Fundamentals of Reactive Systems

Preliminaries

Francesco Tiezzi
University of Camerino
francesco.tiezzi@unicam.it

A.A. $2018 / 2019$

Set Notation

$A \subseteq B$ every element of A is in B
$A \subset B$ if $A \subseteq B$ and there is one element of B not in A
$A \subseteq B$ and $B \subseteq A$ implies $A=B$

Set Notation

$A \subseteq B$ every element of A is in B
$A \subset B$ if $A \subseteq B$ and there is one element of B not in A
$A \subseteq B$ and $B \subseteq A$ implies $A=B$
$A \cup B=\{x \mid x \in A$ or $x \in B\}$
$A \cap B=\{x \mid x \in A$ and $x \in B\}$
$\left(\bigcup_{i \in I} A_{i}\right)$
$\left(\bigcap_{i \in I} A_{i}\right)$
$A \backslash B=\{x \mid x \in A$ and $x \notin B\}$
$A \times B=\{(a, b) \mid a \in A$ and $b \in B\} \quad$ ordered pairs
$\left(\times_{i=1}^{n} A_{i}\right)$
$2^{A}=\{X \mid X \subseteq A\}$
powerset

Relations

$R \subseteq A \times B$ is a relation on sets A and B
$\left(R \subseteq \times_{i=1}^{n} A_{i}\right)$
$(a, b) \in R \equiv R(a, b) \equiv a R b$ notation
$l d_{A}=\{(a, a) \mid a \in A\}$
(identity)
$R^{-1}=\{(y, x) \mid(x, y) \in R\} \subseteq B \times A$
(inverse)
$R_{1} \cdot R_{2}=\left\{(x, z) \mid \exists y \in B .(x, y) \in R_{1} \wedge(y, z) \in R_{2}\right\} \subseteq A \times C$ (composition)
Some basic constructions:

Note that: $\quad R^{1}=R \cdot R^{0}=R, \quad R^{*}=I d_{A} \cup R^{+} \quad$ and

Relations

$R \subseteq A \times B$ is a relation on sets A and B
$\left(R \subseteq \times_{i=1}^{n} A_{i}\right)$
$(a, b) \in R \equiv R(a, b) \equiv a R b \quad$ notation
$I d_{A}=\{(a, a) \mid a \in A\}$
(identity)
$R^{-1}=\{(y, x) \mid(x, y) \in R\} \subseteq B \times A$ (inverse)
$R_{1} \cdot R_{2}=\left\{(x, z) \mid \exists y \in B .(x, y) \in R_{1} \wedge(y, z) \in R_{2}\right\} \subseteq A \times C$ (composition)
Some basic constructions:

Note that: $\quad R^{1}=R \cdot R^{0}=R$,

Relations

$R \subseteq A \times B$ is a relation on sets A and B
$\left(R \subseteq \times_{i=1}^{n} A_{i}\right)$
$(a, b) \in R \equiv R(a, b) \equiv a R b \quad$ notation
$I d_{A}=\{(a, a) \mid a \in A\}$
(identity)
$R^{-1}=\{(y, x) \mid(x, y) \in R\} \subseteq B \times A$ (inverse)
$R_{1} \cdot R_{2}=\left\{(x, z) \mid \exists y \in B .(x, y) \in R_{1} \wedge(y, z) \in R_{2}\right\} \subseteq A \times C$ (composition)
Some basic constructions:

$$
\begin{array}{ll}
R^{0} & =l d_{A} \\
R^{n+1} & =R \cdot R^{n} \\
R^{*} & =\bigcup_{n \geq 0} R^{n} \\
R^{+} & =\bigcup_{n \geq 1} R^{n}
\end{array}
$$

Note that: $\quad R^{1}=R \cdot R^{0}=R, \quad R^{*}=I d_{A} \cup R^{+} \quad$ and
$R^{+}=\left\{(x, y) \mid \exists n, \exists x_{1}, \ldots, x_{n}\right.$ with $\left.x_{i} R x_{i+1}(1 \leq i \leq n-1), x_{1}=x, x_{n}=y\right\}$

Properties of Relations

Binary Relations

A binary relation $R \subseteq A \times A$ is

$$
\begin{array}{ll}
\text { reflexive: } & \text { if } \forall x \in A,(x, x) \in R, \\
\text { symmetric: } & \text { if } \forall x, y \in A,(x, y) \in R \Rightarrow(y, x) \in R, \\
\text { antisymmetric: if } \forall x, y \in A,(x, y) \in R \wedge(y, x) \in R \Rightarrow x=y ; \\
\text { transitive: } & \text { if } \forall x, y, z \in A,(x, y) \in R \wedge(y, z) \in R \Rightarrow(x, z) \in R
\end{array}
$$

Properties of Relations

Binary Relations

A binary relation $R \subseteq A \times A$ is
reflexive: \quad if $\forall x \in A,(x, x) \in R$, symmetric: \quad if $\forall x, y \in A,(x, y) \in R \Rightarrow(y, x) \in R$, antisymmetric: if $\forall x, y \in A,(x, y) \in R \wedge(y, x) \in R \Rightarrow x=y$; transitive: \quad if $\forall x, y, z \in A,(x, y) \in R \wedge(y, z) \in R \Rightarrow(x, z) \in R$

Closure of Relations

$$
\begin{aligned}
& S=R \cup I d_{A} \\
& S=R \cup R^{-1} \\
& S=R^{+} \\
& S=R^{*}
\end{aligned}
$$

the reflexive closure of R the symmetric closure of R the transitive closure of R the reflexive and transitive closure of R

Special Relations

A relation R is

- an order if it is reflexive, antisymmetric and transitive
- an equivalence if it is reflexive, symmetric and transitive
- a preorder if it is reflexive and transitive

- orders: less-than-or-equal-to (\leqslant) on \mathbb{R}, set inclusion (\subseteq),
- equivalences: equal-to $(=)$ on \mathbb{R}, congruent-mod- n,
- preorders: reachability in directed graphs, some subtyping,
- Given a preorder R its kernel, defined as $K=R \cap R^{-1}$, is an equivalence relation

Special Relations

A relation R is

- an order if it is reflexive, antisymmetric and transitive
- an equivalence if it is reflexive, symmetric and transitive
- a preorder if it is reflexive and transitive

Examples

- orders: less-than-or-equal-to (\leqslant) on \mathbb{R}, set inclusion $(\subseteq), \ldots$
- equivalences: equal-to $(=)$ on \mathbb{R}, congruent-mod- n, \ldots
- preorders: reachability in directed graphs, some subtyping,...
- Given a preorder R its kernel, defined as $K=R \cap R^{-1}$, is an equivalence relation

Special Relations

A relation R is

- an order if it is reflexive, antisymmetric and transitive
- an equivalence if it is reflexive, symmetric and transitive
- a preorder if it is reflexive and transitive

Examples

- orders: less-than-or-equal-to (\leqslant) on \mathbb{R}, set inclusion $(\subseteq), \ldots$
- equivalences: equal-to $(=)$ on \mathbb{R}, congruent-mod- n, \ldots
- preorders: reachability in directed graphs, some subtyping,...

