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Formal semantics

Three main approaches to formal semantics of programming languages:

@ Operational Semantics (How a program computes) [Plotkin, Kahn]:
Sets of computations resulting from the execution of programs by an
abstract machine

@ Denotational Semantics (What a program computes) [Strachey, Scott]:

An input/output function that denotes the effect of executing the program

@ Axiomatic Semantics (What a program modifies) [Floyd, Hoare]:

Pairs of observable properties that hold before and after program
execution

Different purposes, complementary use J
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-
A motivating example: regular expressions

Regular expressions
Commonly used for:

@ searching and manipulating text based on patterns

ano Find
[hclat [=]
Find:
dog| [=]
Replace:
Options Origin Scope
o Regular Expressions ¥ Ignore Case Q Top @ Entire File
Delimit by Whitespace ¥ Wrap Search © cursor O Selection

( More options ) ( Replace Al ) ( Replace ) ( Replace & Find )

( Hightight ) FindAl ) Previous ) ( Next )
4

Example

Regular expression: [hclat = (h+c);a;t
Text: the cat eats the bat’s hat rather than the rat
Matches: cat, hat
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A motivating example: regular expressions

Regular expressions
Commonly used for:
@ searching and manipulating text based on patterns

@ representing regular languages in a compact form

@ describing sequences of actions that a system can execute
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A motivating example: regular expressions

Regular expressions

Commonly used for:

searching and manipulating text based on patterns

representing regular languages in a compact form

describing sequences of actions that a system can execute

@ Regular expressions as a simple programming language

e Programming constructs: sequence, choice, iteration, stop

We define the semantics of regular expressions by applying the three
approaches

@ We show that the three semantics are consistent
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Regular expressions: syntax and informal semantics

Abstract syntax

E:x=01]11] a | E+E | E;E | E*

Operators precedence

* binds more than + and ; : binds more than +

Informal semantics
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Regular expressions: syntax and informal semantics

Abstract syntax

E:x=01]11] a | E+E | E;E | FE*

Operators precedence

* binds more than + and ; : binds more than +

Informal semantics

@ 0 is the empty event
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Regular expressions: syntax and informal semantics

Abstract syntax
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Informal semantics

@ 0 is the empty event

@ 1 is the terminal event
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Regular expressions: syntax and informal semantics

Abstract syntax
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Operators precedence

* binds more than + and ; : binds more than +

Informal semantics

@ 0 is the empty event

@ 1 is the terminal event

@ ais an event (or atomic action) where a € A, with A finite alphabet
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Regular expressions: syntax and informal semantics

Abstract syntax

E:x=01]11] a | E+E | E;E | E*

Operators precedence

* binds more than + and ; : binds more than +

Informal semantics

@ 0 is the empty event
@ 1 is the terminal event
@ ais an event (or atomic action) where a € A, with A finite alphabet

@ E + F can be either E or F (choice operator)
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Regular expressions: syntax and informal semantics
Abstract syntax

E:x=0 1|11 a | E+E | EE | FE*

Operators precedence

* binds more than + and ; : binds more than +

Informal semantics

@ 0 is the empty event

1 is the terminal event

a is an event (or atomic action) where a € A, with A finite alphabet

@ E + F can be either E or F (choice operator)

E; F is the expression E followed by F (sequencing)
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-
Regular expressions: syntax and informal semantics
Abstract syntax

E:x=01]11] a | E+E | E;E | E

Operators precedence

* binds more than + and ; : binds more than +

Informal semantics

@ 0 is the empty event

1 is the terminal event

a is an event (or atomic action) where a € A, with A finite alphabet

@ E + F can be either E or F (choice operator)

E; F is the expression E followed by F (sequencing)

e E* is an n-length sequence of E with n > 0 (Kleene star)
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Regular expressions: informal semantics

With an informal semantics the meaning of composite expressions may be
not clear

Example

(a+b)* (a* +b%)"
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Regular expressions: informal semantics

With an informal semantics the meaning of composite expressions may be
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@ They are syntactically different
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Regular expressions: informal semantics

With an informal semantics the meaning of composite expressions may be
not clear

Example

@ They are syntactically different

@ What about their meaning?
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Regular expressions: informal semantics

With an informal semantics the meaning of composite expressions may be
not clear

Example

@ They are syntactically different

@ What about their meaning?

