
Formal Modelling of
Software Intensive Systems

Formal Semantics of Regular Expressions

Francesco Tiezzi

University of Camerino
francesco.tiezzi@unicam.it

A.A. 2019/2020

F. Tiezzi (Unicam) FMSIS 1 / 31



Formal semantics

Three main approaches to formal semantics of programming languages:

Operational Semantics (How a program computes) [Plotkin, Kahn]:

Sets of computations resulting from the execution of programs by an
abstract machine

Denotational Semantics (What a program computes) [Strachey, Scott]:

An input/output function that denotes the effect of executing the program

Axiomatic Semantics (What a program modifies) [Floyd, Hoare]:

Pairs of observable properties that hold before and after program
execution

Different purposes, complementary use

F. Tiezzi (Unicam) FMSIS 2 / 31



A motivating example: regular expressions

Regular expressions

Commonly used for:

searching and manipulating text based on patterns

Example

Regular expression: [hc]at ⇒ (h + c); a; t
Text: the cat eats the bat’s hat rather than the rat

Matches: cat, hat

F. Tiezzi (Unicam) FMSIS 3 / 31



A motivating example: regular expressions

Regular expressions

Commonly used for:

searching and manipulating text based on patterns

representing regular languages in a compact form

describing sequences of actions that a system can execute

Regular expressions as a simple programming language

Programming constructs: sequence, choice, iteration, stop

We define the semantics of regular expressions by applying the three
approaches

We show that the three semantics are consistent

F. Tiezzi (Unicam) FMSIS 4 / 31



A motivating example: regular expressions

Regular expressions

Commonly used for:

searching and manipulating text based on patterns

representing regular languages in a compact form

describing sequences of actions that a system can execute

Regular expressions as a simple programming language

Programming constructs: sequence, choice, iteration, stop

We define the semantics of regular expressions by applying the three
approaches

We show that the three semantics are consistent

F. Tiezzi (Unicam) FMSIS 4 / 31



Regular expressions: syntax and informal semantics

Abstract syntax

E ::= 0 | 1 | a | E + E | E ;E | E ∗

Operators precedence
∗ binds more than + and ; ; binds more than +

Informal semantics

0 is the empty event

1 is the terminal event

a is an event (or atomic action) where a ∈ A, with A finite alphabet

E + F can be either E or F (choice operator)

E ;F is the expression E followed by F (sequencing)

E ∗ is an n-length sequence of E with n ≥ 0 (Kleene star)

F. Tiezzi (Unicam) FMSIS 5 / 31



Regular expressions: syntax and informal semantics

Abstract syntax

E ::= 0 | 1 | a | E + E | E ;E | E ∗

Operators precedence
∗ binds more than + and ; ; binds more than +

Informal semantics

0 is the empty event

1 is the terminal event

a is an event (or atomic action) where a ∈ A, with A finite alphabet

E + F can be either E or F (choice operator)

E ;F is the expression E followed by F (sequencing)

E ∗ is an n-length sequence of E with n ≥ 0 (Kleene star)

F. Tiezzi (Unicam) FMSIS 5 / 31



Regular expressions: syntax and informal semantics

Abstract syntax

E ::= 0 | 1 | a | E + E | E ;E | E ∗

Operators precedence
∗ binds more than + and ; ; binds more than +

Informal semantics

0 is the empty event

1 is the terminal event

a is an event (or atomic action) where a ∈ A, with A finite alphabet

E + F can be either E or F (choice operator)

E ;F is the expression E followed by F (sequencing)

E ∗ is an n-length sequence of E with n ≥ 0 (Kleene star)

F. Tiezzi (Unicam) FMSIS 5 / 31



Regular expressions: syntax and informal semantics

Abstract syntax

E ::= 0 | 1 | a | E + E | E ;E | E ∗

Operators precedence
∗ binds more than + and ; ; binds more than +

Informal semantics

0 is the empty event

1 is the terminal event

a is an event (or atomic action) where a ∈ A, with A finite alphabet

E + F can be either E or F (choice operator)

E ;F is the expression E followed by F (sequencing)

E ∗ is an n-length sequence of E with n ≥ 0 (Kleene star)

F. Tiezzi (Unicam) FMSIS 5 / 31



Regular expressions: syntax and informal semantics

Abstract syntax

E ::= 0 | 1 | a | E + E | E ;E | E ∗

Operators precedence
∗ binds more than + and ; ; binds more than +

Informal semantics

0 is the empty event

1 is the terminal event

a is an event (or atomic action) where a ∈ A, with A finite alphabet

E + F can be either E or F (choice operator)

E ;F is the expression E followed by F (sequencing)

E ∗ is an n-length sequence of E with n ≥ 0 (Kleene star)

F. Tiezzi (Unicam) FMSIS 5 / 31



Regular expressions: syntax and informal semantics

Abstract syntax

E ::= 0 | 1 | a | E + E | E ;E | E ∗

Operators precedence
∗ binds more than + and ; ; binds more than +

Informal semantics

0 is the empty event

1 is the terminal event

a is an event (or atomic action) where a ∈ A, with A finite alphabet

E + F can be either E or F (choice operator)

E ;F is the expression E followed by F (sequencing)

E ∗ is an n-length sequence of E with n ≥ 0 (Kleene star)

F. Tiezzi (Unicam) FMSIS 5 / 31



Regular expressions: syntax and informal semantics

Abstract syntax

E ::= 0 | 1 | a | E + E | E ;E | E ∗

Operators precedence
∗ binds more than + and ; ; binds more than +

Informal semantics

0 is the empty event

1 is the terminal event

a is an event (or atomic action) where a ∈ A, with A finite alphabet

E + F can be either E or F (choice operator)

E ;F is the expression E followed by F (sequencing)

E ∗ is an n-length sequence of E with n ≥ 0 (Kleene star)

F. Tiezzi (Unicam) FMSIS 5 / 31



Regular expressions: informal semantics

With an informal semantics the meaning of composite expressions may be
not clear

Example

(a + b)∗ (a∗ + b∗)∗

They are syntactically different

What about their meaning?

We shall apply the three approaches used for defining formal semantics to
regular expressions

F. Tiezzi (Unicam) FMSIS 6 / 31



Regular expressions: informal semantics

With an informal semantics the meaning of composite expressions may be
not clear

Example

(a + b)∗ (a∗ + b∗)∗

They are syntactically different

What about their meaning?

