Formal Modelling of Software Intensive Systems CCS

Francesco Tiezzi
University of Camerino
francesco.tiezzi@unicam.it

A.A. $2015 / 2016$

CCS Basics

Sequential Fragment

- Nil process (the only atomic process)
- action prefixing (a.P)
- names and recursive definitions (\triangleq)
- nondeterministic choice (+)

Any finite LTS can be described (up to isomorphism) by using the operations above

- parallel composition (|) (synchronous communication between two comnonents $=$ handshake synchronization)
- restriction $(P>L)$
- relabelling ($P[f]$)

CCS Basics

Sequential Fragment

- Nil process (the only atomic process)
- action prefixing (a.P)
- names and recursive definitions (\triangleq)
- nondeterministic choice (+)

Any finite LTS can be described (up to isomorphism) by using the operations above

CCS Basics

Sequential Fragment

- Nil process (the only atomic process)
- action prefixing (a.P)
- names and recursive definitions (\triangleq)
- nondeterministic choice (+)

Any finite LTS can be described (up to isomorphism) by using the operations above

Parallelism and Renaming

- parallel composition (|) (synchronous communication between two components $=$ handshake synchronization)
- restriction $(P \backslash L)$
- relabelling ($P[f]$)

Definition of CCS: channels, actions, process names

Let

- \mathcal{A} be a set of channel names (e.g. tea, coffee are channel names)
- $\mathcal{L}=\mathcal{A} \cup \overline{\mathcal{A}}$ be a set of labels where
- $\overline{\mathcal{A}}=\{\bar{a} \mid a \in \mathcal{A}\}$
(elements of \mathcal{A} are called names and those of $\overline{\mathcal{A}}$ are called co-names)
- by convention $\overline{\bar{a}}=a$
- Act $=\mathcal{L} \cup\{\tau\}$ is the set of actions where
- τ is the internal or silent action (e.g. τ, tea, $\overline{\text { coffee }}$ are actions)
- \mathcal{K} is a set of process names (constants) (e.g. CM).

Definition of CCS (expressions)

$$
\begin{aligned}
P:= & K \\
& \alpha . P \\
& \sum_{i \in \in} P_{i} \\
& P_{1} \mid P_{2} \\
& P \backslash L \\
& P[f]
\end{aligned}
$$

process constants $(K \in \mathcal{K})$
prefixing ($\alpha \in$ Act)
summation (I is an arbitrary index set)
parallel composition
restriction $(L \subseteq \mathcal{A})$
relabelling ($f:$ Act \rightarrow Act) such that

- $f(\tau)=\tau$
- $f(\bar{a})=\overline{f(a)}$

The set of all terms generated by the abstract syntax is the set of CCS process expressions (and is denoted by \mathcal{P})

Notation

$$
P_{1}+P_{2}=\sum_{i \in\{1,2\}} P_{i} \quad \text { NiI }=\sum_{i \in \emptyset} P_{i}
$$

Precedence

Precedence

(1) restriction and relabelling (tightest binding)
(2) action prefixing
(3) parallel composition
(9) summation

Example: $R+a . P \mid b . Q \backslash L$ means $R+((a . P) \mid(b .(Q \backslash L)))$

Definition of CCS (defining equations)

CCS program

A collection of defining equations of the form

$$
K \triangleq P
$$

where $K \in \mathcal{K}$ is a process constant and $P \in \mathcal{P}$ is a CCS process expression.

- Only one defining equation per process constant.
- Recursion is allowed: e.g. $A \triangleq \bar{a} . A \mid A$.

Structural Operational Semantics for CCS

Structural Operational Semantics (SOS)-G. Plotkin 1981

Small-step operational semantics where the behaviour of a system is inferred using syntax driven rules

Given a collection of CCS defining equations, we define the following LTS (Proc, Act, $\{\xrightarrow{a} \mid a \in A c t\}$):

- $\operatorname{Proc}=\mathcal{P} \quad$ (the set of all CCS process expressions)
- Act $=\mathcal{L} \cup\{\tau\} \quad$ (the set of all CCS actions including τ)
- transition relation is given by SOS rules of the form:

$$
\text { RULE } \frac{\text { premises }}{\text { conclusion }} \text { conditions }
$$