Kernel relation

- Given a preorder R its kernel, defined as $K=R \cap R^{-1}$, is an equivalence relation

Equivalence Classes and Quotient Set

Examples of equivalence relations: $R \subseteq A \times A$ (reflexive, symmetric, transitive)

Example: $\quad R=\{(x, y) \in \mathbb{N} \times \mathbb{N} \mid(x \equiv y) \bmod 3\}$

Equivalence Classes and Quotient Set

Examples of equivalence relations: $R \subseteq A \times A$ (reflexive, symmetric, transitive)

Example: $\quad R=\{(x, y) \in \mathbb{N} \times \mathbb{N} \mid(x \equiv y) \bmod 3\}$

$$
R(7,7),
$$

Equivalence Classes and Quotient Set

Examples of equivalence relations: $R \subseteq A \times A$ (reflexive, symmetric, transitive)

Example: $\quad R=\{(x, y) \in \mathbb{N} \times \mathbb{N} \mid(x \equiv y) \bmod 3\}$

$$
R(7,7), R(7,1), R(1,7)
$$

Equivalence Classes and Quotient Set

Examples of equivalence relations: $R \subseteq A \times A$ (reflexive, symmetric, transitive)

Example: $\quad R=\{(x, y) \in \mathbb{N} \times \mathbb{N} \mid(x \equiv y) \bmod 3\}$

$$
R(7,7), R(7,1), R(1,7), R(7,10), R(1,10)
$$

Equivalence Classes and Quotient Set

Examples of equivalence relations: $R \subseteq A \times A$ (reflexive, symmetric, transitive)

Example: $\quad R=\{(x, y) \in \mathbb{N} \times \mathbb{N} \mid(x \equiv y) \bmod 3\}$

$$
R(7,7), R(7,1), R(1,7), R(7,10), R(1,10), \ldots
$$

Equivalence Classes and Quotient Set

Examples of equivalence relations: $R \subseteq A \times A$ (reflexive, symmetric, transitive)

Example: $\quad R=\{(x, y) \in \mathbb{N} \times \mathbb{N} \mid(x \equiv y) \bmod 3\}$

$$
\begin{array}{ll}
R(7,7), R(7,1), R(1,7), R(7,10), R(1,10), \ldots \\
{[0]=\{0,3,6,9, \ldots\}} & \text { equivalence classes: } \\
{[1]=\{1,4,7,10, \ldots\}} & \text { - have a representative } \\
{[2]=\{2,5,8,11, \ldots\}} & \text { - are disjoint }
\end{array}
$$

Equivalence Classes and Quotient Set

Examples of equivalence relations: $R \subseteq A \times A$ (reflexive, symmetric, transitive)

Example: $\quad R=\{(x, y) \in \mathbb{N} \times \mathbb{N} \mid(x \equiv y) \bmod 3\}$

$$
\begin{array}{ll}
R(7,7), R(7,1), R(1,7), R(7,10), R(1,10), \ldots \\
{[0]=\{0,3,6,9, \ldots\}} & \text { equivalence classes: } \\
{[1]=\{1,4,7,10, \ldots\}} & \text { - have a representative } \\
{[2]=\{2,5,8,11, \ldots\}} & \text { - are disjoint }
\end{array}
$$

An equivalence class is a subset C of A such that

$$
\begin{array}{rllll}
x, y \in C & \Rightarrow & (x, y) \in R & \text { consistent } & \text { and } \\
x \in C \wedge(x, y) \in R & \Rightarrow y \in C & \text { saturated }
\end{array}
$$

Equivalence Classes and Quotient Set

Examples of equivalence relations: $R \subseteq A \times A$ (reflexive, symmetric, transitive)

Example: $\quad R=\{(x, y) \in \mathbb{N} \times \mathbb{N} \mid(x \equiv y) \bmod 3\}$

$$
\begin{array}{ll}
R(7,7), R(7,1), R(1,7), R(7,10), R(1,10), \ldots \\
{[0]=\{0,3,6,9, \ldots\}} & \text { equivalence classes: } \\
{[1]=\{1,4,7,10, \ldots\}} & \text { - have a representative } \\
{[2]=\{2,5,8,11, \ldots\}} & \text { - are disjoint }
\end{array}
$$

The quotient set Q_{A}^{R} of A modulo R
is a partition of A is the set of equivalence classes induced by R on A

Example: $\quad R=\{(x, y) \in \mathbb{N} \times \mathbb{N} \mid(x \equiv y) \bmod 3\}$

$$
Q_{\mathbb{N}}^{R}=\{[0],[1],[2]\}
$$

Functions

Partial Functions

A partial function is a relation $f \subseteq A \times B$ such that

$$
\forall x, y, z . \quad(x, y) \in f \wedge(x, z) \in f \Rightarrow y=z
$$

We denote partial function by $\quad f: A \rightharpoondown B$

Total Functions
A (total) function is a partial function $f: A \longrightarrow B$ such that $\forall x \exists y . \quad(x, y) \in f$

We denote total function by $\quad f: A \rightarrow B$

Functions (total or partial) can be monotone, continuous, injective, surjective, bijective, invertible..

Functions

Partial Functions

A partial function is a relation $f \subseteq A \times B$ such that

$$
\forall x, y, z . \quad(x, y) \in f \wedge(x, z) \in f \Rightarrow y=z
$$

We denote partial function by $\quad f: A \rightharpoondown B$
Total Functions
A (total) function is a partial function $f: A \rightharpoondown B$ such that

$$
\forall x \exists y . \quad(x, y) \in f
$$

We denote total function by $\quad f: A \rightarrow B$

Functions (total or partial) can be monotone, continuous, injective, surjective, bijective, invertible.

Functions

Partial Functions

A partial function is a relation $f \subseteq A \times B$ such that

$$
\forall x, y, z . \quad(x, y) \in f \wedge(x, z) \in f \Rightarrow y=z
$$

We denote partial function by $\quad f: A \rightharpoondown B$

Total Functions

A (total) function is a partial function $f: A \rightharpoondown B$ such that

$$
\forall x \exists y . \quad(x, y) \in f
$$

We denote total function by $\quad f: A \rightarrow B$

Functions (total or partial) can be monotone, continuous, injective, surjective, bijective, invertible...

Induction Principle

Mathematical Induction

To prove that $P(n)$ holds for every natural number $n \in \mathbb{N}$, prove
(1) $P(0)$
(2) for any $k \in \mathbb{N}, P(k)$ implies $P(k+1)$

Example:

Induction Principle

Mathematical Induction

To prove that $P(n)$ holds for every natural number $n \in \mathbb{N}$, prove
(1) $P(0)$
(2) for any $k \in \mathbb{N}, P(k)$ implies $P(k+1)$

Example: Show that $\operatorname{sum}(n)=\sum_{i=1}^{n} i=\frac{n(n+1)}{2} \quad$ for every $n \in \mathbb{N}$

Induction Principle

Mathematical Induction

To prove that $P(n)$ holds for every natural number $n \in \mathbb{N}$, prove
(1) $P(0)$
(2) for any $k \in \mathbb{N}, P(k)$ implies $P(k+1)$

Example: Show that $\operatorname{sum}(n)=\sum_{i=1}^{n} i=\frac{n(n+1)}{2} \quad$ for every $n \in \mathbb{N}$
(1) $\operatorname{sum}(0)=\frac{0(0+1)}{2}=0$

Induction Principle

Mathematical Induction

To prove that $P(n)$ holds for every natural number $n \in \mathbb{N}$, prove
(1) $P(0)$
(2) for any $k \in \mathbb{N}, P(k)$ implies $P(k+1)$

Example: Show that $\operatorname{sum}(n)=\sum_{i=1}^{n} i=\frac{n(n+1)}{2} \quad$ for every $n \in \mathbb{N}$
(1) $\operatorname{sum}(0)=\frac{0(0+1)}{2}=0$
(2) to show: $\sum_{i=1}^{n} i=\frac{n(n+1)}{2}$ implies $\sum_{i=1}^{n+1} i=\frac{(n+1)(n+2)}{2}$
assume $\operatorname{sum}(n)=\frac{n(n+1)}{2}$, for a generic n

$$
\begin{array}{lr}
\operatorname{sum}(n+1)=\operatorname{sum}(n)+(n+1)= & \text { properties of summation } \\
= & \frac{n(n+1)}{2}+(n+1) \\
= & \text { inductive hypothesis } \\
= & \text { qed }
\end{array}
$$

Playful digression

Some "advanced" proof methods

(1) Proof by obviousness: So evident it need not to be mentioned
(3) Proof by general agreement: All in favor?
(3) Proof by majority: When general agreement fails
(9) Proof by plausibility: It sounds good
(3) Proof by intuition: I have this feeling.
(6) Proof by lost reference: I saw it somewhere
(1) Proof by obscure reference: It appeared in the Annals of Polish Math. Soc. (1854, in polish)
(3) Proof by logic: It is on the textbook, hence it must be true
(0) Proof by intimidation: Who is saying that it is false!?
(10) Proof by authority:

Don Knuth said it was true
(1) Proof by deception: Everybody please turn their backs.
(12) Proof by divine word: Lord said let it be true