We shall apply the three approaches used for defining formal semantics to
regular expressions

F. Tiezzi (Unicam) FMSIS
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Regular expressions: operational semantics

We introduce an abstract machine for executing regular expressions

For a generic operator op we shall have one or more rules like:
aq / am !/
Eil — EI'1 ctt Eim — Eim
& ! !/
OP(EI’ T En) — OP(Elv B En)
FMSIS 7/31

where {i1, -+ ,im} C€{1,---,n}.




Regular expressions: operational semantics

We introduce an abstract machine for executing regular expressions

Transition relation

o Is a ternary relation E - F, where € AU {&} (¢ empty action)
@ Is defined by an inference system

@ Describes, by induction on the structure of the expressions, the
behaviour of a machine that takes as input a regular expression and
executes it )

For a generic operator op we shall have one or more rules like:

@ Qm
E,'1 = E,-,1 E,'m — E,-/m

OP(E]_,"' 7En) i> OP(E{7 ,E,/,)

where {i1, -+ ,im} C€{1,---,n}.
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Regular expressions: operational semantics

Transition relation rules

(Tic) _ (Atom) a acA
1—1 a—1
EL F F-X F
(Sumy) - "5 (Sump) . "
E+F-5F E+F- 5 F
E-= F E-=51
(Sea;) —————— (Seqy) ———
E;F = E;F E;F— F
E-*FE
(Stary) —— (Star)) - -
Er—1 E* £ E E*

Structural Operational Semantics (SOS [Plotkin])

Transition relation is the least relation satisfying the above rules
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Regular expressions: operational semantics

Transition relation rules

(Tic) ~ (Atom) - acA
1—1 a—1
E 1 E/ F 1Y F/
(Sumi) - " ° (Sump) - "
E+F 5 FE E+F 5 F
E- F E-=1
(Seq;) ——— — (Seax) ———
E:F = E'F E:F— F
E-X F
(Star1) ——— (Starp) A
E*—1 E* £ E'; E*

1 indicates the terminal state: the machine has completed the execution
and loops by executing the empty action
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Regular expressions: operational semantics

Transition relation rules
(Tic)

- (Atom) B acA
1—1 a—1
E-5 F F- F
(Sumg) -~ (Sump)
E+F-%F E+F- % F
E-%L F E-=51
(Seq;) — (Seqx) ————
E.:F 25 EF E;F— F
E-* F
(Star1) ——— (Star,) ——
E* —1 E* X5 E E*
Expression a executes action a and stops J
F. Tiezzi (Unicam) FMSIS
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Regular expressions: operational semantics

Transition relation rules

(Tic) _ (Atom) a acA
1—1 a—1
E 1 El F 122 F/
(Sumy) ; (Sums) ;
E+F—=F E+F—F
5 = E-=51
(Sea;) —————— (Seqy) ———
E;F = E;F E;F— F
E-*FE
(Stary) —— (Star)) - -
Er—1 E* £ E E*

E + F can behave either as E or as F: if E evolves to E’ by performing
action p then E + F can evolve to E’ by performing p; similarly for F
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Regular expressions: operational semantics

Transition relation rules
(Tic)

- (Atom) ~ acA
1—1 a—1
E- F F-L F
(Sumi) - "5 (Sump)) . "
E+F-%F E+F- % F
E-2 F E-=S51
(Seqr) —— - (Seqs) -
E:F-—=E"F E:F— F
E-L5 F
(Star1) ——— (Star,) ——
E* —1 E* X5 E E*
E: F executes the actions of E and, afterwards, the actions of F J
FMSIS
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Regular expressions: operational semantics

Transition relation rules

(Tic) - (Atom) . acA
1—1 a—1
E 12 El F 1 Fl
(Sumy) e (Sumy) e
E+F-%F E+F- % F
E-2 F E—51
(Seqr) - - (Seqs) —
E:F 25 EF E;F—F
E-% F
(Starl) - (Stal’z) N
E*—1 E* X E', E*
E: F executes the actions of E and, afterwards, the actions of F J
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Regular expressions: operational semantics