We shall apply the three approaches used for defining formal semantics to
regular expressions

F. Tiezzi (Unicam) FMSIS 6 / 31



Regular expressions: informal semantics

With an informal semantics the meaning of composite expressions may be
not clear

Example

(a + b)∗ (a∗ + b∗)∗

They are syntactically different

What about their meaning?

We shall apply the three approaches used for defining formal semantics to
regular expressions

F. Tiezzi (Unicam) FMSIS 6 / 31



Regular expressions: informal semantics

With an informal semantics the meaning of composite expressions may be
not clear

Example

(a + b)∗ (a∗ + b∗)∗

They are syntactically different

What about their meaning?

We shall apply the three approaches used for defining formal semantics to
regular expressions

F. Tiezzi (Unicam) FMSIS 6 / 31



Regular expressions: operational semantics

We introduce an abstract machine for executing regular expressions

Transition relation

Is a ternary relation E
µ−→ F , where µ ∈ A ∪ {ε} (ε empty action)

Is defined by an inference system

Describes, by induction on the structure of the expressions, the
behaviour of a machine that takes as input a regular expression and
executes it

For a generic operator op we shall have one or more rules like:

Ei1
α1−→ E ′i1 · · · Eim

αm−−→ E ′im

op(E1, · · · ,En)
α−→ op(E ′1, · · · ,E ′n)

where {i1, · · · , im} ⊆ {1, · · · , n}.

F. Tiezzi (Unicam) FMSIS 7 / 31



Regular expressions: operational semantics

We introduce an abstract machine for executing regular expressions

Transition relation

Is a ternary relation E
µ−→ F , where µ ∈ A ∪ {ε} (ε empty action)

Is defined by an inference system

Describes, by induction on the structure of the expressions, the
behaviour of a machine that takes as input a regular expression and
executes it

For a generic operator op we shall have one or more rules like:

Ei1
α1−→ E ′i1 · · · Eim

αm−−→ E ′im

op(E1, · · · ,En)
α−→ op(E ′1, · · · ,E ′n)

where {i1, · · · , im} ⊆ {1, · · · , n}.

F. Tiezzi (Unicam) FMSIS 7 / 31



Regular expressions: operational semantics

We introduce an abstract machine for executing regular expressions

Transition relation

Is a ternary relation E
µ−→ F , where µ ∈ A ∪ {ε} (ε empty action)

Is defined by an inference system

Describes, by induction on the structure of the expressions, the
behaviour of a machine that takes as input a regular expression and
executes it

For a generic operator op we shall have one or more rules like:

Ei1
α1−→ E ′i1 · · · Eim

αm−−→ E ′im

op(E1, · · · ,En)
α−→ op(E ′1, · · · ,E ′n)

where {i1, · · · , im} ⊆ {1, · · · , n}.

F. Tiezzi (Unicam) FMSIS 7 / 31



Regular expressions: operational semantics

Transition relation rules

(Tic)
1

ε−→ 1
(Atom)

a
a−→ 1

a ∈ A

(Sum1)
E

µ−→ E ′

E + F
µ−→ E ′

(Sum2)
F

µ−→ F ′

E + F
µ−→ F ′

(Seq1)
E

a−→ E ′

E ;F
a−→ E ′;F

(Seq2)
E

ε−→ 1

E ;F
ε−→ F

(Star1)
E ∗

ε−→ 1
(Star2)

E
µ−→ E ′

E ∗
µ−→ E ′;E ∗

Structural Operational Semantics (SOS [Plotkin])

Transition relation is the least relation satisfying the above rules

F. Tiezzi (Unicam) FMSIS 8 / 31



Regular expressions: operational semantics

Transition relation rules

(Tic)
1

ε−→ 1
(Atom)

a
a−→ 1

a ∈ A

(Sum1)
E

µ−→ E ′

E + F
µ−→ E ′

(Sum2)
F

µ−→ F ′

E + F
µ−→ F ′

(Seq1)
E

a−→ E ′

E ;F
a−→ E ′;F

(Seq2)
E

ε−→ 1

E ;F
ε−→ F

(Star1)
E ∗

ε−→ 1
(Star2)

E
µ−→ E ′

E ∗
µ−→ E ′;E ∗

1 indicates the terminal state: the machine has completed the execution
and loops by executing the empty action

F. Tiezzi (Unicam) FMSIS 8 / 31



Regular expressions: operational semantics

Transition relation rules

(Tic)
1

ε−→ 1
(Atom)

a
a−→ 1

a ∈ A

(Sum1)
E

µ−→ E ′

E + F
µ−→ E ′

(Sum2)
F

µ−→ F ′

E + F
µ−→ F ′

(Seq1)
E

a−→ E ′

E ;F
a−→ E ′;F

(Seq2)
E

ε−→ 1

E ;F
ε−→ F

(Star1)
E ∗

ε−→ 1
(Star2)

E
µ−→ E ′

E ∗
µ−→ E ′;E ∗

Expression a executes action a and stops

F. Tiezzi (Unicam) FMSIS 8 / 31



Regular expressions: operational semantics

Transition relation rules

(Tic)
1

ε−→ 1
(Atom)

a
a−→ 1

a ∈ A

(Sum1)
E

µ−→ E ′

E + F
µ−→ E ′

(Sum2)
F

µ−→ F ′

E + F
µ−→ F ′

(Seq1)
E

a−→ E ′

E ;F
a−→ E ′;F

(Seq2)
E

ε−→ 1

E ;F
ε−→ F

(Star1)
E ∗

ε−→ 1
(Star2)

E
µ−→ E ′

E ∗
µ−→ E ′;E ∗

E + F can behave either as E or as F : if E evolves to E ′ by performing
action µ then E + F can evolve to E ′ by performing µ; similarly for F

F. Tiezzi (Unicam) FMSIS 8 / 31



Regular expressions: operational semantics

Transition relation rules

(Tic)
1

ε−→ 1
(Atom)

a
a−→ 1

a ∈ A

(Sum1)
E

µ−→ E ′

E + F
µ−→ E ′

(Sum2)
F

µ−→ F ′

E + F
µ−→ F ′

(Seq1)
E

a−→ E ′

E ;F
a−→ E ′;F

(Seq2)
E

ε−→ 1

E ;F
ε−→ F

(Star1)
E ∗

ε−→ 1
(Star2)