Playful digression

Some "advanced" proof methods

(1) Proof by obviousness: So evident it need not to be mentioned
(2) Proof by general agreement: All in favor?
© Proof by majority: When general agreement fails
(9) Proof by plausibility: It sounds good
(5) Proof by intuition: I have this feeling.
(Proof by lost reference: I saw it somewhere
(1) Proof by obscure reference: It appeared in the Annals of Polish Math. Soc. (1854, in polish)
(0) Proof by logic: It is on the textbook, hence it must be true
(0) Proof by intimidation: Who is saying that it is false!?
(10) Proof by authority:

Don Knuth said it was true
(1) Proof by deception: Everybody please turn their backs.
(B) Proof by divine word: Lord said let it be true

Playful digression

Some "advanced" proof methods

(1) Proof by obviousness: So evident it need not to be mentioned
(2) Proof by general agreement: All in favor?
(3) Proof by majority: When general agreement fails
(9) Proof by plausibility: It sounds good
(6) Proof by intuition: I have this feeling.
(0) Proof by lost reference: I saw it somewhere
(O) Proof by obscure reference: It appeared in the Annals of Polish Math. Soc. (1854, in polish)
(8) Proof by logic: It is on the textbook, hence it must be true
(1) Proof by intimidation: Who is saying that it is false!?
(1) Proof by authority:

Don Knuth said it was true
(1) Proof by deception: Everybody please turn their backs.
(B) Proof by divine word: Lord said let it be true

Playful digression

Some "advanced" proof methods

(1) Proof by obviousness: So evident it need not to be mentioned
(2) Proof by general agreement: All in favor?
(3) Proof by majority: When general agreement fails
(1) Proof by plausibility: It sounds good

Proof by intuition: I have this feeling.Proof by lost reference: I saw it somewhere
(1) Proof by obscure reference: It appeared in the Annals of Polish Math. Soc. (1854, in polish)
(6) Proof by logic: It is on the textbook, hence it must be true
(0) Proof by intimidation: Who is saying that it is false!?Proof by authority: Don Knuth said it was true
(1) Proof by deception: Everybody please turn their backs.
(12) Proof by divine word: Lord said let it be true

Playful digression

Some "advanced" proof methods

(1) Proof by obviousness: So evident it need not to be mentioned
(2) Proof by general agreement: All in favor?
(3) Proof by majority: When general agreement fails
(9) Proof by plausibility: It sounds good
(5) Proof by intuition: I have this feeling...
saw it somewhere Math. Soc. (1854, in polish)
(3) Proof by logic: It is on the textbook, hence it must be true
(0) Proof by intimidation: Who is saying that it is false!?Proof by authority: Don Knuth said it was true
(11) Proof by deception Everybody please turn their backs. (12) Proof by divine word: Lord said let it be true

Playful digression

Some "advanced" proof methods

(1) Proof by obviousness: So evident it need not to be mentioned
(2) Proof by general agreement: All in favor?
(3) Proof by majority: When general agreement fails
(1) Proof by plausibility: It sounds good
(5) Proof by intuition: I have this feeling...
(0) Proof by lost reference: I saw it somewhere Math. Soc. (1854, in polish)
(3) Proof by logic: It is on the textbook, hence it must be true
(1) Proof by intimidation: Who is saying that it is false!?
(10) Proof by authority: Don Knuth said it was true
(1) Pro of by deception: Everybody please turn their backs.
(B) Proof by divine word: Lord said let it be true

Playful digression

Some "advanced" proof methods

(1) Proof by obviousness: So evident it need not to be mentioned
(2) Proof by general agreement: All in favor?
(3) Proof by majority: When general agreement fails
(9) Proof by plausibility: It sounds good
(5) Proof by intuition: I have this feeling...
(0) Proof by lost reference: I saw it somewhere
(1) Proof by obscure reference: It appeared in the Annals of Polish Math. Soc. (1854, in polish)
(8) Proof by logic: It is on the textbook, hence it must be true
(9) Proof by intimidation: Who is saying that it is false!?

Don Knuth said it was true
(1) Proof by deception: Everybody please turn their backs.
(12) Proof by divine word: Lord said let it be true

Playful digression

Some "advanced" proof methods

(1) Proof by obviousness: So evident it need not to be mentioned
(2) Proof by general agreement: All in favor?
(3) Proof by majority: When general agreement fails
(9) Proof by plausibility: It sounds good
(5) Proof by intuition: I have this feeling...
(0) Proof by lost reference: I saw it somewhere
(1) Proof by obscure reference: It appeared in the Annals of Polish Math. Soc. (1854, in polish)
(8) Proof by logic: It is on the textbook, hence it must be true
(2) Proof by intimidation: Who is saying that it is false!?

Don Knuth said it was true
(1) Proof by deception: Everybody please turn their backs.
(1) Proof by divine word: Lord said let it be true

Playful digression

Some "advanced" proof methods

(1) Proof by obviousness: So evident it need not to be mentioned
(2) Proof by general agreement: All in favor?
(3) Proof by majority: When general agreement fails
(9) Proof by plausibility: It sounds good
(5) Proof by intuition: I have this feeling...
(0) Proof by lost reference: I saw it somewhere
(1) Proof by obscure reference: It appeared in the Annals of Polish Math. Soc. (1854, in polish)
(8) Proof by logic: It is on the textbook, hence it must be true
(0) Proof by intimidation: Who is saying that it is false!?
(1) Proof by authority: Don Knuth said it was true
(1) Proof by deception: Everybody please turn their backs.
(3) Proof by divine word: Lord said let it be true

Playful digression

Some "advanced" proof methods

(1) Proof by obviousness: So evident it need not to be mentioned
(2) Proof by general agreement: All in favor?
(3) Proof by majority: When general agreement fails
(9) Proof by plausibility: It sounds good
(5) Proof by intuition: I have this feeling...
(0) Proof by lost reference: I saw it somewhere
(1) Proof by obscure reference: It appeared in the Annals of Polish Math. Soc. (1854, in polish)
(8) Proof by logic: It is on the textbook, hence it must be true
(9) Proof by intimidation: Who is saying that it is false!?
(10) Proof by authority: Don Knuth said it was true
(1) Proof by deception: Everybody please turn their backs.
(B) Proof by divine word: Lord said let it be true

Playful digression

Some "advanced" proof methods

(1) Proof by obviousness: So evident it need not to be mentioned
(2) Proof by general agreement: All in favor?
(3) Proof by majority: When general agreement fails
(9) Proof by plausibility: It sounds good
(5) Proof by intuition: I have this feeling...
(0) Proof by lost reference: I saw it somewhere
(1) Proof by obscure reference: It appeared in the Annals of Polish Math. Soc. (1854, in polish)
(8) Proof by logic: It is on the textbook, hence it must be true
(0) Proof by intimidation: Who is saying that it is false!?
(10) Proof by authority: Don Knuth said it was true
(1) Proof by deception: Everybody please turn their backs...

Playful digression

Some "advanced" proof methods

(1) Proof by obviousness: So evident it need not to be mentioned
(2) Proof by general agreement: All in favor?
(3) Proof by majority: When general agreement fails
(9) Proof by plausibility: It sounds good
(5) Proof by intuition: I have this feeling...
(0) Proof by lost reference: I saw it somewhere
(1) Proof by obscure reference: It appeared in the Annals of Polish Math. Soc. (1854, in polish)
(8) Proof by logic: It is on the textbook, hence it must be true
(0) Proof by intimidation: Who is saying that it is false!?
(10) Proof by authority: Don Knuth said it was true
(1) Proof by deception: Everybody please turn their backs...
(B) Proof by divine word: Lord said let it be true

Inductively Defined Sets

```
basis: the set / of initial elements of S
induction: rules R for constructing elements in S from elements in S
closure: }\quadS\mathrm{ is the least set containing I and closed w.r.t. R
```


Inductively Defined Sets

basis: the set / of initial elements of S induction: rules R for constructing elements in S from elements in S closure: $\quad S$ is the least set containing $/$ and closed w.r.t. R