Transition relation rules
(Tic)

- (Atom) ~ acA
1—1 a—1
E- F F-L F
(Sumi) - "5 (Sump)) . "
E+F-%F E+F- % F
E-Z2 F E-=S51
(Seqr) —— - (Seqs) -
E;:FE;F E.:F— F
E-L5 F
(Star1) ——— (Star,) ——
E* —1 E* X5 E E*
E: F executes the actions of E and, afterwards, the actions of F J
FMSIS
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Regular expressions: operational semantics

Transition relation rules
(Tic)

- (Atom) ~ acA
1—1 a—1
E-5 F F- F
(Sumy) e (Sump)
E+F-%F E+F- % F
E- E |
(Seq;) — (Seqx) ————
E.:F 25 EF E;F— F
E-% F
(Star1) ——— (Starp) ——  —
E* —1 E* L, E'; E*

E* can either directly evolve to 1 or evolve to E’; E* if E evolves to E’ )
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Regular expressions: operational semantics

Transition relation rules
(Tic)

- (Atom) ~ acA
1—1 a—1
ELFE F-5 F
(Sumy) e (Sump)
E+F-%F E+F- % F
E- E |
(Seq;) — (Seqx) ————
E.:F 25 EF E;F— F
E-X F
(Star1) ——— (Star,) ——
E* —1 E* X5 E E*

E* can either directly evolve to 1 or evolve to E’; E* if E evolves to E’ J
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Regular expressions: operational semantics

Transition relation rules

(Tic) - (Atom) . acA
151 a1
E-X F F-Ls F
(Sumy) e (Sumy) e
BNy E+F L F
E— E—]
(Seq;) — (Seqx) ————
E.:F 25 EF E;F—F
E 12 E/
(Stary) ———— (Stap) - -
E* —1 E* L, E'; E*

E* can either directly evolve to 1 or evolve to E’; E* if E evolves to E’ J
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Regular expressions: operational semantics

Transition relation rules
(Tic)

- (Atom) ~ acA
1—1 a—1
E H E/ F H F/
(Sumy) T (Sumy) R
E+F-+5 F E+F-t F
E- E E—=1
(Seqy) —— - (Seqs) —
E;F = E;F E;F— F
E-5 E
(Star1) ——— (Starp) —
Er—1 E* £ E' E*

No rule for 0: expression 0 does nothing
0 indicates the deadlock state: the machine is stuck
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The automaton associated to a regular expression

The SOS inference rules implicitly defines a particular automaton for each
regular expression E (essentially a fragment of the whole LTS):

o the initial state is E (we shall often omit to mark it)
@ the set of labels is A

@ the set of states consists of all regular expressions that can be reached
starting from E via a sequence of transitions

@ the transition relation is the one induced from the SOS rules

o the only final state is 1 (we shall often omit to mark it)

Semantic correspondence

Given any regular expression E, the automaton generated by the SOS rules
has the property of recognizing exactly the language L[E], but it is not
the unique automaton satisfying such property.

Other "similar” automata might have less (or more) ¢ transitions.
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A few examples for Regular Expressions

(a+b)* 2 1;(a+ b)*

(a+b)* 2 1;(a+ b)* (5tar2)
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A few examples for Regular Expressions

(a+b)* 2 1;(a+ b)*

— (Atom)
a—1
a (Suml)
at+b—1
3 (Starz)
(a+b)" — 1;(a+ b)*
1;(a+ b)* = (a+ b)*
Tic
151 )
(Seq)

1;(a+b)* = (a+b)*
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Regular expressions: operational semantics

Definition (Traces of Regular expressions)

@ Let E be a regular expression and s € A* be a string,
we write E = E' if there exists ju1, ..., 1, € AU{e} (n>0) s.t.:

@ the string p ... p, coincides with s (up to some occurrence of ¢)
QFE S E 2 ENE =F (= syntactical equiv.)