E
µ−→ E ′

E ∗
µ−→ E ′;E ∗

E ;F executes the actions of E and, afterwards, the actions of F

F. Tiezzi (Unicam) FMSIS 8 / 31



Regular expressions: operational semantics

Transition relation rules

(Tic)
1

ε−→ 1
(Atom)

a
a−→ 1

a ∈ A

(Sum1)
E

µ−→ E ′

E + F
µ−→ E ′

(Sum2)
F

µ−→ F ′

E + F
µ−→ F ′

(Seq1)
E

a−→ E ′

E ;F
a−→ E ′;F

(Seq2)
E

ε−→ 1

E ;F
ε−→ F

(Star1)
E ∗

ε−→ 1
(Star2)

E
µ−→ E ′

E ∗
µ−→ E ′;E ∗

E ;F executes the actions of E and, afterwards, the actions of F

F. Tiezzi (Unicam) FMSIS 8 / 31



Regular expressions: operational semantics

Transition relation rules

(Tic)
1

ε−→ 1
(Atom)

a
a−→ 1

a ∈ A

(Sum1)
E

µ−→ E ′

E + F
µ−→ E ′

(Sum2)
F

µ−→ F ′

E + F
µ−→ F ′

(Seq1)
E

a−→ E ′

E ;F
a−→ E ′;F

(Seq2)
E

ε−→ 1

E ;F
ε−→ F

(Star1)
E ∗

ε−→ 1
(Star2)

E
µ−→ E ′

E ∗
µ−→ E ′;E ∗

E ;F executes the actions of E and, afterwards, the actions of F

F. Tiezzi (Unicam) FMSIS 8 / 31



Regular expressions: operational semantics

Transition relation rules

(Tic)
1

ε−→ 1
(Atom)

a
a−→ 1

a ∈ A

(Sum1)
E

µ−→ E ′

E + F
µ−→ E ′

(Sum2)
F

µ−→ F ′

E + F
µ−→ F ′

(Seq1)
E

a−→ E ′

E ;F
a−→ E ′;F

(Seq2)
E

ε−→ 1

E ;F
ε−→ F

(Star1)
E ∗

ε−→ 1
(Star2)

E
µ−→ E ′

E ∗
µ−→ E ′;E ∗

E ∗ can either directly evolve to 1 or evolve to E ′;E ∗ if E evolves to E ′

F. Tiezzi (Unicam) FMSIS 8 / 31



Regular expressions: operational semantics

Transition relation rules

(Tic)
1

ε−→ 1
(Atom)

a
a−→ 1

a ∈ A

(Sum1)
E

µ−→ E ′

E + F
µ−→ E ′

(Sum2)
F

µ−→ F ′

E + F
µ−→ F ′

(Seq1)
E

a−→ E ′

E ;F
a−→ E ′;F

(Seq2)
E

ε−→ 1

E ;F
ε−→ F

(Star1)
E ∗

ε−→ 1
(Star2)

E
µ−→ E ′

E ∗
µ−→ E ′;E ∗

E ∗ can either directly evolve to 1 or evolve to E ′;E ∗ if E evolves to E ′

F. Tiezzi (Unicam) FMSIS 8 / 31



Regular expressions: operational semantics

Transition relation rules

(Tic)
1

ε−→ 1
(Atom)

a
a−→ 1

a ∈ A

(Sum1)
E

µ−→ E ′

E + F
µ−→ E ′

(Sum2)
F

µ−→ F ′

E + F
µ−→ F ′

(Seq1)
E

a−→ E ′

E ;F
a−→ E ′;F

(Seq2)
E

ε−→ 1

E ;F
ε−→ F

(Star1)
E ∗

ε−→ 1
(Star2)

E
µ−→ E ′

E ∗
µ−→ E ′;E ∗

E ∗ can either directly evolve to 1 or evolve to E ′;E ∗ if E evolves to E ′

F. Tiezzi (Unicam) FMSIS 8 / 31



Regular expressions: operational semantics

Transition relation rules

(Tic)
1

ε−→ 1
(Atom)

a
a−→ 1

a ∈ A

(Sum1)
E

µ−→ E ′

E + F
µ−→ E ′

(Sum2)
F

µ−→ F ′

E + F
µ−→ F ′

(Seq1)
E

a−→ E ′

E ;F
a−→ E ′;F

(Seq2)
E

ε−→ 1

E ;F
ε−→ F

(Star1)
E ∗

ε−→ 1
(Star2)

E
µ−→ E ′

E ∗
µ−→ E ′;E ∗

No rule for 0: expression 0 does nothing
0 indicates the deadlock state: the machine is stuck

F. Tiezzi (Unicam) FMSIS 8 / 31



The automaton associated to a regular expression

The SOS inference rules implicitly defines a particular automaton for each
regular expression E (essentially a fragment of the whole LTS):

the initial state is E (we shall often omit to mark it)

the set of labels is A

the set of states consists of all regular expressions that can be reached
starting from E via a sequence of transitions

the transition relation is the one induced from the SOS rules

the only final state is 1 (we shall often omit to mark it)

Semantic correspondence

Given any regular expression E , the automaton generated by the SOS rules
has the property of recognizing exactly the language L[[E ]], but it is not
the unique automaton satisfying such property.
Other ”similar” automata might have less (or more) ε transitions.

F. Tiezzi (Unicam) FMSIS 9 / 31



A few examples for Regular Expressions

(a + b)∗
a−→ 1; (a + b)∗

(Atom)
a

a−→ 1
(Sum1)

a + b
a−→ 1

(Star2)
(a + b)∗

a−→ 1; (a + b)∗

1; (a + b)∗
ε−→ (a + b)∗

(Tic)
1

ε−→ 1
(Seq2)

1; (a + b)∗
ε−→ (a + b)∗

F. Tiezzi (Unicam) FMSIS 10 / 31



A few examples for Regular Expressions

(a + b)∗
a−→ 1; (a + b)∗

(Atom)
a

a−→ 1
(Sum1)

a + b
a−→ 1

(Star2)
(a + b)∗

a−→ 1; (a + b)∗

1; (a + b)∗
ε−→ (a + b)∗

(Tic)
1

ε−→ 1
(Seq2)

1; (a + b)∗
ε−→ (a + b)∗

F. Tiezzi (Unicam) FMSIS 10 / 31



Regular expressions: operational semantics

Definition (Traces of Regular expressions)

Let E be a regular expression and s ∈ A∗ be a string,

we write E
s

=⇒ E ′ if there exists µ1, . . . , µn ∈ A ∪ {ε} (n ≥ 0) s.t.:

1 the string µ1 . . . µn coincides with s (up to some occurrence of ε)
2 E

µ1−→ E1
µ2−→ E2

µ3−→ . . .
µn−→ En ≡ E ′ (≡ syntactical equiv.)