Natural numbers

$$
\begin{aligned}
& I=\{0\}, \quad R_{1}: \text { if } X \in S \text { then } s(X) \in S \\
& S=\{0, s(0), s(s(0)), \ldots\}
\end{aligned}
$$

```
I={[]},\quadR}\quad\mp@subsup{R}{1}{}:\mathrm{ if }X\inS\mathrm{ and }n\in\mathbb{N}\mathrm{ then }[n|X]\in
S={[],[0],[1], [2],\ldots, [0, 0], [0, 1], [0, 2],\ldots, [1, 0], [1, 1], [1, 2]
```


Inductively Defined Sets

basis: the set $/$ of initial elements of S induction: rules R for constructing elements in S from elements in S closure: $\quad S$ is the least set containing $/$ and closed w.r.t. R

$$
\begin{aligned}
& \text { Natural numbers } \\
& \qquad \begin{array}{l}
I=\{0\}, \quad R_{1}: \text { if } X \in S \text { then } s(X) \in S \\
S
\end{array}=\{0, s(0), s(s(0)), \ldots\}
\end{aligned}
$$

$S=\operatorname{Lists}(\mathbb{N})$, lists of numbers in \mathbb{N}

$$
\begin{aligned}
& I=\{[]\}, \quad R_{1}: \text { if } X \in S \text { and } n \in \mathbb{N} \text { then }[n \mid X] \in S \\
& S=\{[],[0],[1],[2], \ldots,[0,0],[0,1],[0,2], \ldots,[1,0],[1,1],[1,2], \ldots\}
\end{aligned}
$$

Inductively Defined Sets

basis: the set $/$ of initial elements of S induction: rules R for constructing elements in S from elements in S closure: $\quad S$ is the least set containing $/$ and closed w.r.t. R

Natural numbers

$$
\begin{aligned}
& I=\{0\}, \quad R_{1}: \text { if } X \in S \text { then } s(X) \in S \\
& S=\{0, s(0), s(s(0)), \ldots\}
\end{aligned}
$$

$$
\begin{aligned}
& S=\operatorname{Lists}(\mathbb{N}), \text { lists of numbers in } \mathbb{N} \\
& \quad I=\{[]\}, \quad R_{1}: \text { if } X \in S \text { and } n \in \mathbb{N} \text { then }[n \mid X] \in S \\
& S=\{[],[0],[1],[2], \ldots,[0,0],[0,1],[0,2], \ldots,[1,0],[1,1],[1,2], \ldots\}
\end{aligned}
$$

n-ary trees

$$
\begin{aligned}
& I=\{\varepsilon\}, \quad R_{1}: \text { if } X_{1}, \ldots, X_{n} \in S \text { then } t\left(X_{1}, \ldots, X_{n}\right) \in S \\
& S=\{\varepsilon, t(\varepsilon), t(\varepsilon, \varepsilon), \ldots, t(t(\varepsilon)), \ldots, t(\varepsilon, t(t(\varepsilon), \varepsilon), t(\varepsilon, \varepsilon, \varepsilon)), \ldots\}
\end{aligned}
$$

Structural Induction

Let us consider a set S inductively defined by a set
$C=\left\{c_{1}, \ldots, c_{n}\right\}$ of constructors of arity $\left\{a_{1}, \ldots, a_{n}\right\}$ with

- $I=\left\{c_{i}() \mid a_{i}=0\right\}$
- R_{i} : if $X_{1}, \ldots, X_{a_{i}} \in S$ then $c_{i}\left(X_{1}, \ldots, X_{a_{i}}\right) \in S$

To prove that $P(x)$ holds for every $x \in S$, it is sufficient to prove that

- for every constructor $c_{k} \in C$ and
- for every $s_{1}, \ldots, s_{k} \in S$, where k is the arity of c_{k}

$$
P\left(s_{1}\right), \ldots, P\left(s_{k}\right) \Longrightarrow P\left(c_{k}\left(s_{1}, \ldots, s_{k}\right)\right)
$$

Notice that the base case is the one dealing with constructors of arity 0 i.e. with constants

Structural Induction: example

Prove that $\operatorname{sum}(\ell) \leq \max (\ell) * \operatorname{len}(\ell), \quad$ for every $\ell \in \operatorname{Lists}(\mathbb{N})$ where

- $\operatorname{sum}(\ell)$ is the sum of the elements in the list ℓ
- $\max (\ell)$ is the greatest element in ℓ (with $\max ([])=0$)
- len (ℓ) is the number of elements in ℓ

Structural Induction: example

Exercise: prove $\operatorname{sum}(\ell) \leq \max (\ell) * \operatorname{len}(\ell), \quad$ for every $\ell \in \operatorname{Lists}(\mathbb{N})$

$$
\begin{array}{ll}
\operatorname{sum}([])=0 & \operatorname{len}([])=0 \\
\operatorname{sum}([n \mid X])=n+\operatorname{sum}(X) & \operatorname{len}([n \mid X])=1+\operatorname{len}(X) \\
\max ([])=0 & \\
\max ([n \mid X])=n & \text { if } \max (X) \leq n \\
\max ([n \mid X])=\max (X) & \text { if } n<\max (X)
\end{array}
$$

Structural Induction: example

Exercise: prove $\operatorname{sum}(\ell) \leq \max (\ell) * \operatorname{len}(\ell), \quad$ for every $\ell \in \operatorname{Lists}(\mathbb{N})$

$$
\begin{array}{ll}
\operatorname{sum}([])=0 & \operatorname{len}([])=0 \\
\operatorname{sum}([n \mid X])=n+\operatorname{sum}(X) & \operatorname{len}([n \mid X])=1+\operatorname{len}(X) \\
\max ([])=0 & \\
\max ([n \mid X])=n & \text { if } \max (X) \leq n \\
\max ([n \mid X])=\max (X) & \text { if } n<\max (X)
\end{array}
$$

(1) $\operatorname{sum}([]) \leq \max ([]) * \operatorname{len}([])$
$0 \leq 0 * 0$

Structural Induction: example

Exercise: prove $\operatorname{sum}(\ell) \leq \max (\ell) * \operatorname{len}(\ell), \quad$ for every $\ell \in \operatorname{Lists}(\mathbb{N})$

$$
\begin{array}{ll}
\operatorname{sum}([])=0 & \operatorname{len}([])=0 \\
\operatorname{sum}([n \mid X])=n+\operatorname{sum}(X) & \operatorname{len}([n \mid X])=1+\operatorname{len}(X) \\
\max ([])=0 & \\
\max ([n \mid X])=n & \text { if } \max (X) \leq n \\
\max ([n \mid X])=\max (X) & \text { if } n<\max (X)
\end{array}
$$

(1) $\operatorname{sum}([]) \leq \max ([]) * \operatorname{len}([])$
$0 \leq 0 * 0$
(2) assume $\operatorname{sum}(\ell) \leq \max (\ell) * \operatorname{len}(\ell)$
prove $\quad \operatorname{sum}([n \mid \ell]) \leq \max ([n \mid \ell]) * \operatorname{len}([n \mid \ell]) \quad$ for any $n \in \mathbb{N}$

Structural Induction: example

Exercise: prove $\operatorname{sum}(\ell) \leq \max (\ell) * \operatorname{len}(\ell), \quad$ for every $\ell \in \operatorname{Lists}(\mathbb{N})$

$$
\begin{array}{ll}
\operatorname{sum}([])=0 & \operatorname{len}([])=0 \\
\operatorname{sum}([n \mid X])=n+\operatorname{sum}(X) & \operatorname{len}([n \mid X])=1+\operatorname{len}(X) \\
\max ([])=0 & \\
\max ([n \mid X])=n & \text { if } \max (X) \leq n \tag{a}\\
\max ([n \mid X])=\max (X) & \text { if } n<\max (X)
\end{array}
$$

(1) $\operatorname{sum}([]) \leq \max ([]) * \operatorname{len}([])$
$0 \leq 0 * 0$
(2) assume $\operatorname{sum}(\ell) \leq \max (\ell) * \operatorname{len}(\ell)$
prove $\quad \operatorname{sum}([n \mid \ell]) \leq \max ([n \mid \ell]) * \operatorname{len}([n \mid \ell]) \quad$ for any $n \in \mathbb{N}$
(a) $n+\operatorname{sum}(\ell) \leq n *(1+\operatorname{len}(\ell)) \quad$ if $\max (\ell) \leq n$ applying definitions

$$
\operatorname{sum}(\ell) \leq_{\text {hyp }} \max (\ell) * \operatorname{len}(\ell) \quad \leq_{(a)} \quad n * \operatorname{len}(\ell)
$$