@ The set of traces of E is the set of strings

Traces(E) = {sc A*: E =1}
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Regular expressions: operational semantics

Definition (Traces of Regular expressions)

@ Let E be a regular expression and s € A* be a string,
we write E = E' if there exists ju1, ..., 1, € AU{e} (n>0) s.t.:

@ the string p ... p, coincides with s (up to some occurrence of ¢)
QFE S E 2 ENE =F (= syntactical equiv.)

@ The set of traces of E is the set of strings

Traces(E) = {sc A*: E =1}

Definition (Trace equivalence)

Two regular expressions E and F are trace equivalent if

Traces(E) = Traces(F)
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Regular expressions: operational semantics

Example
@ They are syntactically different

@ Are they semantically equivalent?
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Regular expressions: operational semantics

Example

@ They are syntactically different

@ Traces((a+ b)*) L Traces( (a* + b*)*)
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Regular expressions: operational semantics

Example

@ They are syntactically different

@ Traces((a+ b)*) L Traces( (a* + b*)*)

We have to show that:

@ s is a trace of (a+ b)* if and only if s is a trace of (a* + b*)*
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Regular expressions: operational semantics

if s is a trace of (a+ b)* then s is a trace of (a* + b*)* J

Induction on the length of s.
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Regular expressions: operational semantics

if s is a trace of (a+ b)* then s is a trace of (a* + b*)* J

Induction on the length of s.

@ Base step: |s| =0 (i.e., s = ¢). Trivial: (Stary), (a* + b*)* — 1
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Regular expressions: operational semantics

if s is a trace of (a+ b)* then s is a trace of (a* + b*)* J

Induction on the length of s.
@ Base step: |s| =0 (i.e., s = ¢). Trivial: (Stary), (a* + b*)* — 1

@ Inductive step: |s| > 0, then s = as’ or s = bs’; w.l.o.g. assume s = as’.
The only possible a-transition for (a4 b)* is (a + b)* = (a+ b)*
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Regular expressions: operational semantics

if s is a trace of (a+ b)* then s is a trace of (a* + b*)* J

Induction on the length of s.
@ Base step: |s| =0 (i.e., s = ¢). Trivial: (Stary), (a* + b*)* — 1
@ Inductive step: |s| > 0, then s = as’ or s = bs’; w.l.o.g. assume s = as’.

The only possible a-transition for (a4 b)* is (a + b)* = (a+ b)*
This is proved via the following derivations:

(Atom)
a1 (Tic)
——— (Sumy) 11
a+b—1 . (Seqz)
(Star) 1;(a+ b)" — (a+ b)*

(a+b)* 25 1;(a+ b)*
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Regular expressions: operational semantics

if s is a trace of (a+ b)* then s is a trace of (a* + b*)* J

Induction on the length of s.
@ Base step: |s| =0 (i.e., s = ¢). Trivial: (Stary), (a* + b*)* — 1

@ Inductive step: |s| > 0, then s = as’ or s = bs’; w.l.o.g. assume s = as’.
The only possible a-transition for (a4 b)* is (a + b)* = (a+ b)*
By hypothesis, (a + b)* == 1, thus (a + b)* = 1.
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Regular expressions: operational semantics

if s is a trace of (a+ b)* then s is a trace of (a* + b*)* J

Induction on the length of s.
@ Base step: |s| =0 (i.e., s = ¢). Trivial: (Stary), (a* + b*)* — 1
@ Inductive step: |s| > 0, then s = as’ or s = bs’; w.l.o.g. assume s = as’.
The only possible a-transition for (a4 b)* is (a + b)* = (a+ b)*
By hypothesis, (a + b)* == 1, thus (a + b)* = 1.
By induction, we have (a* 4 b*)* = 1, thus it is sufficient to prove
(a* + b*)* = (a* + b*)* to conclude that (a* + b*)* = 1.
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Regular expressions: operational semantics

if s is a trace of (a+ b)* then s is a trace of (a* + b*)* ]

Induction on the length of s.
@ Base step: |s| =0 (i.e., s = ). Trivial: (Stary), (a* + b*)* — 1
@ Inductive step: |s| > 0, then s = as’ or s = bs’; w.l.o.g. assume s = as’.
(3*+b*)* :a> (a*+bx)*