The set of traces of E is the set of strings

Traces(E ) = {s ∈ A∗ : E
s

=⇒ 1}

Definition (Trace equivalence)

Two regular expressions E and F are trace equivalent if

Traces(E ) = Traces(F )

F. Tiezzi (Unicam) FMSIS 11 / 31



Regular expressions: operational semantics

Definition (Traces of Regular expressions)

Let E be a regular expression and s ∈ A∗ be a string,

we write E
s

=⇒ E ′ if there exists µ1, . . . , µn ∈ A ∪ {ε} (n ≥ 0) s.t.:

1 the string µ1 . . . µn coincides with s (up to some occurrence of ε)
2 E

µ1−→ E1
µ2−→ E2

µ3−→ . . .
µn−→ En ≡ E ′ (≡ syntactical equiv.)

The set of traces of E is the set of strings

Traces(E ) = {s ∈ A∗ : E
s

=⇒ 1}

Definition (Trace equivalence)

Two regular expressions E and F are trace equivalent if

Traces(E ) = Traces(F )

F. Tiezzi (Unicam) FMSIS 11 / 31



Regular expressions: operational semantics

Example

(a + b)∗ (a∗ + b∗)∗

They are syntactically different

Are they semantically equivalent?

We have to show that:

s is a trace of (a + b)∗ if and only if s is a trace of (a∗ + b∗)∗

F. Tiezzi (Unicam) FMSIS 12 / 31



Regular expressions: operational semantics

Example

(a + b)∗ (a∗ + b∗)∗

They are syntactically different

Traces( (a + b)∗ )
?
= Traces( (a∗ + b∗)∗ )

We have to show that:

s is a trace of (a + b)∗ if and only if s is a trace of (a∗ + b∗)∗

F. Tiezzi (Unicam) FMSIS 12 / 31



Regular expressions: operational semantics

Example

(a + b)∗ (a∗ + b∗)∗

They are syntactically different

Traces( (a + b)∗ )
?
= Traces( (a∗ + b∗)∗ )

We have to show that:

s is a trace of (a + b)∗ if and only if s is a trace of (a∗ + b∗)∗

F. Tiezzi (Unicam) FMSIS 12 / 31



Regular expressions: operational semantics

if s is a trace of (a + b)∗ then s is a trace of (a∗ + b∗)∗

Induction on the length of s.

Base step: |s| = 0 (i.e., s = ε). Trivial: (Star1), (a∗ + b∗)∗
ε−→ 1

Inductive step: |s| > 0, then s = as ′ or s = bs ′; w.l.o.g. assume s = as ′.

The only possible a-transition for (a + b)∗ is (a + b)∗
a

=⇒ (a + b)∗

This is proved via the following derivations:

(Atom)
a

a−→ 1
(Sum1)

a + b
a−→ 1

(Star2)
(a + b)∗

a−→ 1; (a + b)∗

(Tic)
1

ε−→ 1
(Seq2)

1; (a + b)∗
ε−→ (a + b)∗

F. Tiezzi (Unicam) FMSIS 13 / 31



Regular expressions: operational semantics

if s is a trace of (a + b)∗ then s is a trace of (a∗ + b∗)∗

Induction on the length of s.

Base step: |s| = 0 (i.e., s = ε). Trivial: (Star1), (a∗ + b∗)∗
ε−→ 1

Inductive step: |s| > 0, then s = as ′ or s = bs ′; w.l.o.g. assume s = as ′.

The only possible a-transition for (a + b)∗ is (a + b)∗
a

=⇒ (a + b)∗

This is proved via the following derivations:

(Atom)
a

a−→ 1
(Sum1)

a + b
a−→ 1

(Star2)
(a + b)∗

a−→ 1; (a + b)∗

(Tic)
1

ε−→ 1
(Seq2)

1; (a + b)∗
ε−→ (a + b)∗

F. Tiezzi (Unicam) FMSIS 13 / 31



Regular expressions: operational semantics

if s is a trace of (a + b)∗ then s is a trace of (a∗ + b∗)∗

Induction on the length of s.

Base step: |s| = 0 (i.e., s = ε). Trivial: (Star1), (a∗ + b∗)∗
ε−→ 1

Inductive step: |s| > 0, then s = as ′ or s = bs ′; w.l.o.g. assume s = as ′.

The only possible a-transition for (a + b)∗ is (a + b)∗
a

=⇒ (a + b)∗

This is proved via the following derivations:

(Atom)
a

a−→ 1
(Sum1)

a + b
a−→ 1

(Star2)
(a + b)∗

a−→ 1; (a + b)∗

(Tic)
1

ε−→ 1
(Seq2)

1; (a + b)∗
ε−→ (a + b)∗

F. Tiezzi (Unicam) FMSIS 13 / 31



Regular expressions: operational semantics

if s is a trace of (a + b)∗ then s is a trace of (a∗ + b∗)∗

Induction on the length of s.

Base step: |s| = 0 (i.e., s = ε). Trivial: (Star1), (a∗ + b∗)∗
ε−→ 1

Inductive step: |s| > 0, then s = as ′ or s = bs ′; w.l.o.g. assume s = as ′.

The only possible a-transition for (a + b)∗ is (a + b)∗
a

=⇒ (a + b)∗

This is proved via the following derivations:

(Atom)
a

a−→ 1
(Sum1)

a + b
a−→ 1

(Star2)
(a + b)∗

a−→ 1; (a + b)∗

(Tic)
1

ε−→ 1
(Seq2)

1; (a + b)∗
ε−→ (a + b)∗

F. Tiezzi (Unicam) FMSIS 13 / 31



Regular expressions: operational semantics

if s is a trace of (a + b)∗ then s is a trace of (a∗ + b∗)∗

Induction on the length of s.

Base step: |s| = 0 (i.e., s = ε). Trivial: (Star1), (a∗ + b∗)∗
ε−→ 1

Inductive step: |s| > 0, then s = as ′ or s = bs ′; w.l.o.g. assume s = as ′.

The only possible a-transition for (a + b)∗ is (a + b)∗
a

=⇒ (a + b)∗

By hypothesis, (a + b)∗
as′

=⇒ 1, thus (a + b)∗
s′

=⇒ 1.

By induction, we have (a∗ + b∗)∗
s′

=⇒ 1, thus it is sufficient to prove

(a∗ + b∗)∗
a

=⇒ (a∗ + b∗)∗ to conclude that (a∗ + b∗)∗
s

=⇒ 1.