Structural Induction: example

Exercise: prove $\operatorname{sum}(\ell) \leq \max (\ell) * \operatorname{len}(\ell), \quad$ for every $\ell \in \operatorname{Lists}(\mathbb{N})$

$$
\begin{array}{ll}
\operatorname{sum}([])=0 & \operatorname{len}([])=0 \\
\operatorname{sum}([n \mid X])=n+\operatorname{sum}(X) & \operatorname{len}([n \mid X])=1+\operatorname{len}(X) \\
\max ([])=0 & \\
\max ([n \mid X])=n & \text { if } \max (X) \leq n \\
\max ([n \mid X])=\max (X) & \text { if } n<\max (X) \tag{b}
\end{array}
$$

(1) $\operatorname{sum}([]) \leq \max ([]) * \operatorname{len}([])$
$0 \leq 0 * 0$
(2) assume

$$
\operatorname{sum}(\ell) \leq \max (\ell) * \operatorname{len}(\ell)
$$ prove $\quad \operatorname{sum}([n \mid \ell]) \leq \max ([n \mid \ell]) * \operatorname{len}([n \mid \ell]) \quad$ for any $n \in \mathbb{N}$

(a) $n+\operatorname{sum}(\ell) \leq n *(1+\operatorname{len}(\ell)) \quad$ if $\max (\ell) \leq n$ applying definitions $\operatorname{sum}(\ell) \leq_{\text {hyp }} \max (\ell) * \operatorname{len}(\ell) \leq_{(a)} \quad n * \operatorname{len}(\ell)$
(b) $n+\operatorname{sum}(\ell) \leq \max (\ell)+\max (\ell) * \operatorname{len}(\ell)$) if $n<\max (\ell)$ applying definitions $A \leq B \quad$ and $\quad C \leq D \quad$ imply $A+C \leq B+D$

Inference Systems

(1) I can be written as \quad (for any $t \in I)$
(2) R_{i} can be written as $\frac{p_{1} \cdots p_{n}}{q}$

Meaning: $\vdash t$ and if $\vdash p_{1}, \ldots, \vdash p_{n}$ then $\vdash q$

Example: rational numbers \mathbb{Q}

A derivation:

Inference Systems

(1) I can be written as \quad (for any $t \in I)$
(2) R_{i} can be written as $\frac{p_{1} \cdots p_{n}}{q}$

Meaning: $\vdash t$ and if $\vdash p_{1}, \ldots, \vdash p_{n}$ then $\vdash q$
Example: rational numbers \mathbb{Q}
$\overline{0 \in N} \quad \overline{1 \in D} \quad \frac{k \in N}{k+1 \in N} \quad \frac{k \in D}{k+1 \in D} \quad \frac{k \in N, h \in D}{k / h \in \mathbb{Q}}$

Inference Systems

(1) I can be written as \quad (for any $t \in I$)
(2) R_{i} can be written as $\frac{p_{1} \cdots p_{n}}{q}$

Meaning: $\vdash t$ and if $\vdash p_{1}, \ldots, \vdash p_{n}$ then $\vdash q$
Example: rational numbers \mathbb{Q}
$\overline{0 \in N} \quad \overline{1 \in D} \quad \frac{k \in N}{k+1 \in N} \quad \frac{k \in D}{k+1 \in D} \quad \frac{k \in N, h \in D}{k / h \in \mathbb{Q}}$

A derivation: \begin{tabular}{lll}
$\overline{0 \in N} \overline{1 \in D}$ \& $\overline{1 \in N} \overline{2 \in D}$

$\frac{1 / 2 \in \mathbb{Q}}{}$ \& | Question: |
| :--- |
| why do we |
| need the rules |
| in Red? |

\end{tabular}

More on Inductively Defined Sets

- $S_{l, R}=\{x \mid \vdash x\} \quad$ the set of all finitely derivable elements
- $R(X)=\left\{y \left\lvert\, \frac{x_{1} \cdots x_{n}}{y}\right.\right.$ and $\left.x_{1}, \ldots x_{n} \in X\right\}$ one step derivation
X is closed under R if $R(X) \subseteq X$
called a (pre-)fixed point
R is monotonic if $\quad A \subseteq B \Rightarrow R(A) \subseteq R(B)$

More on Inductively Defined Sets

- $S_{I, R}=\{x \mid \vdash x\}$
the set of all finitely derivable elements
- $R(X)=\left\{y \left\lvert\, \frac{x_{1} \cdots x_{n}}{y}\right.\right.$ and $\left.x_{1}, \ldots x_{n} \in X\right\}$ one step derivation
X is closed under R if $R(X) \subseteq X$
called a (pre-)fixed point
R is monotonic if $\quad A \subseteq B \Rightarrow R(A) \subseteq R(B)$

$$
\begin{array}{lll}
S^{0}=R^{0}(\emptyset) & =\emptyset & \\
S^{1}=R^{1}(\emptyset) & =R(\emptyset) & S^{0} \subseteq S^{1} \subseteq S^{2} \subseteq \ldots \\
S^{2}=R^{2}(\emptyset) & =R(R(\emptyset)) &
\end{array}
$$

$S \triangleq \bigcup_{i \in \mathbb{N}} S^{i}$
S closed under $R \quad R(S)=S \quad S$ least R-closed set

Constructing Inductively Defined Sets - an example

$$
\begin{aligned}
& f i b(0)=0 \\
& \\
& f i b(1)=1 \\
& \\
& f i b(n+2)=f i b(n+1)+f i b(n)
\end{aligned} \quad \text { fib }: \mathbb{N} \rightarrow \mathbb{N}
$$

$$
(n+1, a) \in F i b \quad(n, b) \in F i b
$$

$(0,0) \in$ Fib $\quad(1,1) \in$ Fib $\quad(n+2, a+b) \in$ Fib

a sequence of partial functions (under-) approximating fib

Constructing Inductively Defined Sets - an example

$$
\begin{aligned}
& f i b(0)=0 \\
& \\
& \\
& \\
& f i b(1)=1 \\
& f(n+2)=f i b(n+1)+f i b(n)
\end{aligned} \quad \text { fib }: \mathbb{N} \rightarrow \mathbb{N}
$$

$$
\frac{(n+1, a) \in \operatorname{Fib} \quad(n, b) \in F i b}{(n+2, a+b) \in F i b}
$$

Constructing Inductively Defined Sets - an example

$$
\begin{aligned}
& \text { fib(0) }=0 \\
& \\
& \text { fib(1) } 1 \\
& \text { fib }(n+2)=\text { fib }(n+1)+f i b(n) \quad \text { fib }: \mathbb{N} \rightarrow \mathbb{N}
\end{aligned}
$$

$\overline{(0,0) \in F_{i b}} \quad \frac{(n+1, a) \in \operatorname{Fib} \quad(n, b) \in \text { Fib }}{(1,1) \in F_{i b}} \quad \frac{(n+2, a+b) \in F i b}{}$

$$
R(X)=\left\{y \left\lvert\, \frac{x_{1} \cdots x_{n}}{y}\right. \text { and } x_{1}, \ldots x_{n} \in X\right\}
$$

Constructing Inductively Defined Sets - an example

$$
\begin{aligned}
& f i b(0)=0 \\
& f i b(1)=1 \\
& f i b(n+2)=f i b(n+1)+f i b(n) \\
& \text { fib : } \mathbb{N} \rightarrow \mathbb{N} \\
& (n+1, a) \in \operatorname{Fib} \quad(n, b) \in \operatorname{Fib} \\
& (0,0) \in \text { Fib } \quad(1,1) \in \text { Fib } \\
& (n+2, a+b) \in F i b \\
& R(X)=\left\{y \left\lvert\, \frac{x_{1} \cdots x_{n}}{}\right. \text { and } x_{1}, \ldots x_{n} \in X\right\} \quad \text { one step derivation } \\
& \begin{array}{ll}
S^{0}=\emptyset & =\emptyset \\
S^{1}=R\left(S^{0}\right) & =\{(0,0),(1,1)\}
\end{array} \\
& S^{2}=R\left(S^{1}\right)=\{(0,0),(1,1),(2,1)\} \\
& S^{3}=R\left(S^{2}\right)=\{(0,0),(1,1),(2,1),(3,2)\} \\
& S^{4}=R\left(S^{3}\right)=\{(0,0),(1,1),(2,1),(3,2),(4,3)\} \\
& S^{5}=R\left(S^{4}\right)=\{(0,0),(1,1),(2,1),(3,2),(4,3),(5,5)\} \\
& S^{6}=R\left(S^{5}\right)=\{(0,0),(1,1),(2,1),(3,2),(4,3),(5,5),(6,8)\} \\
& S^{7}=R\left(S^{6}\right)=\{(0,0),(1,1),(2,1),(3,2),(4,3),(5,5),(6,8),(7,13)\} \\
& \text { a sequence of partial functions (under-) approximating fib }
\end{aligned}
$$