(Atom)
a—>1
o (Star2) 1 (Tic)
a*—1a —
T (sumy) : (eq2)
a"+ b 1;a" ;8% (a" +b") — a";(a" + b")"
(Starg)
(a* + b*)* _3> 1;3*; (a* + b*)*
(Starl)
a1
(Seqz)

3*; (a* + b*)* L> (a* + b*)*
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Regular expressions: operational semantics

The abstract machine that describes the execution of a regular expression
is a finite state automaton
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Regular expressions: operational semantics

The abstract machine that describes the execution of a regular expression
is a finite state automaton

Definition (Regular expressions as finite state automata)

Let E be a reg. expr., the finite state automaton associated to E is

Me = (Qe, A, —E, E, {1})

States: Qe = {F | Is€A*. E= F} (expressions from E)
Actions: A (alphabet of E)

o Transition relation: —g st. F g F/if F X5 F/ with p e AU {¢}

Initial state: expression E

Accepting states: expression 1

F. Tiezzi (Unicam) FMSIS 14 / 31



Regular expressions: operational semantics

Automata associated to (a + b)* and (a* + b*)* ]
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-
Regular expressions: operational semantics
Theorem
Let E be a regular expression and Mg the associated automaton, then
Traces(E) = L(ME)

where L(Mg) = {s € A*: E == 1} (language accepted by M)

F. Tiezzi (Unicam) FMSIS
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Regular expressions: operational semantics

Theorem
Let E be a regular expression and Mg the associated automaton, then

Traces(E) = L(MEg)

where L(Mg) = {s € A*: E == 1} (language accepted by M)

Proof (sketch). Two cases:

C If w € Traces(E), then E = 1. The proof that w € L(Mg) proceeds by
induction on the length of w.

D Given w € L(Mg), we prove by induction on the length of w that
w € Traces(E).

F. Tiezzi (Unicam) FMSIS 16 / 31




Regular expressions: denotational semantics

Denotational Semantics (What a program computes)

@ an input/output relation that denotes the effect of executing the program:
semantic function

@ associate to each program a mathematical object, called denotation,
that represents its meaning

Operators on Languages

To define semantics interpretation function for regular expressions, we
need some operators on languages. If L, L and Ly are sets of strings:
o Ly -Lry={xy: x€l; and y € Ly}
o [* = U, L" where
o 1% = {e}
o LMl — [ . [n
We have: 0-L=1L-0 =0 (Why?)

F. Tiezzi (Unicam) FMSIS 17 / 31
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Regular expressions: denotational semantics

Semantic function £ for regular expressions

The denotational semantics is inductively defined by the rules below and
associates a subset of A* to each regular expressions:

L[]:RE. — 2%

L[o] =0

L[] = {e}

Lla] = {a} (for a€ A)
LIE + F] = L[E] U L[F]
LIE; F] = LIE] - £[F]
LIET] = (LIED)

F. Tiezzi (Unicam) FMSIS 18 / 31



Regular expressions: denotational semantics

Example
@ They are syntactically different

@ Are they semantically equivalent?

F. Tiezzi (Unicam) FMSIS 19 / 31



Regular expressions: denotational semantics

Example
@ They are syntactically different

o L[(a+b)] = L[(a* + b*)]
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Regular expressions: denotational semantics

Example
@ They are syntactically different

o L[(a+b)] = L[(a* + b*)]

We have to show that:
o L(a+ b)*] C L[(a* + b*)*]

@ vice versa
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Regular expressions: denotational semantics

L(a+ b)*] C L[(a* + b*)*] J
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Regular expressions: denotational semantics

L(a+ b)*] C L[(a* + b*)*] J

We have:

LI(a+ b)"]

(Cl(a+ b)])"
(la] v £ol)”
(C[al* v £le])”
(

(

N

Lla*Tu L[b])”
Lla* +b])"
LI(a" + b*)*]

FMSIS 20 / 31



Regular expressions: denotational semantics

£l + b)) € Ll(a+ b)'] J
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Regular expressions: denotational semantics

