilon}{\longrightarrow} 1$$

with $S(E_1^*, x) = n$.

By (local) induction hypothesis $x \in \mathcal{L}^n[\![E_1]\!]$. Since

 $S(E_1^*, y) = 1$, $(Star_2)$ is applied only once in $E_1^* \stackrel{y}{\Longrightarrow} E_1^*$,

thus $\exists \mu \in A \cup \{\varepsilon\}$ and $y' \in A^*$ s.t. $y = \mu y'$, $E_1 \xrightarrow{\mu} E'$ and

$$E_1^* \xrightarrow{\mu} E'; E_1^* \xrightarrow{y'} E_1^*.$$

Since E'; $E_1^* \stackrel{y'}{\Longrightarrow} E_1^*$ does not use ($Star_2$), we have $E' \stackrel{y'}{\Longrightarrow} 1$ and, hence, $E_1 \stackrel{\mu y'}{\Longrightarrow} 1$. By (structural) inductive hypotesis, $y \in \mathcal{L}[\![E_1]\!]$. Using $x \in \mathcal{L}^n[\![E_1]\!]$, we conclude.

Proof (\Leftarrow). By induction on the structure of E.

For the sake of simplicity, we only consider the case:

$$E \equiv E_1^*$$
 If $w \in \mathcal{L}[\![E_1^*]\!]$, then $\exists n \text{ s.t. } w \in \mathcal{L}^n[\![E_1]\!]$.

Then,
$$\exists x_1, \dots, x_n \in \mathcal{L}\llbracket E_1 \rrbracket$$
 s.t. $w = x_1 \cdots x_n$.

By inductive hypothesis, $x_i \in \text{Traces}(E_1)$, that is $E_1 \stackrel{x_i}{\Longrightarrow} 1$.

By repeatedly applying ($Star_2$), we obtain $E_1^* \stackrel{x_i}{\Longrightarrow} 1; E_1^*$.

Since 1; $E_1^* \stackrel{\varepsilon}{\longrightarrow} E_1^*$, by (Seq_2) , and $E_1^* \stackrel{\varepsilon}{\longrightarrow} 1$, by $(Star_1)$, we have

$$E_1^* \xrightarrow{x_1} 1; E_1^* \xrightarrow{x_2} 1; E_1^* \cdots \xrightarrow{x_n} 1; E_1^* \xrightarrow{\varepsilon} 1$$

and, therefore, $E_1^* \stackrel{w}{\Longrightarrow} 1$.

Axiomatic Semantics (What a program modifies)

- it relates observable properties before and after program execution
 - in stateful languages, e.g., if the initial state of a program fulfils the precondition and the program terminates, then the final state is guaranteed to fulfil the postcondition
- it consists of a set of axioms and inference rules that define a relation

Axiomatic semantics of regular expressions

- no state in regular expressions
- the observed property is the capability of equivalent expressions to represent the same regular language
- axioms and rules define an equivalence relation E = F that partition the set of all expressions

Axiomatic Semantics (What a program modifies)

- it relates observable properties before and after program execution
 - in stateful languages, e.g., if the initial state of a program fulfils the precondition and the program terminates, then the final state is guaranteed to fulfil the postcondition
- it consists of a set of axioms and inference rules that define a relation

Axiomatic semantics of regular expressions

- no state in regular expressions
- the observed property is the capability of equivalent expressions to represent the same regular language
- axioms and rules define an equivalence relation E = F that partition the set of all expressions

Axioms for E = F

$$E + (F + G) = (E + F) + G$$
 (assoc +) (comm +) (unit +)
$$E + F = F + E$$
 (unit +)
$$E : (F; G) = (E; F); G$$
 (assoc ;) (unit ;)
$$E : (F + G) = E; F + E; G$$
 (distribL) (distribR) (absorb 0)
$$E = 0$$
 (idemp +)
$$E * = 1 + E * ; E$$
 (unfolding) (absorb *)
$$E * = 1 + E * ; E$$
 (unfolding) (absorb *)
$$E * = 1 + E * ; E$$
 (unfolding) (absorb *)
$$E * = 1 + E * ; E$$
 (unfolding) (absorb *)
$$E * = 1 + E * ; E$$
 (unfolding) (absorb *) (o⁰)

Rules for E = F

Rule 1 (Substitution):

$$\frac{E = F \quad G = H}{G' = H \quad G' = G}$$

where G' is obtained from G by replacing an occurrence of E by F

Rule 2 (Equation solution):

$$E=E;F+G$$

if F does not produce ε

$$E=G\,;F^*$$

- The axioms are sound w.r.t. the observed property,
 i.e. = equates expressions representing the same language
 - E.g., given 0; E = 0, we have:

$$\mathcal{L} \llbracket \mathbf{0} \, ; E \rrbracket = \mathcal{L} \llbracket \mathbf{0} \rrbracket \cdot \mathcal{L} \llbracket E \rrbracket = \emptyset \cdot \mathcal{L} \llbracket E \rrbracket = \emptyset = \mathcal{L} \llbracket \mathbf{0} \rrbracket$$

- Applying the axiomatic approach could be more laborious
 - E.g., proving E; 0 = 0 requires the following inference:

$$\frac{\overline{0=0;0} \text{ (absorb 0)}}{E;0=E;0} (rule 1) \frac{E;0+0=E;0}{E;0+0=E;0} (rule 1)$$

$$\frac{E;0;0+0=E;0}{E;0=0;0^*} (rule 2)$$

$$\frac{E;0=0;0^*}{E;0=0;0^*} (rule 1)$$

- The axioms are sound w.r.t. the observed property,
 i.e. = equates expressions representing the same language
 - E.g., given 0; E = 0, we have:

$$\mathcal{L} \llbracket \mathbf{0} \, ; E \rrbracket = \mathcal{L} \llbracket \mathbf{0} \rrbracket \cdot \mathcal{L} \llbracket E \rrbracket = \emptyset \cdot \mathcal{L} \llbracket E \rrbracket = \emptyset = \mathcal{L} \llbracket \mathbf{0} \rrbracket$$

- Applying the axiomatic approach could be more laborious
 - E.g., proving E; 0 = 0 requires the following inference:

Theorem (axiomatic and denotational semantics are equivalent)

Let E and F be regular expressions, it holds that:

$$E = F \iff \mathcal{L}\llbracket E \rrbracket = \mathcal{L}\llbracket F \rrbracket$$

Proof (sketch). Two cases:

- \Rightarrow (Soundness) Easy to prove
- (Completeness) Require a bit of work (e.g., expression normalization)

Corollary

The three semantics for regular expressions are equivalent

Theorem (axiomatic and denotational semantics are equivalent)

Let E and F be regular expressions, it holds that:

$$E = F \iff \mathcal{L}\llbracket E \rrbracket = \mathcal{L}\llbracket F \rrbracket$$

Proof (sketch). Two cases:

- ⇒ (Soundness) Easy to prove
- (Completeness) Require a bit of work (e.g., expression normalization)

Corollary

The three semantics for regular expressions are equivalent

Theorem (axiomatic and denotational semantics are equivalent)

Let E and F be regular expressions, it holds that:

$$E = F \iff \mathcal{L}\llbracket E \rrbracket = \mathcal{L}\llbracket F \rrbracket$$

Proof (sketch). Two cases:

- ⇒ (Soundness) Easy to prove
- (Completeness) Require a bit of work (e.g., expression normalization)

Corollary

The three semantics for regular expressions are equivalent