SOS rules for CCS

$(\alpha \in A c t, a \in \mathcal{L})$

$$
\begin{aligned}
& \text { ACT } \overline{\alpha . P \xrightarrow{\alpha} P} \\
& \operatorname{SUM}_{j} \frac{P_{j} \xrightarrow{\alpha} P_{j}^{\prime}}{\sum_{i \in I} P_{i} \xrightarrow{\alpha} P_{j}^{\prime}} j \in I \\
& \text { COM1 } \frac{P \xrightarrow{\alpha} P^{\prime}}{P\left|Q \xrightarrow{\alpha} P^{\prime}\right| Q} \\
& \text { COM2 } \frac{Q \xrightarrow{\alpha} Q^{\prime}}{P|Q \xrightarrow{\alpha} P| Q^{\prime}} \\
& \text { COM3 } \xrightarrow[{P \left\lvert\, Q \xrightarrow{P} P^{\prime} Q \xrightarrow{\frac{\bar{a}}{\longrightarrow}} Q^{\prime}\right.}]{P \mid Q^{\prime}} \\
& \operatorname{RES} \frac{P \xrightarrow{\alpha} P^{\prime}}{P \backslash L \xrightarrow{\alpha} P^{\prime} \backslash L} \alpha, \bar{\alpha} \notin L \quad \text { REL } \frac{P \xrightarrow{\alpha} P^{\prime}}{P[f] \xrightarrow{f(\alpha)} P^{\prime}[f]} \\
& \operatorname{CON} \underset{\xrightarrow{P} \xrightarrow{\alpha} P^{\prime}}{\underset{\sim}{\alpha}} K \triangleq P
\end{aligned}
$$

Deriving Transitions in CCS

Let $A \triangleq$ a. A. Then

$$
\begin{gathered}
((A \mid \bar{a} . N i l) \mid b . N i l)[c / a] \xrightarrow{c}((A \mid \overline{\text { a }} . \text { Nil }) \mid b . N i l)[c / a] . \\
\text { Why? }
\end{gathered}
$$

Deriving Transitions in CCS

Let $A \triangleq$ a. A. Then

$$
\begin{gathered}
((A \mid \bar{a} . N i l) \mid b . N i l)[c / a] \xrightarrow{c}((A \mid \overline{\text { a }} . \text { Nil }) \mid b . N i l)[c / a] . \\
\text { Why? }
\end{gathered}
$$

REL

$$
\overline{((A \mid \bar{a} . N i l) \mid b . N i l)[c / a] \xrightarrow{c}((A \mid \bar{a} . N i l) \mid b . N i l)[c / a]}
$$

Deriving Transitions in CCS

Let $A \triangleq$ a. A. Then

$$
\begin{gathered}
((A \mid \bar{a} . N i l) \mid b . N i l)[c / a] \xrightarrow{c}((A \mid \overline{\mathrm{a}} . \mathrm{NiI}) \mid b . N i l)[c / a] . \\
\text { Why? }
\end{gathered}
$$

$$
\begin{aligned}
& \text { COM1 } \\
& \overline{(A \mid \bar{a} . N i l) \mid b . N i l \xrightarrow{a}}(A \mid \overline{\text { a }} . \text { Nil }) \mid \text { b.Nil } \\
& \text { REL } \frac{(A \mid \bar{a} . N i l) \mid b . N i l)[c / a] \xrightarrow{c}((A \mid \bar{a} . N i l) \mid b . N i l)[c / a]}{((A \mid}
\end{aligned}
$$

Deriving Transitions in CCS

Let $A \triangleq$ a. A. Then

$$
\begin{gathered}
((A \mid \bar{a} . N i l) \mid b . N i l)[c / a] \xrightarrow{c}((A \mid \overline{\text { a.Nil }}) \mid \text { b.Nil })[c / a] . \\
\text { Why? }
\end{gathered}
$$

$$
\begin{aligned}
& \text { COM1 } \overline{A \mid \bar{a} . N i l ~} \xrightarrow{a} A \mid \bar{a} \cdot \mathrm{Nil}
\end{aligned}
$$

$$
\begin{aligned}
& \text { REL } \frac{((A \mid \bar{a} . N i l) \mid b . N i l)[c / a] \xrightarrow{c}((A \mid \bar{a} . N i l) \mid b . N i I)[c / a]}{(A)}
\end{aligned}
$$