Constructing Inductively Defined Sets - an example

$$
\begin{aligned}
& \text { fib }(0)=0 \\
& f i b(1)=1 \\
& f i b(n+2)=f i b(n+1)+f i b(n) \\
& \text { fib : } \mathbb{N} \rightarrow \mathbb{N} \\
& (n+1, a) \in \operatorname{Fib} \quad(n, b) \in \operatorname{Fib} \\
& (0,0) \in \text { Fib } \quad(1,1) \in \text { Fib } \\
& (n+2, a+b) \in F i b
\end{aligned}
$$

Constructing Inductively Defined Sets - an example

$$
\begin{aligned}
& f i b(0)=0 \\
& f i b(1)=1 \\
& f i b(n+2)=f i b(n+1)+f i b(n)
\end{aligned}
$$

$$
f i b: \mathbb{N} \rightarrow \mathbb{N}
$$

$$
(n+1, a) \in \operatorname{Fib} \quad(n, b) \in F i b
$$

$$
(0,0) \in F i b \quad(1,1) \in F i b
$$

$$
(n+2, a+b) \in F i b
$$

$$
S \triangleq \bigcup_{i \in \mathbb{N}} S^{i} \quad \text { this limit is exactly the (total) function fib }
$$

$$
\begin{aligned}
& R(X)=\left\{y \left\lvert\, \frac{x_{1} \cdots x_{n}}{y}\right. \text { and } x_{1}, \ldots x_{n} \in X\right\} \quad \text { one step derivation } \\
& S^{0}=\emptyset \quad=\emptyset \\
& S^{1}=R\left(S^{0}\right)=\{(0,0),(1,1)\} \\
& S^{2}=R\left(S^{1}\right)=\{(0,0),(1,1),(2,1)\} \\
& S^{3}=R\left(S^{2}\right)=\{(0,0),(1,1),(2,1),(3,2)\} \\
& S^{4}=R\left(S^{3}\right)=\{(0,0),(1,1),(2,1),(3,2),(4,3)\} \\
& S^{5}=R\left(S^{4}\right)=\{(0,0),(1,1),(2,1),(3,2),(4,3),(5,5)\} \\
& S^{6}=R\left(S^{5}\right)=\{(0,0),(1,1),(2,1),(3,2),(4,3),(5,5),(6,8)\} \\
& S^{0} \subseteq s^{1} \subseteq s^{2} \subseteq \ldots \\
& s^{7}=R\left(S^{6}\right)=\{(0,0),(1,1),(2,1),(3,2),(4,3),(5,5),(6,8),(7,13)\} \\
& \text { a sequence of partial functions (under-) approximating fib }
\end{aligned}
$$

Languages

Strings over an alphabet
Let Γ be an alphabet (a finite nonempty set of symbols).
The set Strings (Γ) is inductively defined as follows:

- $I=\Gamma \cup\{\varepsilon\}$,
- R_{1} : if $x, y \in \operatorname{Strings}(\Gamma)$ then $x y \in \operatorname{Strings}(\Gamma)$
- $x y$ is the concatenation of the strings x and $y \quad(\varepsilon x=x \varepsilon=x)$
- Notation: $\Gamma^{*}=\operatorname{Strings}(\Gamma) \quad$ (star closure of an alphabet)

Languages

Strings over an alphabet
Let Γ be an alphabet (a finite nonempty set of symbols).
The set Strings (Γ) is inductively defined as follows:

- $I=\Gamma \cup\{\varepsilon\}$,
- R_{1} : if $x, y \in \operatorname{Strings}(\Gamma)$ then $x y \in \operatorname{Strings}(\Gamma)$
- $x y$ is the concatenation of the strings x and $y \quad(\varepsilon x=x \varepsilon=x)$
- Notation: $\Gamma^{*}=\operatorname{Strings}(\Gamma) \quad$ (star closure of an alphabet)

An example
$\Gamma=\{a, b\}, \quad$ Strings $(\Gamma)=\{\varepsilon, a, b, a a, a b, b a, b b, a a a, \ldots\}$

- A language on Γ is any subset $L \subseteq \Gamma^{*}$
- They can be defined inductively through formal grammars

Languages

Strings over an alphabet

Let Γ be an alphabet (a finite nonempty set of symbols).
The set Strings (Γ) is inductively defined as follows:

- $I=\Gamma \cup\{\varepsilon\}$,
- R_{1} : if $x, y \in \operatorname{Strings}(\Gamma)$ then $x y \in \operatorname{Strings}(\Gamma)$
- $x y$ is the concatenation of the strings x and $y \quad(\varepsilon x=x \varepsilon=x)$
- Notation: $\Gamma^{*}=\operatorname{Strings}(\Gamma) \quad$ (star closure of an alphabet)

An example
$\Gamma=\{a, b\}, \quad \operatorname{Strings}(\Gamma)=\{\varepsilon, a, b, a a, a b, b a, b b, a a a, \ldots\}$

Languages

- A language on Γ is any subset $L \subseteq \Gamma^{*}$
- They can be defined inductively through formal grammars

Grammars

A grammar is a 4-tuple $G=\langle T, N T, S, P\rangle$ where
© terminals T
(2) nonterminals $N T \quad(T \cap N T=\emptyset)$
© start symbol $S \in N T$

- productions $\quad P \subseteq(T \cup N T)^{*} \times(T \cup N T)^{*}$
if $(u, v) \in P$ then u has at least a nonterminal symbol

Grammars

A grammar is a 4-tuple $G=\langle T, N T, S, P\rangle$ where
(1) terminals T
(2) nonterminals $N T \quad(T \cap N T=\emptyset)$
(3) start symbol $S \in N T$
(4) productions $P \subseteq(T \cup N T)^{*} \times(T \cup N T)^{*}$
if $(u, v) \in P$ then u has at least a nonterminal symbol
(u, v) is also written as $u \rightarrow v$

Grammars

A grammar is a 4-tuple $G=\langle T, N T, S, P\rangle$ where
(1) terminals T
(2) nonterminals $N T \quad(T \cap N T=\emptyset)$
(3) start symbol $S \in N T$
(9) productions $P \subseteq(T \cup N T)^{*} \times(T \cup N T)^{*}$
if $(u, v) \in P$ then u has at least a nonterminal symbol
(u, v) is also written as $u \rightarrow v$
$\left(u, v_{1}\right),\left(u, v_{2}\right), \ldots,\left(u, v_{n}\right) \in P$ also written as $u \rightarrow v_{1}\left|v_{2}\right| \ldots \mid v_{n}$
or

$$
u::=v_{1}\left|v_{2}\right| \ldots \mid v_{n} \quad \text { Backus-Naur Normal Form (BNF) }
$$

Grammars - derivation relation

$$
G=\langle T, N, S, P\rangle
$$

$s=$ lur	$t=\operatorname{lvr} \quad u \rightarrow v$
$s \Rightarrow t$	

for any production $u \rightarrow v$ in P
$\Rightarrow{ }^{*}$ is the reflexive and transitive closure of \Rightarrow

Grammars and Languages

The language generated by G is the following set of string of terminal symbols

$$
L(G)=\left\{w \in T^{*} \mid S \Rightarrow^{*} w\right\}
$$

Grammars - example

$$
T=\{a, b, c\} \quad N T=\{S, B\} \quad \text { start symbol: } S
$$

$S \rightarrow a B S c \mid a b c \quad B a \rightarrow a B \quad B b \rightarrow b b$

