
Formal Modelling of
Software Intensive Systems

CCS

Francesco Tiezzi

University of Camerino
francesco.tiezzi@unicam.it

A.A. 2019/2020

F. Tiezzi (Unicam) FMSIS 1 / 15

CCS Basics

Sequential Fragment

Nil process (the only atomic process)

action prefixing (a.P)

names and recursive definitions (,)

nondeterministic choice (+)

Any finite LTS can be described (up to isomorphism) by using the
operations above

Parallelism and Renaming

parallel composition (|) (synchronous communication between
two components = handshake synchronization)

restriction (P r L)

relabelling (P[f])

F. Tiezzi (Unicam) FMSIS 2 / 15

CCS Basics

Sequential Fragment

Nil process (the only atomic process)

action prefixing (a.P)

names and recursive definitions (,)

nondeterministic choice (+)

Any finite LTS can be described (up to isomorphism) by using the
operations above

Parallelism and Renaming

parallel composition (|) (synchronous communication between
two components = handshake synchronization)

restriction (P r L)

relabelling (P[f])

F. Tiezzi (Unicam) FMSIS 2 / 15

CCS Basics

Sequential Fragment

Nil process (the only atomic process)

action prefixing (a.P)

names and recursive definitions (,)

nondeterministic choice (+)

Any finite LTS can be described (up to isomorphism) by using the
operations above

Parallelism and Renaming

parallel composition (|) (synchronous communication between
two components = handshake synchronization)

restriction (P r L)

relabelling (P[f])

F. Tiezzi (Unicam) FMSIS 2 / 15

Definition of CCS: channels, actions, process names

Let

A be a set of channel names (e.g. tea, coffee are channel
names)

L = A ∪A be a set of labels where

A = {a | a ∈ A}
(elements of A are called names and those of A are called
co-names)
by convention a = a

Act = L ∪ {τ} is the set of actions where

τ is the internal or silent action

(e.g. τ , tea, coffee are actions)

K is a set of process names (constants) (e.g. CM).

F. Tiezzi (Unicam) FMSIS 3 / 15

Definition of CCS (expressions)

P := K | process constants (K ∈ K)
α.P | prefixing (α ∈ Act)∑

i∈I Pi | summation (I is an arbitrary index set)
P1|P2 | parallel composition
P r L | restriction (L ⊆ A)
P[f] relabelling (f : Act → Act) such that

f (τ) = τ

f (a) = f (a)

The set of all terms generated by the abstract syntax is the set of
CCS process expressions (and is denoted by P)

Notation

P1 + P2 =
∑

i∈{1,2} Pi Nil =
∑

i∈∅ Pi

F. Tiezzi (Unicam) FMSIS 4 / 15

Precedence

Precedence

1 restriction and relabelling (tightest binding)

2 action prefixing

3 parallel composition

4 summation

Example: R + a.P|b.Q r L means R +
(
(a.P)|(b.(Q r L))

)

F. Tiezzi (Unicam) FMSIS 5 / 15

Definition of CCS (defining equations)

CCS program

A collection of defining equations of the form

K , P

where K ∈ K is a process constant and P ∈ P is a CCS process
expression.

Only one defining equation per process constant.

Recursion is allowed: e.g. A , a.A | A.

F. Tiezzi (Unicam) FMSIS 6 / 15

Structural Operational Semantics for CCS

Structural Operational Semantics (SOS)—G. Plotkin 1981

Small-step operational semantics where the behaviour of a system
is inferred using syntax driven rules

Given a collection of CCS defining equations, we define the
following LTS (Proc,Act, { a−→| a ∈ Act}):

Proc = P (the set of all CCS process expressions)

Act = L ∪ {τ} (the set of all CCS actions including τ)

transition relation is given by SOS rules of the form:

RULE
premises

conclusion
conditions

F. Tiezzi (Unicam) FMSIS 7 / 15

SOS rules for CCS
(α ∈ Act, a ∈ L)

ACT
α.P

α−→ P
SUMj

Pj
α−→ P ′j∑

i∈I Pi
α−→ P ′j

j ∈ I

COM1 P
α−→ P ′

P|Q α−→ P ′|Q
COM2 Q

α−→ Q ′

P|Q α−→ P|Q ′

COM3 P
a−→ P ′ Q

a−→ Q ′

P|Q τ−→ P ′|Q ′

RES P
α−→ P ′

P r L
α−→ P ′ r L

α, α 6∈ L REL P
α−→ P ′

P[f]
f (α)−→ P ′[f]

CON P
α−→ P ′

K
α−→ P ′

K , P

F. Tiezzi (Unicam) FMSIS 8 / 15

Deriving Transitions in CCS

Let A , a.A. Then(
(A | a.Nil) | b.Nil

)
[c/a]

c−→
(
(A | a.Nil) | b.Nil

)
[c/a].

Why?

REL

COM1

COM1

CON

ACT
a.A

a−→ A

A
a−→ A

A , a.A

A | a.Nil
a−→ A | a.Nil

(A | a.Nil) | b.Nil
a−→ (A | a.Nil) | b.Nil

(
(A | a.Nil) | b.Nil

)
[c/a]

c−→
(
(A | a.Nil) | b.Nil

)
[c/a]

F. Tiezzi (Unicam) FMSIS 9 / 15

Deriving Transitions in CCS

Let A , a.A. Then(
(A | a.Nil) | b.Nil

)
[c/a]

c−→
(
(A | a.Nil) | b.Nil

)
[c/a].

Why?