£l + b)) € Ll(a+ b)'] J

We have to prove:

(Clal" U 1)) € (v Ll
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Regular expressions: denotational semantics

L[(a" + b*)] < L[(a + b)'] )

We have to prove:
(Clal" U 1)) € (v Ll

We exploit:

(lalu £Bl)* = ((clal U £lel)*)
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Regular expressions: denotational semantics

L[(a" + b*)] < L[(a + b)'] )

We have to prove:

(Clal U LIEl)" € (£la] U £le])”

We exploit:

(£la1 v £18])" = (£l £16D))"
Thus, we have just to prove that:

(Llal* U L[E") " < ((£lal v £IB1) ")
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Regular expressions: denotational semantics

L[(a" + b*)] < L[(a + b)'] )

We have to prove:
(Ll v L[e]")" < (£la] U L[b])"
We exploit:
(Clalu Le))” = ((£la] v £[6D)")
Thus, we have just to prove that:
(Ll v Llel)” < ((£la] U £le]))”

Let s € (L[a]* U L[b]*)". Therefore, for some n >0, we have s = 515, - - - s, and
either s; € L[a]* or s; € L[b]*, forall 0 < i < n.
Thus, s; € (L[a] U £[b])", for all 0 < i < n, hence s € ((L[a] U L[b])")".
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Equivalence result

Theorem (operational and denotational semantics are equivalent)
Let E be a regular expression, it holds that:
w € Traces(E) <= w € L[E]
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Equivalence result

Theorem (operational and denotational semantics are equivalent)

Let E be a regular expression, it holds that:

w € Traces(E) <= w € L[E]

Proof. Two cases:

= By induction on the structure of E.

< By induction on the structure of E.
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Equivalence result

Theorem (operational and denotational semantics are equivalent)
Let E be a regular expression, it holds that:
w € Traces(E) <= w € L[E]

Proof. Two cases:

= By induction on the structure of E.

< By induction on the structure of E.
Property
Let E and F regular expressions and s a string.

E;F=>1 implies Ix,yst. s=xyand E==1 F=1
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Regular expressions’ semantics: equivalence result

Proof (=-). By induction on the structure of E.
E =0 Trivial, because Traces(0) = 0) = L[0].
E =1 Trivial, because Traces(1) = {e} = L[1].
E = a Trivial, because Traces(a) = {a} = L[a].
E=E +E If we Traces(Ey + Ez), then 3 p € AU{e} and w' € A*
with w = uw’ and
E+E L F % 1
where
E-S5F21 o BB FSa
By inductive hypothesis
w € L[E] or w € L[E]

Thus, w € E[[El]] U E[[Eg]] = £|[E1 + E2]]
Futsis YT



Equivalence result

E = Eq; E; If w € Traces(Eq; Ez), by the previous property, 3x,y s.t.
Ei=51 and E =51
with w = xy. By inductive hypothesis, we have
x € L[E] and y € L[E],
and, hence, w € L[Ei1] - L[E2] = L[E1; E2].
E = E; Let S(Ef,w) be the number of application of (Stary) in
Ef = 1.
We demonstrate by induction on n = S(E;, w) that

w € L"[E]. (L"[E1] stands for (L[E])™)
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Equivalence result

E=E ..
If S(Ef,w) =0, no (Starp) but (Star;) used, thus w = ¢.
By definition, ¢ € LO[E] = {e}.
If S(Ef,w)=n+1, then Ix,y s.t. w = xy and
Ef = B =% Ef = 1
with S(Ef, x) = n.
By (local) induction hypothesis x € L"[E;]. Since
S(Ef,y) =1, (Star,) is applied only once in E} == E,
thus u € AU{e} and y' € A* st. y = py', E; 5 E' and
Er s BB 2 Ep
Since E'; Ef TN Ef does not use (Starp), we have E’ g

and, hence, E; 25 1. By (structural) inductive hypotesis,
y € L[Ei1]. Using x € L"[E1], we conclude.
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Equivalence result

Proof (<). By induction on the structure of E.

For the sake of simplicity, we only consider the case:
E =Ef If we L[E{], then Inst. we L'[E].