Grammars - example

$T=\{a, b, c\} \quad N T=\{S, B\} \quad$ start symbol: S
$S \rightarrow a B S c \mid a b c \quad B a \rightarrow a B \quad B b \rightarrow b b$

A derivation:
S

Grammars - example

$T=\{a, b, c\} \quad N T=\{S, B\} \quad$ start symbol: S
$S \rightarrow a B S c \mid a b c \quad B a \rightarrow a B \quad B b \rightarrow b b$

A derivation:
$\underline{S} \Rightarrow a B \underline{S} c$

Grammars - example

$T=\{a, b, c\} \quad N T=\{S, B\} \quad$ start symbol: S
$S \rightarrow a B S c \mid a b c \quad B a \rightarrow a B \quad B b \rightarrow b b$

A derivation:
$\underline{S} \Rightarrow a B \underline{S} c \Rightarrow a B a B \underline{S} c c$

Grammars - example

$T=\{a, b, c\} \quad N T=\{S, B\} \quad$ start symbol: S
$S \rightarrow a B S c \mid a b c \quad B a \rightarrow a B \quad B b \rightarrow b b$

A derivation:
$\underline{S} \Rightarrow a B \underline{S} c \Rightarrow a B a B \underline{S} c c \Rightarrow a \underline{B a B a b c c c}$

Grammars - example

$T=\{a, b, c\} \quad N T=\{S, B\} \quad$ start symbol: S
$S \rightarrow a B S c \mid a b c \quad B a \rightarrow a B \quad B b \rightarrow b b$

A derivation:
$\underline{S} \Rightarrow a B \underline{S} c \Rightarrow a B a B \underline{S} c c \Rightarrow a \underline{B a} B a b c c c \Rightarrow$
$\Rightarrow a a B \underline{B a b c c c}$

Grammars - example

$T=\{a, b, c\} \quad N T=\{S, B\} \quad$ start symbol: S
$S \rightarrow a B S c \mid a b c \quad B a \rightarrow a B \quad B b \rightarrow b b$

A derivation:
$\underline{S} \Rightarrow a B \underline{S} c \Rightarrow a B a B \underline{S} c c \Rightarrow a \underline{B a} B a b c c c \Rightarrow$
$\Rightarrow a a B \underline{B a b c c c} \Rightarrow a \underline{a} B a B b c c c$

Grammars - example

$T=\{a, b, c\} \quad N T=\{S, B\} \quad$ start symbol: S
$S \rightarrow a B S c \mid a b c \quad B a \rightarrow a B \quad B b \rightarrow b b$

A derivation:
$\underline{S} \Rightarrow a B \underline{S} c \Rightarrow a B a B \underline{S} c c \Rightarrow a \underline{B a} B a b c c c \Rightarrow$

Grammars - example

$T=\{a, b, c\} \quad N T=\{S, B\} \quad$ start symbol: S
$S \rightarrow a B S c \mid a b c \quad B a \rightarrow a B \quad B b \rightarrow b b$

A derivation:
$\underline{S} \Rightarrow a B \underline{S} c \Rightarrow a B a B \underline{S} c c \Rightarrow a \underline{B a} B a b c c c \Rightarrow$
$\Rightarrow a a B \underline{B a} b c c c \Rightarrow a a \underline{B a} B b c c c \Rightarrow a a a B \underline{B b} c c c \Rightarrow$
\Rightarrow aaa $\underline{B b} b c c c$

Grammars - example

$T=\{a, b, c\} \quad N T=\{S, B\} \quad$ start symbol: S
$S \rightarrow a B S c \mid a b c \quad B a \rightarrow a B \quad B b \rightarrow b b$

A derivation:

$$
\begin{aligned}
\underline{S} \Rightarrow & a B \underline{S} c \Rightarrow a B a B \underline{S} c c \Rightarrow a \underline{B a} B a b c c c \Rightarrow \\
& \Rightarrow a a B \underline{B a b} b c c c \Rightarrow a a \underline{B a} B b c c c \Rightarrow a a B \underline{B b} c c c \Rightarrow \\
& \Rightarrow a a a \underline{B b} b c c c \Rightarrow \text { aaabbbccc} \in\{a, b, c\}^{*}
\end{aligned}
$$

Grammars - example

$T=\{a, b, c\} \quad N T=\{S, B\} \quad$ start symbol: S
$S \rightarrow a B S c \mid a b c \quad B a \rightarrow a B \quad B b \rightarrow b b$

A derivation:

$$
\begin{aligned}
\underline{S} \Rightarrow & a B \underline{S} c \Rightarrow a B a B \underline{S} c c \Rightarrow a \underline{B a} B a b c c c \Rightarrow \\
& \Rightarrow a a B \underline{B a b c c c c} \Rightarrow a a \underline{B a} B b c c c \Rightarrow a a a B \underline{B b} c c c \Rightarrow \\
& \Rightarrow a a a \underline{B b} b c c c \Rightarrow a a a b b b c c c \in\{a, b, c\}^{*} \\
& L(G)=\left\{a^{n} b^{n} c^{n} \mid n \geq 1\right\}
\end{aligned}
$$

Abstract and Concrete Syntax

When providing the syntax of programming languages we need to worry about precedence of operators or grouping of statements to distinguish, e.g., between:

$$
(3+4) * 5 \quad \text { and } \quad 3+(4 * 5)
$$

while p do $\left(c_{1} ; c_{2}\right)$ and (while p do $\left.c_{1}\right) ; c_{2}$

Thus, e.g., for arithmetic expressions we have grammars with parenthesis:

$$
E::=n|(E)| E+E|E-E| E * E \mid E / E
$$

or more elaborate grammars specifying the precedence of operators (like the next one...)

Abstract and Concrete Syntax

$$
\begin{array}{lll}
E::=E+T|E-T| T & \text { (expressions) } \\
T::=T * P|T / P| P & \text { (terms) } \\
P::=N \mid(E) & \text { (atomic expre } \\
N::=D N \mid D & \text { (numbers) } \\
D::=0|1| 2|3| 4|5| 6|7| 8 \mid 9 & \text { (digits) }
\end{array}
$$

- When defining the semantics of programming languages, we are only concerned with the meaning of their constructs, not with the theory of how to write programs
- We thus resort to abstract syntax that leaves us the task of adding enough parentheses to programs to ensure they can be built-up in a unique way

Abstract syntax specifies the parse trees of a language; it is the job of concrete syntax to provide enough information through parentheses or precedence rules for a string to parse uniquely

Abstract and Concrete Syntax

$$
\begin{array}{lll}
E::=E+T|E-T| T & \text { (expressions) } \\
T::=T * P|T / P| P & \text { (terms) } \\
P::=N \mid(E) & \text { (atomic expre } \\
N::=D N \mid D & \text { (numbers) } \\
D::=0|1| 2|3| 4|5| 6|7| 8 \mid 9 & \text { (digits) }
\end{array}
$$

- When defining the semantics of programming languages, we are only concerned with the meaning of their constructs, not with the theory of how to write programs
- We thus resort to abstract syntax that leaves us the task of adding enough parentheses to programs to ensure they can be built-up in a unique way

Abstract syntax specifies the parse trees of a language; it is the job of concrete syntax to provide enough information through parentheses or precedence rules for a string to parse uniquely

From Parsing to Execution

Concrete Syntax $\xrightarrow{\text { defines }} \quad$ Statements $\quad 2+3 * 4$

From Parsing to Execution

From Parsing to Execution

Labelled Transition Systems

A labelled transition system is a 4-tuple $S=\left\langle Q, A, \rightarrow, q_{0}\right\rangle$ such that
(1) states Q
(2) actions A
(3) transitions $\rightarrow \subseteq Q \times A \times Q$

$$
q \xrightarrow{a} q^{\prime} \text { denotes }\left(q, a, q^{\prime}\right) \in \rightarrow
$$

(9) initial state $q_{0} \in Q$

Labelled Transition Systems

A labelled transition system is a 4-tuple $S=\left\langle Q, A, \rightarrow, q_{0}\right\rangle$ such that
(1) states Q
(2) actions A