REL

COM1

COM1

CON

ACT
a.A

a−→ A

A
a−→ A

A , a.A

A | a.Nil
a−→ A | a.Nil

(A | a.Nil) | b.Nil
a−→ (A | a.Nil) | b.Nil

(
(A | a.Nil) | b.Nil

)
[c/a]

c−→
(
(A | a.Nil) | b.Nil

)
[c/a]

F. Tiezzi (Unicam) FMSIS 9 / 15

Deriving Transitions in CCS

Let A , a.A. Then(
(A | a.Nil) | b.Nil

)
[c/a]

c−→
(
(A | a.Nil) | b.Nil

)
[c/a].

Why?

REL

COM1

COM1

CON

ACT
a.A

a−→ A

A
a−→ A

A , a.A

A | a.Nil
a−→ A | a.Nil

(A | a.Nil) | b.Nil
a−→ (A | a.Nil) | b.Nil(

(A | a.Nil) | b.Nil
)
[c/a]

c−→
(
(A | a.Nil) | b.Nil

)
[c/a]

F. Tiezzi (Unicam) FMSIS 9 / 15

Deriving Transitions in CCS

Let A , a.A. Then(
(A | a.Nil) | b.Nil

)
[c/a]

c−→
(
(A | a.Nil) | b.Nil

)
[c/a].

Why?

REL

COM1

COM1

CON

ACT
a.A

a−→ A

A
a−→ A

A , a.A

A | a.Nil
a−→ A | a.Nil

(A | a.Nil) | b.Nil
a−→ (A | a.Nil) | b.Nil(

(A | a.Nil) | b.Nil
)
[c/a]

c−→
(
(A | a.Nil) | b.Nil

)
[c/a]

F. Tiezzi (Unicam) FMSIS 9 / 15

Deriving Transitions in CCS

Let A , a.A. Then(
(A | a.Nil) | b.Nil

)
[c/a]

c−→
(
(A | a.Nil) | b.Nil

)
[c/a].

Why?

REL

COM1

COM1

CON

ACT
a.A

a−→ A

A
a−→ A

A , a.A

A | a.Nil
a−→ A | a.Nil

(A | a.Nil) | b.Nil
a−→ (A | a.Nil) | b.Nil(

(A | a.Nil) | b.Nil
)
[c/a]

c−→
(
(A | a.Nil) | b.Nil

)
[c/a]

F. Tiezzi (Unicam) FMSIS 9 / 15

Deriving Transitions in CCS

Let A , a.A. Then(
(A | a.Nil) | b.Nil

)
[c/a]

c−→
(
(A | a.Nil) | b.Nil

)
[c/a].

Why?

REL

COM1

COM1

CON

ACT
a.A

a−→ A

A
a−→ A

A , a.A

A | a.Nil
a−→ A | a.Nil

(A | a.Nil) | b.Nil
a−→ (A | a.Nil) | b.Nil(

(A | a.Nil) | b.Nil
)
[c/a]

c−→
(
(A | a.Nil) | b.Nil

)
[c/a]

F. Tiezzi (Unicam) FMSIS 9 / 15

LTS of the Process a.Nil | a.Nil

a.Nil | a.Nil

a

zz

a

$$
τ

��

Nil | a.Nil

a

$$

a.Nil |Nil

a

zz
Nil |Nil

F. Tiezzi (Unicam) FMSIS 10 / 15

CCS: vending machine example

Examples at the blackboard. . .

F. Tiezzi (Unicam) FMSIS 11 / 15

CCS in pseuCo

pseuCo

Web application allowing to create CCS specifications and
interactively explore the resulting transition systems

http://pseuco.com

F. Tiezzi (Unicam) FMSIS 12 / 15

http://pseuco.com

CCS in pseuCo: regular expressions

(a + b)∗

X := ((a.1 + b.1);X) + 1

// this is the initial process

X

(a∗ + b∗)∗

Y := ((Ya + Yb);Y) + 1

Ya := a. Ya + 1

Yb := b. Yb + 1

// this is the initial process

Y

Demo!
F. Tiezzi (Unicam) FMSIS 13 / 15

CCS in pseuCo: regular expressions

(a + b)∗

X := ((a.1 + b.1);X) + 1

// this is the initial process

X

(a∗ + b∗)∗

Y := ((Ya + Yb);Y) + 1

Ya := a. Ya + 1

Yb := b. Yb + 1

// this is the initial process

Y

Demo!
F. Tiezzi (Unicam) FMSIS 13 / 15

Producer-Consumer Example

F. Tiezzi (Unicam) FMSIS 14 / 15

Producer-Consumer Example

The system is composed of

a producer
a finite-capacity buffer
a consumer

The producer deposits items into the buffer as long as the
buffer capacity is not exceeded

Stored items can be withdrawn by the consumer according to
some predefined discipline, like FIFO or LIFO

Assumptions:

The buffer has only two positions
Items are all identical, so that the specific discipline that has
been adopted for withdrawals is not important from the point
of view of an external observer

Demo!
F. Tiezzi (Unicam) FMSIS 15 / 15

Producer-Consumer Example

The system is composed of

a producer
a finite-capacity buffer
a consumer

The producer deposits items into the buffer as long as the
buffer capacity is not exceeded

Stored items can be withdrawn by the consumer according to
some predefined discipline, like FIFO or LIFO

Assumptions:

The buffer has only two positions
Items are all identical, so that the specific discipline that has
been adopted for withdrawals is not important from the point
of view of an external observer

Demo!
F. Tiezzi (Unicam) FMSIS 15 / 15