F. Tiezzi (Unicam) FMSIS 13 / 31



Regular expressions: operational semantics

if s is a trace of (a + b)∗ then s is a trace of (a∗ + b∗)∗

Induction on the length of s.

Base step: |s| = 0 (i.e., s = ε). Trivial: (Star1), (a∗ + b∗)∗
ε−→ 1

Inductive step: |s| > 0, then s = as ′ or s = bs ′; w.l.o.g. assume s = as ′.

The only possible a-transition for (a + b)∗ is (a + b)∗
a

=⇒ (a + b)∗

By hypothesis, (a + b)∗
as′

=⇒ 1, thus (a + b)∗
s′

=⇒ 1.

By induction, we have (a∗ + b∗)∗
s′

=⇒ 1, thus it is sufficient to prove

(a∗ + b∗)∗
a

=⇒ (a∗ + b∗)∗ to conclude that (a∗ + b∗)∗
s

=⇒ 1.

F. Tiezzi (Unicam) FMSIS 13 / 31



Regular expressions: operational semantics

if s is a trace of (a + b)∗ then s is a trace of (a∗ + b∗)∗

Induction on the length of s.

Base step: |s| = 0 (i.e., s = ε). Trivial: (Star1), (a∗ + b∗)∗
ε−→ 1

Inductive step: |s| > 0, then s = as ′ or s = bs ′; w.l.o.g. assume s = as ′.

The only possible a-transition for (a + b)∗ is (a + b)∗
a

=⇒ (a + b)∗

By hypothesis, (a + b)∗
as′

=⇒ 1, thus (a + b)∗
s′

=⇒ 1.

By induction, we have (a∗ + b∗)∗
s′

=⇒ 1, thus it is sufficient to prove

(a∗ + b∗)∗
a

=⇒ (a∗ + b∗)∗ to conclude that (a∗ + b∗)∗
s

=⇒ 1.

F. Tiezzi (Unicam) FMSIS 13 / 31



Regular expressions: operational semantics

if s is a trace of (a + b)∗ then s is a trace of (a∗ + b∗)∗

Induction on the length of s.

Base step: |s| = 0 (i.e., s = ε). Trivial: (Star1), (a∗ + b∗)∗
ε−→ 1

Inductive step: |s| > 0, then s = as ′ or s = bs ′; w.l.o.g. assume s = as ′.

(a∗ + b∗)∗
a

=⇒ (a∗ + b∗)∗:

(Atom)
a

a−→ 1
(Star2)

a∗
a−→ 1; a∗

(Sum1)
a∗ + b∗

a−→ 1; a∗

(Star2)
(a∗ + b∗)∗

a−→ 1; a∗; (a∗ + b∗)∗

(Tic)
1

ε−→ 1
(Seq2)

1; a∗; (a∗ + b∗)∗
ε−→ a∗; (a∗ + b∗)∗

(Star1)
a∗

ε−→ 1
(Seq2)

a∗; (a∗ + b∗)∗
ε−→ (a∗ + b∗)∗

F. Tiezzi (Unicam) FMSIS 13 / 31



Regular expressions: operational semantics

The abstract machine that describes the execution of a regular expression
is a finite state automaton

Definition (Regular expressions as finite state automata)

Let E be a reg. expr., the finite state automaton associated to E is

ME =
(
QE , A, →E , E , {1}

)
States: QE = {F | ∃ s∈A∗. E

s
=⇒ F} (expressions from E )

Actions: A (alphabet of E )

Transition relation: →E s.t. F
µ−→E F ′ if F

µ−→ F ′ with µ ∈ A ∪ {ε}

Initial state: expression E

Accepting states: expression 1

F. Tiezzi (Unicam) FMSIS 14 / 31



Regular expressions: operational semantics

The abstract machine that describes the execution of a regular expression
is a finite state automaton

Definition (Regular expressions as finite state automata)

Let E be a reg. expr., the finite state automaton associated to E is

ME =
(
QE , A, →E , E , {1}

)
States: QE = {F | ∃ s∈A∗. E

s
=⇒ F} (expressions from E )

Actions: A (alphabet of E )

Transition relation: →E s.t. F
µ−→E F ′ if F

µ−→ F ′ with µ ∈ A ∪ {ε}

Initial state: expression E

Accepting states: expression 1

F. Tiezzi (Unicam) FMSIS 14 / 31



Regular expressions: operational semantics

Automata associated to (a + b)∗ and (a∗ + b∗)∗

F. Tiezzi (Unicam) FMSIS 15 / 31



Regular expressions: operational semantics

Theorem

Let E be a regular expression and ME the associated automaton, then

Traces(E ) = L(ME )

where L(ME ) = {s ∈ A∗ : E
s

=⇒E 1} (language accepted by ME )

Proof (sketch). Two cases:

⊆ If w ∈ Traces(E ), then E
w

=⇒ 1. The proof that w ∈ L(ME ) proceeds by
induction on the length of w .

⊇ Given w ∈ L(ME ), we prove by induction on the length of w that
w ∈ Traces(E ).

F. Tiezzi (Unicam) FMSIS 16 / 31



Regular expressions: operational semantics

Theorem

Let E be a regular expression and ME the associated automaton, then

Traces(E ) = L(ME )

where L(ME ) = {s ∈ A∗ : E
s

=⇒E 1} (language accepted by ME )

Proof (sketch). Two cases:

⊆ If w ∈ Traces(E ), then E
w

=⇒ 1. The proof that w ∈ L(ME ) proceeds by
induction on the length of w .

⊇ Given w ∈ L(ME ), we prove by induction on the length of w that
w ∈ Traces(E ).

F. Tiezzi (Unicam) FMSIS 16 / 31



Regular expressions: denotational semantics

Denotational Semantics (What a program computes)

an input/output relation that denotes the effect of executing the program:
semantic function

associate to each program a mathematical object, called denotation,
that represents its meaning

Operators on Languages

To define semantics interpretation function for regular expressions, we
need some operators on languages. If L, L1 and L2 are sets of strings:

L1 · L2 = {xy : x ∈ L1 and y ∈ L2}
L∗ =

⋃
n≥0 L

n where

L0 = {ε}
Ln+1 = L · Ln

We have: ∅ · L = L · ∅ = ∅ (Why?)