Vending machine:
(3) transitions $\rightarrow \subseteq Q \times A \times Q$

$$
q \xrightarrow{a} q^{\prime} \text { denotes }\left(q, a, q^{\prime}\right) \in \rightarrow
$$

(9) initial state $q_{0} \in Q$

Labelled Transition Systems

A labelled transition system is a 4-tuple $S=\left\langle Q, A, \rightarrow, q_{0}\right\rangle$ such that
(1) states
Q
(2) actions A
(3) transitions $\rightarrow \subseteq Q \times A \times Q$

$$
q \xrightarrow{a} q^{\prime} \text { denotes }\left(q, a, q^{\prime}\right) \in \rightarrow
$$

(9) initial state $q_{0} \in Q$

Semantics: traces

```
\tau: a }\mp@subsup{a}{0}{}\mp@subsup{a}{1}{}\mp@subsup{a}{2}{}\mp@subsup{a}{3}{}\mp@subsup{a}{4}{}\mp@subsup{a}{5}{}\mp@subsup{a}{6}{
\tau : coin_in cancel return coin_in coin_in choose release
```

Vending machine:

LTS-based Semantics of Arithmetic Expressions

$$
\begin{equation*}
\frac{m \circ n=k}{m \circ n \xrightarrow{\circ} k} \quad \text { (op) } \quad \frac{E_{1} \xrightarrow{\circ^{\prime}} E_{1}^{\prime}}{E_{1} \circ E_{2} \xrightarrow{\circ^{\prime}} E_{1}^{\prime} \circ E_{2}} \quad \text { (rl) } \frac{E_{2} \xrightarrow{\circ^{\prime}} E_{2}^{\prime}}{E_{1} \circ E_{2} \xrightarrow{\circ^{\prime}} E_{1} \circ E_{2}^{\prime}} \tag{rr}
\end{equation*}
$$

LTS-based Semantics of Arithmetic Expressions

$$
\begin{aligned}
& \frac{m \circ n=k}{m \circ n \xrightarrow{\circ} k} \text { (op) } \xrightarrow[{E_{1} \circ E_{2} \xrightarrow{\circ^{\prime}} E_{1}^{\prime} \circ E_{2}}]{\circ^{\prime}} E_{1}^{\prime} \\
& (4+(7 * 3)) /(6-1) \xrightarrow{E_{1} \circ E_{2} \xrightarrow{\circ^{\prime}} E_{1} \circ E_{2}^{\prime}} \text { (rr) } E_{2}^{\circ^{\prime}} E_{2}^{\prime} \\
& (4+21) /(6-1) \xrightarrow{+} 25 /(6-1) \xrightarrow{-} 25 / 5 \xrightarrow{l} 5
\end{aligned}
$$

LTS-based Semantics of Arithmetic Expressions

$$
\begin{align*}
& \begin{array}{c}
m \circ n=k \\
m \circ n \xrightarrow{\circ} k
\end{array}(\mathrm{op}) \quad \frac{E_{1} \xrightarrow{\circ^{\prime}} E_{1}^{\prime}}{E_{1} \circ E_{2} \xrightarrow{\circ^{\prime}} E_{1}^{\prime} \circ E_{2}} \tag{rl}\\
& \frac{E_{2} \xrightarrow{\circ^{\prime}} E_{2}^{\prime}}{E_{1} \circ E_{2} \xrightarrow{\circ^{\prime}} E_{1} \circ E_{2}^{\prime}} \quad \text { (rr) } \\
& (4+(7 * 3)) /(6-1) \xrightarrow{*}(4+21) /(6-1) \xrightarrow{+} 25 /(6-1) \quad \xrightarrow{\longrightarrow} 25 / 5 \xrightarrow{/} 5 \\
& \text { similarly for - and / }
\end{align*}
$$

Finite State Automata as language recognizers

A finite state automaton M is a 5 -tuple $M=\left\langle Q, \Gamma, \rightarrow, q_{0}, F\right\rangle$ s.t.
(1) states
finite!
(2) alphabet Γ
(3) transitions

$$
\rightarrow \subseteq Q \times \Gamma \times Q
$$

$q \xrightarrow{a} q^{\prime}$ denotes $\left(q, a, q^{\prime}\right) \in \rightarrow$
(9) initial state $\quad q_{0} \in Q$
(3) accepting states $F \subseteq Q$

Finite State Automata as language recognizers

A finite state automaton M is a 5 -tuple $M=\left\langle Q, \Gamma, \rightarrow, q_{0}, F\right\rangle$ s.t.
(1) states
finite!
(2) alphabet Γ
(3) transitions

$$
\rightarrow \subseteq Q \times \Gamma \times Q
$$

$$
q \xrightarrow{a} q^{\prime} \text { denotes }\left(q, a, q^{\prime}\right) \in \rightarrow
$$

(1) initial state $\quad q_{0} \in Q$
(3) accepting states $F \subseteq Q$
$p \xrightarrow{w} q \quad$ iff $\quad p \xrightarrow{a_{1}} p_{1} \xrightarrow{a_{2}} \ldots \xrightarrow{a_{n}} p_{n}=q \quad w=a_{1} \cdots a_{n}$

Finite State Automata as language recognizers

A finite state automaton M is a 5 -tuple $M=\left\langle Q, \Gamma, \rightarrow, q_{0}, F\right\rangle$ s.t.
(1) states
finite !
(2) alphabet
(3) transitions

$$
\rightarrow \subseteq Q \times \Gamma \times Q
$$

$$
q \xrightarrow{a} q^{\prime} \text { denotes }\left(q, a, q^{\prime}\right) \in \rightarrow
$$

(9) initial state $\quad q_{0} \in Q$
(3) accepting states $F \subseteq Q$
$p \xrightarrow{w} q \quad$ iff $\quad p \xrightarrow{a_{1}} p_{1} \xrightarrow{a_{2}} \ldots \xrightarrow{a_{n}} p_{n}=q \quad w=a_{1} \cdots a_{n}$

Semantics of Finite State Automata

The language accepted by a Finite State Automata is the set:

$$
L(M)=\left\{w \in \Gamma^{*} \mid q_{0} \xlongequal{w} q \text { and } q \in F\right\}
$$

Some Regular Bit-Strings - $\Gamma=\{0,1\}$

$L\left(A_{1}\right)=\{w \mid$ even number of 1 's $\}$

$L\left(A_{2}\right)=\{w \mid$ odd number of 0 's $\}$

Some Regular Bit-Strings $-\Gamma=\{0,1\}$

$L\left(A_{1}\right)=\{w \mid$ even number of 1 's $\}$
$L\left(A_{2}\right)=\{w \mid$ odd number of 0 's $\}$

Some Regular Bit-Strings $-\Gamma=\{0,1\}$

$L\left(A_{1}\right)=\{w \mid$ even number of 1 's $\}$
$L\left(A_{2}\right)=\{w \mid$ odd number of 0 's $\}$

Some Regular Bit-Strings $-\Gamma=\{0,1\}$

$L\left(A_{1}\right)=\{w \mid$ even number of 1 's $\}$

$L\left(A_{2}\right)=\{w \mid$ odd number of 0 's $\}$

Some Regular Bit-Strings $-\Gamma=\{0,1\}$

$L\left(A_{1}\right)=\{w \mid$ even number of 1 's $\}$

$L\left(A_{2}\right)=\{w \mid$ odd number of 0 's $\}$

Some Regular Bit-Strings $-\Gamma=\{0,1\}$

$L\left(A_{1}\right)=\{w \mid$ even number of 1 's $\}$

$L\left(A_{2}\right)=\{w \mid$ odd number of 0 's $\}$
regular languages are closed w.r.t. the operations of \cap, \cup,

, complement, reversal,
concatenation, star closure,

Regular Languages

Chomsky Hierarchy	Grammar Restriction	Language	Abstract Machine
Type 0	unrestricted	recursively enumerable	Turing machines
Type 1	$\alpha A \beta \rightarrow \alpha \gamma \beta$	context sensitive	linear bounded automata
Type 2	$A \rightarrow \gamma$	context free	nondeterministic pushdown automata
Type 3	$A \rightarrow a$	$A \rightarrow a B$	regular