Deriving Transitions in CCS

Let $A \triangleq$ a. A. Then

$$
\begin{gathered}
((A \mid \bar{a} . N i l) \mid b . N i l)[c / a] \xrightarrow{c}((A \mid \overline{\text { a }} . \text { Nil }) \mid b . N i l)[c / a] . \\
\text { Why? }
\end{gathered}
$$

$$
\begin{aligned}
& \operatorname{CON} \underset{A \xrightarrow{a} A}{ } A \triangleq a . A \\
& \text { COM1 } \xrightarrow[{A|\bar{a} . N i l \xrightarrow{a} A| \bar{a} . N i} l]{ }
\end{aligned}
$$

Deriving Transitions in CCS

Let $A \triangleq$ a. A. Then

$$
\begin{gathered}
((A \mid \bar{a} . N i l) \mid b . N i l)[c / a] \xrightarrow{c}((A \mid \overline{\text { a.Nil }}) \mid \text { b.Nil })[c / a] . \\
\text { Why? }
\end{gathered}
$$

$$
\begin{aligned}
& \text { ACT } \quad{ }^{a} A \\
& \operatorname{CON} \frac{a . A \xrightarrow{a} A}{A \xrightarrow{a} A} A \triangleq \text { a. } A \\
& \text { COM1 } \xrightarrow[{A|\bar{a} \cdot \mathrm{Nil} \xrightarrow{a} A| \bar{a} \cdot \mathrm{Nil}}]{ } \\
& \text { COM1 } \frac{A|\bar{a} . N i l \xrightarrow{a} A| \bar{a} . \text { Nil }}{(A \mid \bar{a} . \text { Nil }) \mid \text { b.Nil } \xrightarrow{a}(A \mid \bar{a} . \text { Nil }) \mid \text { b.Nil }} \\
& \text { REL } \frac{((A \mid \bar{a} . N i l) \mid b . N i l)[c / a] \xrightarrow{c}((A \mid \bar{a} . N i l) \mid b . N i I)[c / a]}{(A)}
\end{aligned}
$$

LTS of the Process a.Nil|ā.Nil

CCS: vending machine example

Examples at the blackboard...

CCS in pseuCo

pseuCo

Web application allowing to create CCS specifications and interactively explore the resulting transition systems

http://pseuco.com

CCS in pseuCo: regular expressions

$(a+b)^{*}$
$\mathrm{X}:=((\mathrm{a} .1+\mathrm{b} .1) ; \mathrm{X})+1$
// this is the initial process
X
$\left(a^{*}+b^{*}\right)^{*}$
$\mathrm{Y}:=((\mathrm{Ya}+\mathrm{Yb}) ; \mathrm{Y})+1$
Ya := a. Ya + 1
$\mathrm{Yb}:=\mathrm{b} . \mathrm{Yb}+1$
// this is the initial process Y

CCS in pseuCo: regular expressions

$(a+b)^{*}$
$\mathrm{X}:=((\mathrm{a} .1+\mathrm{b} .1) ; \mathrm{X})+1$
// this is the initial process
X
$\left(a^{*}+b^{*}\right)^{*}$
$\mathrm{Y}:=((\mathrm{Ya}+\mathrm{Yb}) ; \mathrm{Y})+1$
Ya := a. Ya + 1
$\mathrm{Yb}:=\mathrm{b} . \mathrm{Yb}+1$
// this is the initial process Y

Demo!

Producer-Consumer Example

Producer-Consumer Example

- The system is composed of
- a producer
- a finite-capacity buffer
- a consumer
- The producer deposits items into the buffer as long as the buffer capacity is not exceeded
- Stored items can be withdrawn by the consumer according to some predefined discipline, like FIFO or LIFO
- Assumptions:
- The buffer has only two positions
- Items are all identical, so that the specific discipline that has been adopted for withdrawals is not important from the point of view of an external observer

Producer-Consumer Example

- The system is composed of
- a producer
- a finite-capacity buffer
- a consumer
- The producer deposits items into the buffer as long as the buffer capacity is not exceeded
- Stored items can be withdrawn by the consumer according to some predefined discipline, like FIFO or LIFO
- Assumptions:
- The buffer has only two positions
- Items are all identical, so that the specific discipline that has been adopted for withdrawals is not important from the point of view of an external observer

Demo!