F. Tiezzi (Unicam) FMSIS 17 / 31



Regular expressions: denotational semantics

Semantic function L for regular expressions

The denotational semantics is inductively defined by the rules below and
associates a subset of A∗ to each regular expressions:

L[[ ]] : R.E . → 2A
∗

L[[0]] = ∅

L[[1]] = {ε}

L[[a]] = {a} (for a ∈ A)

L[[E + F ]] = L[[E ]] ∪ L[[F ]]

L[[E ;F ]] = L[[E ]] · L[[F ]]

L[[E ∗]] = (L[[E ]])∗

F. Tiezzi (Unicam) FMSIS 18 / 31



Regular expressions: denotational semantics

Example

(a + b)∗ (a∗ + b∗)∗

They are syntactically different

Are they semantically equivalent?

We have to show that:

L[[(a + b)∗]] ⊆ L[[(a∗ + b∗)∗]]

vice versa

F. Tiezzi (Unicam) FMSIS 19 / 31



Regular expressions: denotational semantics

Example

(a + b)∗ (a∗ + b∗)∗

They are syntactically different

L[[(a + b)∗]]
?
= L[[(a∗ + b∗)∗]]

We have to show that:

L[[(a + b)∗]] ⊆ L[[(a∗ + b∗)∗]]

vice versa

F. Tiezzi (Unicam) FMSIS 19 / 31



Regular expressions: denotational semantics

Example

(a + b)∗ (a∗ + b∗)∗

They are syntactically different

L[[(a + b)∗]]
?
= L[[(a∗ + b∗)∗]]

We have to show that:

L[[(a + b)∗]] ⊆ L[[(a∗ + b∗)∗]]

vice versa

F. Tiezzi (Unicam) FMSIS 19 / 31



Regular expressions: denotational semantics

L[[(a + b)∗]] ⊆ L[[(a∗ + b∗)∗]]

We have:

L[[(a + b)∗]] =
(
L[[(a + b)]]

)∗
=

(
L[[a]] ∪ L[[b]]

)∗
⊆

(
L[[a]]∗ ∪ L[[b]]∗

)∗
=

(
L[[a∗]] ∪ L[[b∗]]

)∗
=

(
L[[a∗ + b∗]]

)∗
= L[[(a∗ + b∗)∗]]

F. Tiezzi (Unicam) FMSIS 20 / 31



Regular expressions: denotational semantics

L[[(a + b)∗]] ⊆ L[[(a∗ + b∗)∗]]

We have:

L[[(a + b)∗]] =
(
L[[(a + b)]]

)∗
=

(
L[[a]] ∪ L[[b]]

)∗
⊆

(
L[[a]]∗ ∪ L[[b]]∗

)∗
=

(
L[[a∗]] ∪ L[[b∗]]

)∗
=

(
L[[a∗ + b∗]]

)∗
= L[[(a∗ + b∗)∗]]

F. Tiezzi (Unicam) FMSIS 20 / 31



Regular expressions: denotational semantics

L[[(a∗ + b∗)∗]] ⊆ L[[(a + b)∗]]

We have to prove: (
L[[a]]∗ ∪ L[[b]]∗

)∗ ⊆ (L[[a]] ∪ L[[b]]
)∗

We exploit: (
L[[a]] ∪ L[[b]]

)∗
=
((
L[[a]] ∪ L[[b]]

)∗)∗
Thus, we have just to prove that:(

L[[a]]∗ ∪ L[[b]]∗
)∗ ⊆ ((L[[a]] ∪ L[[b]]

)∗)∗
Let s ∈

(
L[[a]]∗ ∪ L[[b]]∗

)∗
. Therefore, for some n ≥ 0, we have s = s1s2 · · · sn and

either si ∈ L[[a]]∗ or si ∈ L[[b]]∗, for all 0 ≤ i ≤ n.

Thus, si ∈
(
L[[a]] ∪ L[[b]]

)∗
, for all 0 ≤ i ≤ n, hence s ∈

((
L[[a]] ∪ L[[b]]

)∗)∗
.

F. Tiezzi (Unicam) FMSIS 21 / 31



Regular expressions: denotational semantics

L[[(a∗ + b∗)∗]] ⊆ L[[(a + b)∗]]

We have to prove: (
L[[a]]∗ ∪ L[[b]]∗

)∗ ⊆ (L[[a]] ∪ L[[b]]
)∗

We exploit: (
L[[a]] ∪ L[[b]]

)∗
=
((
L[[a]] ∪ L[[b]]

)∗)∗
Thus, we have just to prove that:(

L[[a]]∗ ∪ L[[b]]∗
)∗ ⊆ ((L[[a]] ∪ L[[b]]

)∗)∗
Let s ∈

(
L[[a]]∗ ∪ L[[b]]∗

)∗
. Therefore, for some n ≥ 0, we have s = s1s2 · · · sn and

either si ∈ L[[a]]∗ or si ∈ L[[b]]∗, for all 0 ≤ i ≤ n.

Thus, si ∈
(
L[[a]] ∪ L[[b]]

)∗
, for all 0 ≤ i ≤ n, hence s ∈

((
L[[a]] ∪ L[[b]]

)∗)∗
.

F. Tiezzi (Unicam) FMSIS 21 / 31



Regular expressions: denotational semantics

L[[(a∗ + b∗)∗]] ⊆ L[[(a + b)∗]]

We have to prove: (
L[[a]]∗ ∪ L[[b]]∗

)∗ ⊆ (L[[a]] ∪ L[[b]]
)∗

We exploit: (
L[[a]] ∪ L[[b]]

)∗
=
((
L[[a]] ∪ L[[b]]

)∗)∗
Thus, we have just to prove that:(

L[[a]]∗ ∪ L[[b]]∗
)∗ ⊆ ((L[[a]] ∪ L[[b]]

)∗)∗
Let s ∈

(
L[[a]]∗ ∪ L[[b]]∗

)∗
. Therefore, for some n ≥ 0, we have s = s1s2 · · · sn and

either si ∈ L[[a]]∗ or si ∈ L[[b]]∗, for all 0 ≤ i ≤ n.

Thus, si ∈
(
L[[a]] ∪ L[[b]]

)∗
, for all 0 ≤ i ≤ n, hence s ∈

((
L[[a]] ∪ L[[b]]

)∗)∗
.

F. Tiezzi (Unicam) FMSIS 21 / 31



Regular expressions: denotational semantics

L[[(a∗ + b∗)∗]] ⊆ L[[(a + b)∗]]

We have to prove: (
L[[a]]∗ ∪ L[[b]]∗

)∗ ⊆ (L[[a]] ∪ L[[b]]
)∗

We exploit: (
L[[a]] ∪ L[[b]]

)∗
=
((
L[[a]] ∪ L[[b]]

)∗)∗
Thus, we have just to prove that:(

L[[a]]∗ ∪ L[[b]]∗
)∗ ⊆ ((L[[a]] ∪ L[[b]]

)∗)∗
Let s ∈

(
L[[a]]∗ ∪ L[[b]]∗

)∗
. Therefore, for some n ≥ 0, we have s = s1s2 · · · sn and

either si ∈ L[[a]]∗ or si ∈ L[[b]]∗, for all 0 ≤ i ≤ n.