Then, Ix1,...,xp € L[E1] st. w= X1+ Xp.
By inductive hypothesis, x; € Traces(E;), that is E; =L 1.
By repeatedly applying (Star,), we obtain Eff =5 1; ;.

Since 1; Ef =5 E, by (Seq2), and Ef =51, by(Stary), we
have

Ef 2 1LE =2 1,6 - =1, S 1
and, therefore, £} == 1.
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Regular expressions: axiomatic semantics

Axiomatic Semantics (What a program modifies)

@ it relates observable properties before and after program execution

e in stateful languages, e.g., if the initial state of a program fulfils the
precondition and the program terminates, then the final state is
guaranteed to fulfil the postcondition

@ it consists of a set of axioms and inference rules that define a relation
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Regular expressions: axiomatic semantics

Axiomatic Semantics (What a program modifies)

@ it relates observable properties before and after program execution

e in stateful languages, e.g., if the initial state of a program fulfils the
precondition and the program terminates, then the final state is
guaranteed to fulfil the postcondition

@ it consists of a set of axioms and inference rules that define a relation )

Axiomatic semantics of regular expressions
@ no state in regular expressions
@ the observed property is the capability of equivalent expressions to
represent the same regular language
@ axioms and rules define an equivalence relation £ = F that partition
the set of all expressions
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Regular expressions: axiomatic semantics

Axioms for E = F

E4+(F+G)=(E+F)+G (assoc +)
E+F=F+E (comm +) (monoid+)
E+0=E (unit +)
E;(F;G)=(E;F); G (assoc ;) L
1,E=E (unit ;) (monoid ;)
E;(F+G)=E;F+E;G (distribL)
(E+F);G=E;G+F;G (distribR) (modulo +, ;)
0;E=0 (absorb 0)
SPE=E } o (idemp +)
E*=1+E*: E (unfolding)
E*=(1+E)* (absorb *) (rules *)
0* =1 (09)
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Regular expressions: axiomatic semantics

Rules for E = F

Rule 1 (Substitution):
E=F G=H where G’ is obtained from G by replacing

, , an occurrence of E by F
G'=H G =G

Rule 2 (Equation solution):

E=E;F+G
- if F does not produce ¢
E=G;F*
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Regular expressions: axiomatic semantics

@ The axioms are sound w.r.t. the observed property,
i.e. = equates expressions representing the same language

e E.g., given 0; E =0, we have:
LJ0; E] = L[0] - L[E] = 0 - L[E] = 0 = L]0]
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Regular expressions: axiomatic semantics

@ The axioms are sound w.r.t. the observed property,
i.e. = equates expressions representing the same language

e E.g., given 0; E =0, we have:
LJ0; E] = L[0] - L[E] = 0 - L[E] = 0 = L]0]

@ Applying the axiomatic approach could be more laborious
e E.g., proving E ;0 = 0 requires the following inference:

(absorb 0)
0=0;0 E;0=E;0
(rule 1) ——  (unit +)
E;0;0=E;0 E;0+0=E;0
(rule 1)
E;0;0+0=E;0
—— (absorb 0) (rule 2)
0:0"=0 E:0=0:0"
(rule 1)
E;0=0
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Regular expressions’ semantics: equivalence result

Theorem (axiomatic and denotational semantics are equivalent)
Let E and F be regular expressions, it holds that:
E=F < L[E] = L[F]
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Regular expressions’ semantics: equivalence result

Theorem (axiomatic and denotational semantics are equivalent)

Let E and F be regular expressions, it holds that:
E=F < L[E] = L[F]

Proof (sketch). Two cases:

= (Soundness) Easy to prove

< (Completeness) Require a bit of work (e.g., expression normalization)
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Regular expressions’ semantics: equivalence result

Theorem (axiomatic and denotational semantics are equivalent)

Let E and F be regular expressions, it holds that:
E=F < L[E] = L[F]

Proof (sketch). Two cases:

= (Soundness) Easy to prove

< (Completeness) Require a bit of work (e.g., expression normalization)

Corollary

The three semantics for regular expressions are equivalent J
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