Thus, si ∈
(
L[[a]] ∪ L[[b]]

)∗
, for all 0 ≤ i ≤ n, hence s ∈

((
L[[a]] ∪ L[[b]]

)∗)∗
.

F. Tiezzi (Unicam) FMSIS 21 / 31



Regular expressions: denotational semantics

L[[(a∗ + b∗)∗]] ⊆ L[[(a + b)∗]]

We have to prove: (
L[[a]]∗ ∪ L[[b]]∗

)∗ ⊆ (L[[a]] ∪ L[[b]]
)∗

We exploit: (
L[[a]] ∪ L[[b]]

)∗
=
((
L[[a]] ∪ L[[b]]

)∗)∗
Thus, we have just to prove that:(

L[[a]]∗ ∪ L[[b]]∗
)∗ ⊆ ((L[[a]] ∪ L[[b]]

)∗)∗
Let s ∈

(
L[[a]]∗ ∪ L[[b]]∗

)∗
. Therefore, for some n ≥ 0, we have s = s1s2 · · · sn and

either si ∈ L[[a]]∗ or si ∈ L[[b]]∗, for all 0 ≤ i ≤ n.

Thus, si ∈
(
L[[a]] ∪ L[[b]]

)∗
, for all 0 ≤ i ≤ n, hence s ∈

((
L[[a]] ∪ L[[b]]

)∗)∗
.

F. Tiezzi (Unicam) FMSIS 21 / 31



Equivalence result

Theorem (operational and denotational semantics are equivalent)

Let E be a regular expression, it holds that:

w ∈ Traces(E ) ⇐⇒ w ∈ L[[E ]]

Proof. Two cases:

⇒ By induction on the structure of E .

⇐ By induction on the structure of E .

Property

Let E and F regular expressions and s a string.

E ;F
s

=⇒ 1 implies ∃ x , y s.t. s = xy and E
x

=⇒ 1, F
y

=⇒ 1

F. Tiezzi (Unicam) FMSIS 22 / 31



Equivalence result

Theorem (operational and denotational semantics are equivalent)

Let E be a regular expression, it holds that:

w ∈ Traces(E ) ⇐⇒ w ∈ L[[E ]]

Proof. Two cases:

⇒ By induction on the structure of E .

⇐ By induction on the structure of E .

Property

Let E and F regular expressions and s a string.

E ;F
s

=⇒ 1 implies ∃ x , y s.t. s = xy and E
x

=⇒ 1, F
y

=⇒ 1

F. Tiezzi (Unicam) FMSIS 22 / 31



Equivalence result

Theorem (operational and denotational semantics are equivalent)

Let E be a regular expression, it holds that:

w ∈ Traces(E ) ⇐⇒ w ∈ L[[E ]]

Proof. Two cases:

⇒ By induction on the structure of E .

⇐ By induction on the structure of E .

Property

Let E and F regular expressions and s a string.

E ;F
s

=⇒ 1 implies ∃ x , y s.t. s = xy and E
x

=⇒ 1, F
y

=⇒ 1

F. Tiezzi (Unicam) FMSIS 22 / 31



Regular expressions’ semantics: equivalence result

Proof (⇒). By induction on the structure of E .

E ≡ 0 Trivial, because Traces(0) = ∅ = L[[0]].

E ≡ 1 Trivial, because Traces(1) = {ε} = L[[1]].

E ≡ a Trivial, because Traces(a) = {a} = L[[a]].

E ≡ E1 + E2 If w ∈ Traces(E1 + E2), then ∃ µ ∈ A ∪ {ε} and w ′ ∈ A∗

with w = µw ′ and

E1 + E2
µ−→ F

w ′
=⇒ 1

where

E1
µ−→ F

w ′
=⇒ 1 or E2

µ−→ F
w ′

=⇒ 1

By inductive hypothesis

w ∈ L[[E1]] or w ∈ L[[E2]]

Thus, w ∈ L[[E1]] ∪ L[[E2]] = L[[E1 + E2]].

F. Tiezzi (Unicam) FMSIS 23 / 31



Equivalence result

E ≡ E1;E2 If w ∈ Traces(E1;E2), by the previous property, ∃ x , y s.t.

E1
x

=⇒ 1 and E2
y

=⇒ 1

with w = xy . By inductive hypothesis, we have

x ∈ L[[E1]] and y ∈ L[[E2]],

and, hence, w ∈ L[[E1]] · L[[E2]] = L[[E1;E2]].

E ≡ E ∗1 Let S(E ∗1 ,w) be the number of application of (Star2) in

E ∗1
w

=⇒ 1.
We demonstrate by induction on n = S(E ∗1 ,w) that

w ∈ Ln[[E1]]. (Ln[[E1]] stands for (L[[E1]])n)

...

F. Tiezzi (Unicam) FMSIS 24 / 31



Equivalence result

E ≡ E ∗1 ...

If S(E ∗1 ,w) = 0, no (Star2) but (Star1) used, thus w = ε.
By definition, ε ∈ L0[[E1]] = {ε}.
If S(E ∗1 ,w) = n + 1, then ∃ x , y s.t. w = xy and

E ∗1
x

=⇒ E ∗1
y

=⇒ E ∗1
ε−→ 1

with S(E ∗1 , x) = n.
By (local) induction hypothesis x ∈ Ln[[E1]]. Since

S(E ∗1 , y) = 1, (Star2) is applied only once in E ∗1
y

=⇒ E ∗1 ,

thus ∃µ ∈ A ∪ {ε} and y ′ ∈ A∗ s.t. y = µy ′, E1
µ−→ E ′ and

E ∗1
µ−→ E ′;E ∗1

y ′
=⇒ E ∗1 .

Since E ′;E ∗1
y ′

=⇒ E ∗1 does not use (Star2), we have E ′
y ′

=⇒ 1

and, hence, E1
µy ′

==⇒ 1. By (structural) inductive hypotesis,
y ∈ L[[E1]]. Using x ∈ Ln[[E1]], we conclude.

F. Tiezzi (Unicam) FMSIS 25 / 31



Equivalence result

Proof (⇐). By induction on the structure of E .

For the sake of simplicity, we only consider the case:

E ≡ E ∗1 If w ∈ L[[E ∗1 ]], then ∃ n s.t. w ∈ Ln[[E1]].

Then, ∃ x1, . . . , xn ∈ L[[E1]] s.t. w = x1 · · · xn.

By inductive hypothesis, xi ∈ Traces(E1), that is E1
xi=⇒ 1.

By repeatedly applying (Star2), we obtain E ∗1
xi=⇒ 1;E ∗1 .

Since 1;E ∗1
ε−→ E ∗1 , by (Seq2), and E ∗1

ε−→ 1, by(Star1), we
have

E ∗1
x1=⇒ 1;E ∗1

x2=⇒ 1;E ∗1 · · ·
xn=⇒ 1;E ∗1

ε−→ 1

and, therefore, E ∗1
w

=⇒ 1.

F. Tiezzi (Unicam) FMSIS 26 / 31



Regular expressions: axiomatic semantics

Axiomatic Semantics (What a program modifies)

it relates observable properties before and after program execution

in stateful languages, e.g., if the initial state of a program fulfils the
precondition and the program terminates, then the final state is
guaranteed to fulfil the postcondition

it consists of a set of axioms and inference rules that define a relation

Axiomatic semantics of regular expressions

no state in regular expressions

the observed property is the capability of equivalent expressions to
represent the same regular language

axioms and rules define an equivalence relation E = F that partition
the set of all expressions

F. Tiezzi (Unicam) FMSIS 27 / 31



Regular expressions: axiomatic semantics

Axiomatic Semantics (What a program modifies)

it relates observable properties before and after program execution

in stateful languages, e.g., if the initial state of a program fulfils the
precondition and the program terminates, then the final state is
guaranteed to fulfil the postcondition

it consists of a set of axioms and inference rules that define a relation

Axiomatic semantics of regular expressions

no state in regular expressions

the observed property is the capability of equivalent expressions to
represent the same regular language

axioms and rules define an equivalence relation E = F that partition
the set of all expressions

F. Tiezzi (Unicam) FMSIS 27 / 31



Regular expressions: axiomatic semantics

Axioms for E = F

E + (F + G) = (E + F ) + G
E + F = F + E
E + 0 = E

(assoc +)
(comm +)
(unit +)

 (monoid+)

E ; (F ;G) = (E ;F ) ;G
1 ;E = E

(assoc ;)
(unit ;)

}
(monoid ;)

E ; (F + G) = E ;F + E ;G
(E + F ) ;G = E ;G + F ;G
0 ;E = 0

(distribL)
(distribR)
(absorb 0)

 (modulo +, ;)

E + E = E
}

(idemp +)

E∗ = 1 + E∗ ;E
E∗ = (1 + E)∗

0∗ = 1

(unfolding)
(absorb *)
(00)

 (rules *)

F. Tiezzi (Unicam) FMSIS 28 / 31



Regular expressions: axiomatic semantics

Rules for E = F

Rule 1 (Substitution):

E = F G = H

G ′ = H G ′ = G

where G ′ is obtained from G by replacing
an occurrence of E by F

Rule 2 (Equation solution):

E = E ;F + G

E = G ;F∗
if F does not produce ε

F. Tiezzi (Unicam) FMSIS 29 / 31



Regular expressions: axiomatic semantics

The axioms are sound w.r.t. the observed property,
i.e. = equates expressions representing the same language

E.g., given 0 ;E = 0, we have:

L[[0 ;E ]] = L[[0]] · L[[E ]] = ∅ · L[[E ]] = ∅ = L[[0]]

Applying the axiomatic approach could be more laborious

E.g., proving E ; 0 = 0 requires the following inference:

(absorb 0)
0 ; 0∗ = 0

(absorb 0)
0 = 0 ; 0 E ; 0 = E ; 0

(rule 1)
E ; 0 ; 0 = E ; 0

(unit +)
E ; 0 + 0 = E ; 0

(rule 1)
E ; 0 ; 0 + 0 = E ; 0

(rule 2)
E ; 0 = 0 ; 0∗

(rule 1)
E ; 0 = 0

F. Tiezzi (Unicam) FMSIS 30 / 31



Regular expressions: axiomatic semantics

The axioms are sound w.r.t. the observed property,
i.e. = equates expressions representing the same language

E.g., given 0 ;E = 0, we have:

L[[0 ;E ]] = L[[0]] · L[[E ]] = ∅ · L[[E ]] = ∅ = L[[0]]

Applying the axiomatic approach could be more laborious

E.g., proving E ; 0 = 0 requires the following inference:

(absorb 0)
0 ; 0∗ = 0

(absorb 0)
0 = 0 ; 0 E ; 0 = E ; 0

(rule 1)
E ; 0 ; 0 = E ; 0

(unit +)
E ; 0 + 0 = E ; 0

(rule 1)
E ; 0 ; 0 + 0 = E ; 0

(rule 2)
E ; 0 = 0 ; 0∗

(rule 1)
E ; 0 = 0

F. Tiezzi (Unicam) FMSIS 30 / 31



Regular expressions’ semantics: equivalence result

Theorem (axiomatic and denotational semantics are equivalent)

Let E and F be regular expressions, it holds that:

E = F ⇐⇒ L[[E ]] = L[[F ]]

Proof (sketch). Two cases:

⇒ (Soundness) Easy to prove

⇐ (Completeness) Require a bit of work (e.g., expression normalization)

Corollary

The three semantics for regular expressions are equivalent

F. Tiezzi (Unicam) FMSIS 31 / 31



Regular expressions’ semantics: equivalence result

Theorem (axiomatic and denotational semantics are equivalent)

Let E and F be regular expressions, it holds that:

E = F ⇐⇒ L[[E ]] = L[[F ]]

Proof (sketch). Two cases:

⇒ (Soundness) Easy to prove

⇐ (Completeness) Require a bit of work (e.g., expression normalization)

Corollary

The three semantics for regular expressions are equivalent

F. Tiezzi (Unicam) FMSIS 31 / 31



Regular expressions’ semantics: equivalence result

Theorem (axiomatic and denotational semantics are equivalent)

Let E and F be regular expressions, it holds that:

E = F ⇐⇒ L[[E ]] = L[[F ]]

Proof (sketch). Two cases:

⇒ (Soundness) Easy to prove

⇐ (Completeness) Require a bit of work (e.g., expression normalization)

Corollary

The three semantics for regular expressions are equivalent

F. Tiezzi (Unicam) FMSIS 31 / 31


